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A theory is developed to calculate the electromagnetic transmission spectrum of a metal slab in the pres-
ence of a normal static magnetic field. The boundaries are explicitly included in the development. The trans-
mitted signal is shown to be composed of contributions from the zeros of the infinite-medium dispersion
relation (that is, helicon modes), and from the branch points of the conductivity which give the Gant-
makher-Kaner oscillations. Results of several numerical calculations are given as examples.

I. INTRODUCTION

'HE propagation of electromagnetic waves in a
metal or a semiconductor, in the presence of an

external magnetic 6eld approximately in the direction
of propagation, was predicted by Aigrain and by
Konstantinov and Perel, ' was detected by Bowers
et al. ,

' and has been investigated by a large number of
authors for a number of years. ' In metals or doped
semiconductors, these waves are commonly referred to
as "helicons" and have been used to investigate certain
features of the Fermi surface of metals, for instance, the
Gaussian curvature of the Fermi surface in the direction
of the magnetic field4' and properties such as carrier
density and the sign of the carriers in semiconductors. '

Gantmakher and Kaner~ observed rapid oscillations
in the surface impedance of a slab sample of tin in the

*Supported in part by a grant from the National Science
Foundation.
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"helicon" geometry, that is, when the external magnetic
field is normal to the surface of the slab. They attributed
these oscillations to "ineffective electrons" with
extremal values of the average velocity along the
magnetic field direction. Since tN, H, BA/Bk„where trt,
is the cyclotron mass and 8, the average velocity
component along Bp the electrons concerned are those
which lie near an extremum in BA/Bk„ the derivative
of the cross-sectional area of the Fermi surface in the
direction of the applied static field Bs. Extremal values
of Ri/Bk, occur at elliptic limiting points of the Fermi
surface, or for a nonellipsoidal Fermi surface, they may
occur in a region of the Fermi surface with a finite
transverse dimension of the electron orbit. An extremum
in c)A/rlk, , implies that a large group of electrons will
follow a helical path through the specimen with an
effective wave vector q, =co,/8„where ,=coB a/ ectnis

the cyclotron frequency, and will arrive with a phase
shift with respect to a reference signal at the other side
of the slab.

%eisbuch and I,ibchaber'' have also seen these
"Gantmakher-Kaner" oscillations. They have seen
these oscillations in two directions in Cu, but only in
conjunction with the beginning of helicon oscillations,
i.e., a little above and somewhat below what would
appear to be the conventional absorption edge. Their

8 G. Weisbuch and A. Libchaber, Phys. Rev. Letters 19, 498
(1967).

9When this paper was essentially finished, I learned that
B. Perrin and A. Libchaber (to be published) have observed
Gantmakher-Kaner oscillations in three directions in copper,
and presumably one of these is due to an elliptic limiting point.
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interpretation was in terms of three waves present in
the metal: a helicon wave, a Gantmakher-Kaner wave,
and a damped electromagnetic wave which excites the
Gantmakher-Kaner wave. It is not quite clear what
this damped wave represents, or, from the analysis,
why the Gantmakher-Kaner waves exist only over a
limited region of magnetic field. For further discussion
of this paper see Antoniewicz et cl."

Theoretical work, in which the presence of a boundary
or a surface was explicitly considered, has been con-
centrated principally on the surface impedance of a
semi-infinite slab. "—"McGroddy et a/. " investigated
the surface impedance of metals with Fermi surfaces
which exhibit an orbit edge, that is, a helicon absorption
edge due to electrons with extremal values of velocity,
and showed a qualitative difference between this
result and the free-electron result.

The theory for the transmission geometry, that is,
including the second boundary of a slab, was 6rst done
by Platzman and Buchsbaum, ' where they considered
a free-electron metal with specular reQection of the
electrons at the boundaries of an in6nite slab. However,
they investigated the transmitted power at frequencies
near the cyclotron frequency. Legendy'5 investigated
the effect of boundaries on the observed spectra, but his
investigation was for a local conductivity (independent
of the wave vector), and therefore none of the nonlocal
effects appear in his results. Finally, Baraff" has
investigated the transmission at higher frequencies
through a free-electron metal slab with diffuse reQection
of electrons at the boundary.

