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Exchange Interaction in Alloys with Cerium Impurities*
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Starting with the Anderson model for the 4f' con6guration of cerium, the transformation of Schrieffer
and Wolff is performed, taking into account combined spin and orbit exchange scattering. The resultant
interaction Hamiltonian differs qualitatively from the conventional s fexch-ange interaction. The Kondo
eRect, the spin-disorder resistivity, the Ruderman-Kittel interaction, and the depression of the super-
conducting transition temperature with impurity concentration are worked out for alloys containing cerium
impurities on the basis of this new interaction.

1. INTRODUCTION

'HE occurrence of a resistivity minimum at low
temperatures —or the Kondo eftect—has been

extensively studied for transitional alloys; magnetic
alloys with transition impurities show a Kondo e8ect,
while nonmagnetic alloys do not exhibit a Kondo effect.
On the other hand, in the series of dilute alloys with
rare-earth impurities in lanthanum or yttrium, the
alloys with cerium impurities are the only ones that
show a resistivity minimum at low temperatures; all
the other rare-earth alloys, though magnetic, do not
show a resistivity minimum. ' ~ The anomalous behavior
of cerium metal and alloys has been recently studied in
detail. ' In these cases the 4f level is very close to the
Fermi level, and resonant scattering theory explains
their properties. In the other rare earths, the 4f levels
are generally far from the -Fermi level, and the ionic
model is valid.

To explain the Kondo effect in magnetic dilute alloys
with transition impurities, two models are generally
considered, the s-d exchange model and the Anderson
model, the latter describing the mixing between con-
duction electrons and localized electrons. Schrieffer
and WolP have shown that, in the limit of small

mixing, the Anderson Hamiltonian leads to an exchange-

type Ha, miltonian.
To explain the experiments of the Kondo effect in

rare-earth alloys, the s fexchan-ge Hamiltonian is
generally used. ' ' Since the orbital angular momentum
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is unquenched and the spin-orbit coupling is large, the
spin-spin (s f) exch-ange Hamiltonian is conventionally
written as

&=—21'(g —1)s i,
where I' is the interaction constant, g is the Lande
g factor, s is the conduction-electron spin density at the
impurity site, and j is the total angular momentum of
the rare-earth impurity. The form of (1) leads to a
ra.ther puzzling result, namely, in the case of cerium
alloys, g —1 is negative„so that there would be a
Kondo effect only if I' were positive, in contrast to
transition alloys. Since it is presumed that the strong
s-f hybridization in cerium is responsible for the Kondo
effect in dilute cerium alloys, while one knows that
hybridization exchange leads to negative F, at least for
s-state ions, the origin of the Kondo effect in cerium
alloys is unclear.

To clarify the situation, we consider an Anderson-
type model for the 4f' coniguration of cerium and
derive the effective exchange interaction between the
conduction electrons and the impurity moment, taking
into account combined spin and orbit exchange scatter-
ing. Our results differ sharply from the conventional
form (1).

The spin-disorder resistivity, the Kondo effect, the
Ruderman-Kittel interaction, and the depression of the
superconducting transition temperature with impurity
concentration are worked out for alloys containing
cerium impurities on the basis of this new interaction.

2. EXCHANGE INTERACTION HAMILTONIAN

For a cerium atom, the large spin-orbit coupling
leads to a ground state of total angular momentum
j=ssin which the orbital angular momentum (l=3)
and spin of the f electron are antiparallel; the j=—,

'
multiplet is widely separated from the ground state and
is not of interest here. To treat the mixing of the con-
duction and impurity wave functions, we work with
conduction states that are partial-wave states about the
impurity. Since we are only interested in the l=3
states of the impurity, and since the conduction-
impurity mixing potential is predominantly spherically
symmetric, only /=3 conduction-electron partial-wave
states will enter the problem. Furthermore, it is con-
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venient to make up spin-orbit eigenstates from these
partial-wave states so that we work only with states of
definite total angular momentum. Let ckMt create a
conduction electron in a state of wave number k, total
angular momentum oo, and s component M(=&o2,
Woo, &o), while cM t creates an electron on the impurity
with j=-', and s component M'. Then the Anderson
Hamiltonian' is

where
H =Ho+Hi, (2a)

Hp= Q okibkM+Eo Q eM+ ,'U Q-ibMeM, (2b)
M, M'

Hl= Q (UkCkM CM+Uk CM CkM) ~

k, M
(2c)

where u and b label the initial and fLnal states, respec-
tively. For the 4f' configuration of cerium, these states
are of the form