The author" has pointed out that, for a non-free-
electron model of the Fermi surface, it is possible for a
damped helicon mode to exist below the usual absorp-
tion edge if there is an extremurn in BA/Bk, . The above
paper considered the infinite-medium dispersion rela-
tion. The author, Wood, and Gavenda" interpreted
experimental results in the L110j direction in copper
as the enhancement of Gantmakher-Kaner oscillations
because of the damped helicon below the absorption
edge. The interpretation was made on the basis of a
model calculation containing the essential features of
the copper Fermi surface and having the boundaries
explicitly included. The qualitative agreement of this
model calculation with experimental results was very
good. The present paper gives the basis on which the
conclusions in the above letter were reached and
includes some further numerical results.

'0 P. R. Antoniewicz, L. T. Wood, arid J. D. Gavenda, Phys.
Rev. Letters 21, 998 (1968)."P.B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962).

"A. W. Overhauser and Sergio Rodriguez, Phys. Rev. 141,
431 (1966).' J. C. McGroddy, J. L. Stanford, and E. A. Stern, Phys. Rev.
141, 437 (1966).

4P. M. Platzrnan and S. J. Buchsbaum, Phys. Rev. 132, 2
(1963)."C. R. Legendy, Phys. Rev. 135, A1713 (1964)."G.A. BaraG, Phys. Rev. 167, 625 (1968).' P. R. Antoniewicz, Phys. Letters 24A, 83 (1967).
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4ir'0' &, ,„1+i(~Wee,—qv, )r
(2)

where r is the relaxation time (assumed constant on
the surface), e, (k,) is the velocity in the k,-k„plane,
and v, is related to the geometry of the Fermi surface
through the derivative of the cross-sectional area of
the Fermi surface (for a closed orbit), that is, m, ii,
= —(Ii/2s. ) (BA/Bk.).

The dispersion relation, Eq. (1), is satisfied by all of
the modes in the electromagnetic spectrum with the
proper polarization. It should be emphasized that if the
conductivity depends on the wave vector g, then the
dispersion relation may have other solutions or branches
besides the helicon. The nonlocal conductivity arises
from the motion of the electrons; they sample the
electric Geld of the electromagnetic waves at different
positions in the metal.

II. THEORY

Let us take a metallic slab extending to infinity in
the x-y directions and assume that there is specular

In this paper, the transmission of an electromagnetic
6eld through a slab of metal in the presence of an
external magnetic 6eld normal to the slab surface and
propagating along the magnetic 6eld is investigated.
The effect of the boundaries on the transmission is
explicitly taken into account, and the experimental
situation is mimicked by retaining the transmitted
electric field instead of the power. This is important,
since experimentally one detects the interference of the
transmitted electric field and a leakage 6eld around the
specimen. Specular reQection at the boundaries is
assumed for simplicity. It will be shown that in this
case the transmitted spectrum depends on the zeros and
branch points of the infinite-medium dispersion relation.
Each zero and branch point contribute an oscillatory
term, as a function of the external magnetic field, to
the spectrum.

The dispersion relation for a circularly polarized
wave in a metal may be written as

q'= (47rcv/c') (Ima~ —i Rea.~),
where q is the complex wave vector, co is the circular
frequency, 0-~=0-,&i0-„ the conductivity, and c is the
speed of light. A static magnetic field is assumed along
the s axis. It shouM be noted that, if for some reason
the real part of the conductivity is much smaller than
the imaginary part, a wave is propagated with little
attenuation. In contrast, however, below the absorption
edge for a spherical Fermi surface, the real part of the
conductivity for a helicon is approximately the same
magnitude as the imaginary part, and, therefore, the
helicon does not exist.

The conductivity tensor for a surface that is cylindri-
cally symmetric about the magnetic 6eld is'
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reQection at the boundaries. Then, an equivalent model,
consisting of the slab repeated to infinity both in the
positive and negative z directions, may be inves-
tigated. '4' That is, the problem is treated as in the
case of an infinite solid, except that the electric field
and its derivative are forced to assume given values at
the "boundaries" of the slabs.

The equations of motion of the system are the
macroscopic Maxwell's equations describing the self-
consistent electromagnetic field in the metal and a
Boltzmann transport equation describing the motion of
the electrons in this field. The conductivity tensor then
represents the motion of the electrons. "

It is assumed that all quantities except the static
magnetic Geld vary as e'"'. Since a slab geometry is
considered, where the x and y dimensions are infinite,
all amplitudes will be functions of the z coordinate only.
Consider propagation in a direction with at least a
threefold symmetry. In terms of circularly polarized
coordinates, one can then write Maxwell's equations as

O'E~/Bz'+ (aP/ )cD+——(47rico/c') J~,
where

E~——E &iE„, etc.

respect to z=0; therefore,

E~(z) = P E„+cosk„z,
nM

and

k„= (1/I) PE'(0)+E'(L)cosk„L),
&p= (1/2L)LE'(o)+E'(L) j, (4)

og(y) cos(k„y)dy.

The electric field finally becomes

(2 —b„p) cos(k„z)b„E.()=- ~.—k.P —(~P/cP) LK+(4~/~)~. +]

I,et us define the quantities

where k„=Is/L, and L is the thickness of the slab.
Expanding all other relevant quantities in similar
series (see Appendix), one gets

E„+=—2b Lk '—(pp K/c )+ (47rior/ c) o+y',

where

The current in an infinite sample is

J(z,(o) = o (z,z', pp) E(s')ds'

and

1 (2 —5„p) cos(k„s)
~+(s) =—Z

L =p k„—(rd'/c') fK+ (47r/i~)o +j
1 (2—8 p)( —1)"cosk„z

&~(z) =—2
L ~=p k„'—(Gr'/c') PK+ (47r/i(d)o +$

(6)

J~(z,(o) = o ~(z,z',co)E~(s')ds'.
then we have

Then, assuming specular reQection at the boundaries,
the material may be considered homogeneous and the
effect of the boundaries is included by stipulating the
electric Geld and its derivative at the boundary, ' ""
that is,

RIld

J+(z) = ~+(z—z')E+(")dz'

~ E+()/~ +( 'K/')E+()

= (4zico/c') J~(z)+2 Q LE'(0)5(z—2eL)
n oo

+E'(L)8(z—(2e+1)LH, (3)

"G. L. Flint, Jr., M.S. thesis, University of Texas, 1967
(unpublished).' C. Kittel, Qgantlm Theory of Sobds (J. Wiley R Sons, Inc. ,
New York, 1963), p. 313.

where E'(0) and E'(L) are the derivatives of the
electric field with respect to the z direction and are
evaluated at z=0 and z=l., and where E is the ionic
dielectric constant. The Gelds are symmetric with

E (z)=A (s)E '(0)+8 (z)E '(L). (7)

Evaluating the above at z=0 and z= I, and noting
that B(L)=A(0) and A(L)=B(0), we obtain for the
fields immediately inside the boundaries

E+(o)=&+(L)E '(0)+~+(L)E~'(L),
E+(L)=~+(L)E+'(0)+&+(L)E~'(L). (8)

Consider the case of an incident electromagnetic
wave propagating in vacuum from the left onto a
metal slab, partially entering the slab, and partially
reQected. On the other side of the slab, a wave is emitted
and continues propagating to the right. Since only plane
waves at normal incidence are being considered, one
can consider the tangential fields only. The tangential
component of the electric field is continuous across a
boundary, and since nonmagnetic metals are being
investigated and there are no surface currents, the
components of the magnetic field are also continuous.
Since the tangential components of the magnetic Gelds
are continuous, it follows that the derivatives of the
tangential components of the electric fields with
respect to z are also continuous across the boundary.
Finally, all of the above comments apply to circularly
polarized waves. Therefore, the relations between the
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electric fields at the left boundary are