I ~& =«MtCM'I o)
I
f &

="M "M'IO& (4)

and the two possible intermediate states for the above
states (4) are

I ci& =ckM"ck M'"
I 0& ) I co& =cMtcM'

I
0& (5)

In this way, we obtain

where

~2= — ~ J kk Ck'M' CM CM'CkM )
t

kk'MM~
(6)

Jk~, k, = I Uk, I'&/Eo(E'o+&) (7)

While Jkk is independent of M and M', it depends on
k and k' and is roughly constant so long as Ep((pk,
ok )(Ep+U.P In the following we take Jkk. to be a
constant with a cutoff so that J=O if

I okl or
I pk I)D,

where D is of order IEpl.
The Harniltonian (6) describes spin and orbit ex-

change scattering, and, in contrast to the s. j exchange
model, the change d M =Sf' —3f in the magnetic
quantum numbers is not limited to ~1 or 0, as it is for
the s j interaction. The form of (6) shows that the

'0 P. W. Anderson, Phys. Rev. 126, 41 (1961}."J.R. SchrieGer, J. Appl. Phys. 38, 1143 (1967}.

ek is the energy of a conduction electron of wave
number k, and Eo is the energy of the localized state,
both being measured relative to the Fermi energy E&.
We neglect here the multiplet splittings when there are
two or more electrons on the impurity, i.e., we neglect
atomic exchange integrals compared to the atomic
Coulomb integral V.

We follow the method used previously" with the
same notation was used there. The canonical trans-
formation replaces H& by an interaction H2 which is
given by

f 1 1
H2=2 2 (blHilC&&CIHil~&l +, (3)

abc kpg —pg Cb pg

Inagnetic quantum numbers of the conduction and
localized electrons are in fact exchanged in the scatter-
ing process.

We note that, for a scattering process in which
35=M', the average value of (6) over all possible
values of e~ ——cMtcM is not zero, in contrast to the
s.S or s j interactions. As a consequence, the inter-
action (6) actually contains both direct and exchange
scattering. For many purposes, it is convenient to
remove the direct scattering by adding to (6) the direct
potential

CkIM~ CkMI'Pl Mt
2)+1 kMk'M'

in order that II2 and H3 contain only exchange scatter-
ing. Thus, we must subtract from the normal one-
electron (direct) potential the term H, . Thus, the total
Hamiltonian is

H=p &kiokM J p Ck'M' CkM
kM kk'MM'

~M, M'
X CM cM — sM ) 9

2j+1 M" )
where the k sums are restricted to loki(D. In (9) we
have not considered the normal one-electron (direct)
potential because it is of no interest for the physical
properties studied in the following work. The Hamil-
tonian (9) reduces to the conventional exchange
Hamiltonian for s= —,', the case usually studied.

Since Eo is small and negative in cerium alloys, such
as La-Ce and Y-Ce alloys (Ep is believed to be of order
of a few hundredths to a tenth of an eV), the value of
J' given by (7) is large and negative, of order several
tenths of an eV. Since the normal Heisenberg exchange
arising from Coulomb interactions between the con-
duction and localized electrons is likely a good deal
smaller in magnitude than J, we neglect it in the present
discussion. We will return to this point later.

The form (9) of the Hamiltonian, using the partial
wave operators ckM~ for conduction electrons, is very
appropriate to the study of some properties of the
cerium alloys, such as the Kondo effect. But, for some
other properties, such as the Ruderman-Kittel inter-
action, it is more convenient to work with plane wave
operators c~ ~ for conduction electrons. Let c~,t create
a conduction electron in a state of wave vector k and
spin 0.. Let us note that, in the operator ckM~, the k
index is the wave number k =

I
k I, while in the operator

ck t, the k index is the wave vector k,
The transformation from the ckM~ operators to the

ck ~ operators can be written as

Ck Mt ——p ck.t (kM I
ko &.

The sum in (10) is over the different angles of k at
Ikl fixed and over the two spin directions o; lko'&
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denotes a plane wave of wave vector k and spin 0",

and
I
kM) denotes a partial wave of wave number

I
k I,

.total angular momentum ~, and s component M. Thus,
the total Hamiltonian (11) is

H =j 6fcRko —~ gPgyrrrr Ck'a& Cko
3fM'

k, o ko.k'o'

~M, 1''
X CM CM' — '+~», 11

2j+1 itr"

where

3. RESISTIVITY AND THE KONDO EFFECT
To compute the resistivity and discuss the Kondo

properties of cerium alloys, we use the form (9) of the
Hamiltonian and outline the Nagaoka equations and
the Green's-function truncation scheme employed pre-
viously by Xagaoka" for the conventional exchange
interaction.