Egt+Ep, =Eg(0),
Eg +Ep,'= —ik(E~;—Ep„)=Eg'(0),

where k is the free-space wave vector. At the right-hand
boundary one gets

E~(L)=E~„E~'(L)=E~t' ikE=—~t,

where the subscripts i, r, and t refer to the incident,
rejected, and transmitted waves, respectively.

Substituting these relations between the electric
fields into Eq. (8) and eliminating Ep„ from them,
one finally obtains

E~, —i2kA g(L)

E~; k'Bg'(L)+k'Ag(L)+1

the ratio of the transmitted electric field to the incident
wave electric field. The ratio of the electric fields,
E~i/E~;, represents both the ratio of the magnitudes of
the two circularly polarized fields and also the phase
relation between them. The detected signal, which
consists of the sum of the transmitted and the leakage
signals, is proportional to the real part of E~t/E~;.

For situations under consideration, namely, the
transmission through a metal slab, the quantities
k'A '(L) and k'8 '(I.) are small compared to 1 and
consequently one may consider only the numerator in
the expression for E~ /Et~;, that is,

E~,/E~, —i2kA~(L) . (1o)

The subsequent numerical calculations, however,
were done with the full expression as a check.

In order to see, qualitatively, the contributions to
the transmitted field, one has to investigate the quantity

1 (2 —b„p) (—1)"
A+(L) =—E (11)~ k„'—((v'/c') (E+ (4sr/ice) o +)

The above sum may be expressed in a closed form.
Since o „+ is symmetric in n (i.e., o „+=o +), we have

A+(L)= Z (—1)"f(n)

contour integral of the above function has to be found:

x' csex'8 8 ds.

It should be noted that zcscsrz f(z) is bounded and
goes to zero as

~
z~ ~ ~, and, therefore, one can take

the contour to infinity. One can not in fact take the
contour to infinity at all points if the function f(z), or
equivalently the conductivity o.(z), has a branch point.
Then Ii is not zero but its value is equal to the integrals
along the branch cuts. Now

+Q /residues of sr cscsrz f(z) at the poles of f(z)).
Therefore,

A (L)=F—g Lresidues of sr cscsrz f(z)
at the poles of f(z)j.

The poles of f(z) are the solutions of the infinite-
medium dispersion relation. That is, the number of
poles will correspond to the number of branches of the
infinite-medium dispersion relation and, consequently,
each branch will contribute to the transmitted electric
field essentially via the periodic function csczso. The
amplitude of this contribution will depend on the
residue of the function f(z) at the pole zo because of
that branch, and also on the imaginary part of so

through cscmso. The transmitted signal is ocillatory as a
function of some parameter —for instance, the static
magnetic field. The periodicity of this signal will depend
on the infinite-medium dispersion relation of this partic-
ular branch as a function of the variable parameter.

The other term in the result, F, is due to the branch
points of the conductivity, o (z), in the complex wave-
vector plane. It was shown by Gantmakher and
Kaner' that the branch points of the o (z) arise from
elliptic limiting points and other extrema in BA/Bk, of
the Fermi surface under consideration. The contribu-
tions to F are due to the integrals around the branch
points of o.(z) and running parallel to the imaginary
axis. Then,

where long cut
srf(z) cscsrzdz

f(n) = ——k„'—E+ o+i-
e'

A device found in Morse and Feshbach" is then used:
One finds the sum by a contour integration of an
auxiliary function. One requires a function which has
simple poles at z =n and residues (—1) .Such a function
is sr cscsrz f(z). It is also bounded at ~zj ~ ~. The

I P. M. Morse and H. Feshbach, N ethods of Theoretical Physics
(McGraw-Hill Book Co., Net York, 1953), p. 413.

is the contribution due to a branch point at s;. Make a
change of variable m= s—s, which gives

0

Ii; =sr f(w+z, ) cscsr(w+zt)dw

$00

+ f(w+z;) cscsr(w+z, )dw,

[f(re s~t'+z ) f(re+'~t'+z. )$—
Xcscsr (ir+z;)dr.
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In general, in terms of the wave vector, one has z;
= (L/s)(&a. ,&i/r)/t1„, where 8„ is the average Fermi
velocity at the limiting point j and co„ the cyclotron
frequency at that point. Now in the identity csex
=2i/(e'* e—'), for large L (compared to electron
translation along the fmld during a mean free time) one
or the other of the exponentials will dominate, so that
one gets

F -=2xe'~z,j pf(rs —is+/s+s. ) f(red Js+z )jc rt'd.r—

III. NUMERICAL RESULTS

Several numerical computations were made on
various models of the Fermi surface in order to gain
some qualitative appreciation of the behavior of the
transmitted signal for various situations. First of all,
a spherical Fermi surface was used. The attempt was
to see whether Gantmakher-Kaner oscillations which
are due to the elliptical edge of the Fermi surface are
present, and what is their qualitative behavior. The
numerical parameters used were frequency co= 10'/sec,
relaxation time v = 10 ' sec, electron concentration
rz = 1.4X 10"/cm', and, as in each of the following cases,
the sample thickness was 1 mm and a free-electron

One sees, therefore, that each branch point and cut
contributes an oscillatory term to the transmitted
signal. The period of the oscillation of a given term is
given by

AB = (7rc/eL) m„o„=—(kc/2eL) (ciA /Bk, );,
where m„.H„ is evaluated at the branch point. In this
simple conjecture the eRect due to-the change of the
integral as a function of the magnetic field has not been
taken into account.

Finally, Ii is the sum over all of the branch points of
o.(s) so that A+(L) is a sum of a number of oscillatory
contributions, both from the branches of the inhnite
dispersion relation and from the branch points of the
conductivity o (s). Each of these contributions, however,
occurs with a different amplitude; this determines
whether it will or will not be seen in a given experiment.
The relative amplitudes of the contributions of the
various branches and branch points depends on the
residues and on the positions of the poles of the function
f(s) and must be investigated for each individual case.

If the conductivity is local, that is, if it is independent
of the wave vector, there is only one branch of the
infinite dispersion relation, namely, the helicon branch,
and the conductivity has no branch points. The trans-
mitted signal will then consist of the pure helicon
transmission. However, if the conductivity is nonlocal,
then there may be more than one solution to the
infinite-medium dispersion equation, and also there will
be branch points of f(s), so that a more complicated
spectrum results.

(a)
Bz

LLJ

LLI

Q

(b)

3 M
MAGNETIC FIELD (KG)

Fzo. i. Real part of the ratio of the transmitted to the incident
wave electric 6elds, Re(E&/E;), for a Fermi surface, which is an
undulating cylinder (a). This surface displays an orbit edge. The
parameters used in the computation were frequency au=10'/sec,
relaxation time r = 10~ sec, and an electron density n = 1.4&(10'/
cm', One can see very weak Gantmakher-Kaner oscillations below
the absorption edge for helicons.

n S. G. Eckstein, Phys. Rev. Letters 16, 611 (1966).

eRective mass was used. The numerical results show
that there are Gantmakher-Kaner oscillations below
the helicon absorption edge, but they are very small in
amplitude compared to the helicon oscillations and this
prompted us' to doubt whether they could be seen
experimentally.