Introducing the Zubarev Green's functions

Gki m = (c, ~
I
c, '),

gk.k .™=J(k~ I kM) (k'M'I &'~'). (12)

Let us compute the value of gk, k,™.For an t =3
and j=—,'state, the partial wave kM) is given as a
function of the partial waves Ik, l,m, o), where l=3,
m is the s component of the angular momentum, and
o- is the spin

IkM)=~~Ik, 3, M+5, —2&+&~Ik, 3, M —l, 2&, (13)

C~
~

CA'~ g
— Gejc Jtrf

t

~l '
2j+1

and the averages

I
—2 Imp Gik~ii (co))f((a))da&,

(19)

(20)

2 1111+Fik ~((d))f (M)Qid
where the two Clebsh-Gordan coefFicients nM and PM
are

where f(cu) is the Fermi function, we obtain two
air =

I (7+2M)/14)'" Pir =
I (7—2M)/14)'". (14) Nagaoka equations"

The
I k, l,nz, o) wave function is proportional to

ji(kr) Vi (e, p) Ia&, where ji(kr) is the spherical Bessel
function and Fi (e, y) is the spherical harmonic. Here
we choose

in order to make contact with the s =
~ case for the

Hamiltonian (11).Thus, the plane wave
I
ko& is equal to

Iko)=/(4 ) P P 'Y' *(ni)Ik, l, rm, r&. (16)
l=o =—l

Thus, the calculation of g gives

gk.k. ™=4~J(~~I's~+'(flu)~. +A~I's~ *'(fix)&. ]
X(~~ LI'3 '+'54))*4,—;

+P~ LI'~ ' '(ll'))*~",:) (17)

If there are rc impurities located at positions E„, the
total Hamiltonian is

H P Ekmkrr
ka ko.k'o'M3f ' n

,MM'ci (k—k') R„c

,4(n)C {n} ~ » (n)

2j+1 ia"

where c~t(") corresponds to the mth atom. Thus we
have derived an exchange-type Hamiltonian taking
into account combined spin and orbit exchange scatter-
ing, and the forms (9), (11), and (18) are very useful
for the following.

(co —&k )Gkk ~+1P I'ki~= 8k, k /2',

(~ ~k )I'k~ ~ —J(2j+1)—riia—
4j(j+1)

Z Gild
(2j+1)'

2
+J (2j+1)ek — p I'kiter ——0. (21)

(2j+1)- '

The solution of Eq. (21) has the same form as for the
s =-,'spin, and we can deduce the following results:

(1) There is a Kondo effect for cerium alloys, because
J is negative. The Kondo temperature is given by

kiiTk Dexpf 1/(2j—+—1) I
J

I e(Er)), (22)

where ii(E&) is the density of states of the conduction
band at Fermi level for one spin direction.

We note that in (22) the coefFicient in the exponential
is 2j+1 and not 2, as for the s S or s j interactions.
In fact, there are 2j+1 channels for changing the
quantum number M on the impurity (instead of 2, a,s
for the s S and s.j interactions), and these channels
add independently to each other. The same result
occurs obviously in the Kondo resistivity. In (22) the
cuto8 D is not the width of the conduction band, but
rather the distance Eo from the 4f localized level to the
Fermi level, as in superconductivity theory. With Eo
of the order of 0.1 eV and 2j+1=6, Tk for cerium alloys
is of the order of several degrees Kelvin to some 10',
roughly of the same order of magnitude as the experi-
mental values for Y-Ce and La-Ce alloys. 4 5 "

~2 Y. Nagaoka, Phys. Rev. 138, A1112 (1965).
~3 S. A. Kdelstein, Phys. Letters 27A, 614 (1968); Phys. Rev.

Letters 20, 1348 (1968).
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(2) Above Tq, there is spin and orbital magnetism.
Below l'k, the preceding analysis suggests that there is,
in cerium alloys, a compensation of the total angular
momentum, i.e., a compensation of both spin and orbital
momentum. This has not been investigated at present
in detail. However, recent magnetic susceptibility
experiments on La-Ce alloys at low temperatures
indicate that the effective magnetic moment is 0.5@~
and is a decreasing function of temperature. Hence the
orbital moment has been greatly reduced. So in spite
of possible crystalline field arguments, it seems to be
the first evidence of combined spin and orbital
compensation. "

(3) The spin-disorder resistivity is

2rrtrt*n (EF) 4j(j+1)
Eg cJ

se'k (2j+1)'
(23)

There should be a resistivity minimum above Tk and
a plateau below Tk. These results are in agreement with
recent experiments on Y-Ce alloys. 4

4. RUDERMAN-KITTEL INTERACTION

We have seen, in the preceding section, that the
results derived on the basis of the new exchange-type
interaction are different from the results obtained with
the s.S or s j interactions. It is interesting t.o look at
other properties of magnetic dilute alloys, in order to
see if there are other differences. The first interesting
property is the Ruderman-Kittel" interaction between
two magnetic cerium impurities, i.e., the indirect inter-
action of two cerium impurities via the exchange inter-
action of their 4f shells with the conduction electrons.