A model with an orbit edge was investigated next. A
dumbbell surface Lsee Fig. 3(a)j with the ends cut off
where r)A/Bk, =0 )see Fig. 1(a)g is used as a model of
a Fermi surface with an orbit edge. In an extended zone
scheme, it looks like an undulating cylinder. A more
detailed description of this surface is given below. The
results using this surface, as seen in Fig. 1(b), show that
the Gantmakher-Kaner oscillations are somewhat
larger, but still appear small. One can see the magnitude
of the undulations below the absorption edge as
compared to the steepness of the edge itself, that is,
the start of the first helicon oscillations. The parameters
used in the computation are the same as the ones for
the spherical Fermi surface.

In order to simulate the situation in copper in the
$111j direction, a model surface was used whose
electron surface was an undulating cylinder with an
electron concentration 8.5X10"/cm' and whose hole
surface was a sphere with a hole concentration of 8.415
X 10"/cm'. The other parameters are the same as used
above. No attempt was made to reproduce the copper
Fermi surface except in the two general aspects men-
tioned. Figure 2 shows the Gantmakher-Kaner oscilla-
tions appearing on a background of a slowly varying
helicon wave. Qualitatively, this resembles the experi-
mentally obtained results.

The most striking results were obtained using a
dumbbell model of a Fermi surface. The model proposed
by Eckstein, " has a Fermi energy E~= (k'/2')
X (kzz —k,'+k. '/2ks'), where k& and k, are the electron
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Fig. 3). This agrees very well with what is observed
experimentally in copper in the L110] direction. "

hJ

LLJ

4)

I 2 3 4 5 6
MAGNETIC F IELD {KG )

Fzo. 2. Re(E&/E;) for a Fermi surface consisting of two pieces:
one an undulating cylinder with electron concentration of 8.5
X10"/cm3 and the other a spherical hole surface with hole
concentration of 8.415X10's/cm'. A frequency of sr=104/sec was
used and a relaxation time of &=10~ sec. Gantmakher-Kaner
oscillations appear against the background of a slowly varying
helicon signal.

wave vectors perpendicular and parallel to the magnetic
Geld and where ko' is chosen to be ko'=12mEp. This
model has the following features: It has a large density
of electron states with the same value of the s component
of the Fermi velocity (that is, along the magnetic field),
and some electrons with a larger value of the s compo-
nent of the Fermi velocity which are responsible for
the primary absorption edge for helicons, but there is a
smaller number of these electrons. The presence of this
large extremum was used by the author to predict a
"helicon window'"~ occurring below the primary absorp-
tion edge. That is, the real part of the wave vector of
the dispersion relation in the window region is larger
than the imaginary part, and a damped helicon wave
should then propagate and be detected. However, this
large maximum is also responsible for the generation of
strong Gantmakher-Kaner oscillations. The calcula-
tions, as shown in Fig. 3, bear this picture out. The
damped helicon enhances the Gantmakher-Kaner oscil-
lations, and these in turn are visible in the "window"
region, i.e., above the primary absorption edge (see

a)

5
MAGNETIC FIELD (KG)

Fzo. 5. Re(E&/E;) for a dumbbell Fermi surface shown in (a)
with parameters: frequency co 10'/sec, relaxation time r=10 '
sec, and electron density e = 1.4X 1022/cm'. Enhanced Gantmakher
oscillations occur in the "window" region, and may be compared
~ith Gant;makher-Kq, ner @scil&q,tionq below thtg "endow" region.

IV. CONCLUSION

In this paper we have investigated the effect of
boundaries, or explicitly, the transmitted signal through
a metal-slab sample. We show the relation between the
infinite-medium dispersion relation, the conductivity
tensor, and the transmitted signal. We have derived an
expression for the ratio of the transmitted to the
impinging electric fieMs of the experiment. It is pointed
out that one should retain the Geld in the calculation,
since it is the interference of the transmitted field with
a reference field which gives the detected oscillatory
signal.

We Gnd that the relation between the incident
electric Geld and the transmitted field is proportional to
the sum of one over the infinite-medium dispersion
relation over all wave vectors which have an integer
or half integer wavelength in the sample. The numerical
results were computed using the summed version of
the results.