Let us consider two impurities 1 and 2 at a distance E.
The total second-order interaction between the two
magnetic impurities is given by

m* is the effective mass and s the number of conduction
electrons per unit volume. We will return to this point
later.

(4) The exchange scattering resistivity for T) Tt, is

R=R,(1+~I~ (2j+1)rt(Ee) 1n(0.77D/ktiT)7. (24)

can be written as

II (R) —Q P 3fM (R')
MM'

X~ cw'o'ciao~ — p tter" t'~
~

4m~1
X CMt"'CM "'— eM"") . 26

2/+1 er"

I'»~~'(R) is the interaction energy for an individual
change from M to 3P on 1 and the corresponding
change from M' to M on 2. Using the fact that
(gt„t, ;~~')*=cft, , t„~'~, we obtain the value of
E»~~'(R) from

~ 1 —e)
Ei,M~'(R) =2

ko k'0' gk —qkr

X
~

g&,q
~~'~' cos. (k —k') R, (27)

where ft, is the Fermi-Dirac function for the energy et,.
We see tha, t the terms in the parentheses are identical
by interchange of k and k', so that the terms in ft,fk
vanish, since the denominators are of the opposite sign.
Hence we have

MM& (R)
k~k'o' qk —qkr

X
~

cit,.t, .~~'~' cos(k —k') R. (28)

We use the form (17) of g and we expand the plane
waves in partial waves. For this we take the s axis along
the line connecting the impurities 1 and 2. Hence we
have

e'" ' "= P (2l+1)(2l'+1)jt(kR)jt (k'R)
l, l'=0

XPt(cosek)Pt(costt~ ). (29)

We separate the integration in (28) into an integration
over the magnitudes

( k~ and
~

k'
~

and an integration
over the angles of k and O'. At last, we obtain

(ko tII;~ k'o')(k'o'~ II, [ko)
IIi, (R) = P

ko k'o'
(25) ~„nrer (R)

J'm*
Q (2l+1) (2l'+1)

~4 ll'

XBt(M)Bt (IrI')Itt (R), (30)

+P~' dn„Pt(cosset„)
i
I', (ll„) i' (31)

II; is the interaction Hamiltonian given by the second
term of the expression (18). The sum in (25) is for all
the filled k values and all the empty k' vaccines.

The expression (25) corresponds to all the changes Bt(cV) =n~' dpi, Pt(cos8p)
~

F'3~+l(Qt) ~'
from M to 3f' on the impurity 1 and the corresponding
changes from M' to 3f on the impurity 2. Thus Hi2(R)

'4 A. S. Edelstein (private communication}."J.C. Slater, Quantum Theory of Atomt'c Structure (McGraw-
Hill Book Co., New York, 1960},Vol. II, Appendix 20.

k2jt (kR) dk

oo P/2—jt (k'R)dk'.
k' —k"
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The value of Bt(M) is easily obtained as a function of
the coeflicients Ct(3,m;3, m) introduced by Slater"
for the addition of three angular momenta,

Bt(M) =nsr'C'(3 M+-' 3 M+-')
+Psr'C'(3, M ——', ; 3, M —-', ) . (32)

The only nonzero C'(3,m; 3,m) coefficients correspond
to l =0, 2, 4, 6. In particular, Cs(3,m; 3,m) is always
equal to 1.

On the other hand, the integrals It~ (R) are not in
general easy to compute. The 6rst one Ioo for l=/'=0
can be computed exactly and gives the classical
Ruderman-Kittel interaction"

Thus, there remain only the six coeAicients

('(s, -s') =400/49, G(-,',—,') =16/49, G(-'„-,') =25/49,

G(—'„$)= —80/49, G(—',,-', ) =100/49, G(-s, P, ) = —20/49.

The average value of G(M, M') is equal to 1.
The form (37) of the Ruderman-Kittel interaction is

strongly anisotropic, owing to the diferent values of
the G(M, M') coefficients. To our knowledge this has
never been looked for experimentally. The analysis of
the experiments involving the Ruderman-Kittel inter-
action in alloys with cerium impurities and in cerium
compounds should be repeated on the basis of this new
anisotropic interaction.