It is also shown that the results may be cast into an
analytical form which then makes transparent the
various contributions to the transmitted signal. It
clearly shows that the various branches of the infinite-
medium dispersion relation contribute separately to
the transmitted signal as oscillatory functions of the
external magnetic Geld. It also shows that branch
points of the conductivity also make an oscillatory
contribution and give the so-called Gantmakher-
Kaner oscillations. Finally, although the possibility is
not pursued further in this paper, it can be seen that the
analytical form of the results can be used as a starting
point in investigating the amplitudes of the contribu-
tions from the various branches and branch points to
the transmitted field.

In a previous paper the author predicted a damped
helicon existing in a region below the conventional
absorption edge for certain Fermi-surface geometries.
This was referred to as the helicon "window. " This
prediction was made on the basis of an infinite-medium
dispersion relation. A numerical calculation of a model
Fermi surface shows that the helicon window manifests
itself in a transmission experiment as the enhancement
of Gantmakher-Kaner oscillations in its region of
existence.

Numerical results for a spherical Fermi surface and
for a Fermi surface with an orbit edge show that the
Gantmakher-Kaner oscillations for these geometries
are much smaller than the Gantmakher-Kaner oscilla-
tions for the window region. This also seems to be
borne out by experiment.

Finally, a result of a calculation using a composite
Fermi surface, including both an orbit edge surface and
a hole stzrface is showzz. This was done to mimic the



TRA NS M I SS ION THROUGH RI ETAL I N M AG NETI C F I ELD)

situation occurring in Cu in the (111jdirection and
gives qualitative agreement with experiment.

Further work on this subject should include calcula-
tions using the real Fermi surface of a metal to compare
directly with experimental data, and the use of the
analytical expression for the transmitted signal to study
the amplitudes of the various branches.
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APPENDIX

In order to find the coeKcients of expansion of~the
sum over the 8 functions, one has to be a little more
careful. I,et

8 (s) = Q PE~'(0)b (s—2eL)+E~'(L) 8 (s—(2m+1)L)'I

=Q b +cosk s.
mM

cosk&sb(s)d»=g b +
mM

cosk is cosk~2'ds

thus,
=bi+EL or bp+2ÃJ;

In order to 6nd b, multiply the above equation by
coskis and integrate over z between the symmetric
limits —EI- and ÃI, where E is some large number;
then Anally take the limit E~ ~. Now,

The equation of motion for the electric field in the b,+—l;m p E ~(0)
slab is N" EJ~—~

NL

NL

coskis 5(»—2NL)ds

O'E (s)/Bs'+( )'oK/ c)E~(s)

= (4»iso/c') J~(s)+2 Q LE~'(0)b(s —2NL)
m

and

+E~'(L)

NL

. —NL

coskis 5(s—(2n+1)L)ds

+Eg'(L)b(s —(2N+1)L)j. (A1) coskts b(s 2eL)d»=N n—, —

The field is symmetric with respect to the
since one is constructing a mirror image
what is in s&0. Therefore, one may write

E~(s) = g E„+cosk„s,

plane a=0,
ill g 0 of where n is a number &3, and depends on whether ~V

is odd or even and on whether the argument of the 5

function coincides with a limit of integration. Similarly,

coski» b (s—(2m+1)L)ds

where k =e~/L and L is the thickness of the slab. Since
the nonlocal conductivity depends only on the distance
between the applied 6eld and the resultant current and
not on their absolute positions (this is the reason for
using specular reflection and the infinitely repeating
slabs), one may write

—NL

therefore,

= (1V —P) coskiL, where P &3;

bi+ = LE~'(0)+E~'(L)coskiLj/L

bo+= ~E '(0)+E '(L)~/2L.

where

~~(s' —s)E~(s')ds'= P o.„+E„+cosk„s,
n=p

o+(y) cos(k„y)dy.

Substituting these values in Eq. (A1), collecting
coefficients of each cosine term, and setting them equal
to zero, one has

—2b +

k „'—(oi'K/c') + (4~ioi/c') o „+