Iss(R) =7rk p4F (2k pR),

F(x) = (x coax —sinx)/x'. (33)

S. DEPRESSION OF SUPERCONDUCTING
TRANSITION TEMPERATURE

Thus, the first term gives the classical Ruderman-
Kittel interaction for a s=—, spin and is independent of
M and M'. However, the terms other than l=l'=0
in the expression (30), which depend on the M and M'
values, are not small compared to the first term and
have to be taken into account. The dependence of these
terms on M and M' gives an anisotropic Ruderman-
Kittel interaction.

Fortunately, it is easy to compute the asymptotic
form of I«(R) when ksR —& ~, which is generally the
only term considered in the Runderman-Kittel inter-
action for experimental purpose. The asymptotic form
of the Hessel function is

j t(kR)=sin(kR tsl7r)/kR, R—~~ (34)

so that the asymptotic form of Itt (R) for kFR~~ is

I«. (R) 7rk F' cosL2ks R—-', s.(l+I') 5/(2k pR)s. (35)

Since 1+1' is always even, the phase of the cosine in the
expression (35) gives only a factor (—1)st (l+l'). lf we
call

F(M) = Q (—1)'"(2l+1)
L=0,2,4, 6

The superconducting transition temperature T, for
solid solutions of cerium in lanthanum has been mea-
sured both at normal pressure' and as a function of
pressure. ' An explanation has been presented by
Sugawara, ' by use of s j or s S interactions, for the
normal pressure experiments. A recent analysis of the
pressure-dependent experiments has been made by use
of the s S interaction. ' lt is obviously interesting to
check this analysis on the basis of the new Hamiltonian.
The decrease AT, of the superconducting transition
temperature with concentration C of cerium impurities
is given by"

AT = ', 7r'In—(-E. s)/kg~5C&&I &kyar!II;Ik'o')I')), (39)

where (& » means the average over the solid angle
between k and k', over the spins o and o', and over the
orientations of the impurity magnetic moment.

We use the form (11) for the interaction Hamiltonian
II,. The average over the angles of k and k' and the
spins a and 0.' is easily carried out, and we have

III'Ik' '&I'»

=J tM CM RM

alld

XLnsI'C'(3 M+-' 3 M+')-
+Psr'C'(3 M —-', 3 M ——,')5, (36)

4rsr
X~ c 'ccc — Q cccc,)), (40)

G(M, M') =F(M)F (M'),

the asymptotic form of the interaction E» M' is

Ets~~'(R) (m*k s 41'/n') G(M, M')

&(cos (2k' R)/(2k' R)s, R -+~ (37)

and the total interaction is given by (26).
The coefficients G(M, M') are simple to compute, and

there are relations between them:

G(M, M') =G(M', M) =G(IMI, !M'I) (»)

s'N(Es) 4j (j +1)J'
2ka (2j+1)'

(42)

where ( ) denotes the average only over the orienta-
tion of the impurity magnetic moment. Therefore we
have

(& I
&k~

I
II,

I

k'~'& I'&& =4J'j(j+1)/(2j+1)', (41)

and one finds that

'7A, A. Abrikosov and L. P. Gor'kov, Zh. Kksperim. i Teor.
"M. A. Rndermsn and C. Kittel, Phys. Rev. 96, 99 (1954l; Fiz. 39, 1781 (1960l )English transl. : Soviet Phys. —JETP 12,

K. Yosida, ibid. 106, 893 (1957). 1243 (1961)j.
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Thus, the decrease of T, with the concentration C of
cerium impurities has the same form as that obtained
with the s S or s j Hamiltonian, but with a different
coeKcient. We will return to this point in the next
section.

0. COMPARISON WITH EXPERIMENTS

In this section, we point out the differences between
this new Hamiltonian and the two normal s S and
s j Hamiltonians. "We deduce the values of the inter-
action constant J for cerium alloys and the correspond-
ing value Ee of the separation between the 4f localized
level and the Fermi level.

Table I summarizes the results obtained with the
three Hamiltonians for cerium alloys for which J&0.
For cerium impurities, we have s =—'„j=—'„g—1 = ——,'.

The main physical difference between the two con-
ventional Hamiltonians H, and H, and this new
Hamiltonian H are the following:

(1) For the spin disorder resistivity R, and for the
decrease of the superconducting temperature T, with
concentration C, the results are qualitatively the same
for the three Hamiltonians. There is only a change in
the coefficient coming from the magnetic moment of
the impurity. For the various Hamiltonians this coe%-
cient is

H, ~ s(s+1)=4,
H; ~ (g —1)'j(j+1)=5/28,
H~ 4j(j+1)/(2 j+1)'=35/36.

For numerical applications, H, and H give almost the
same results, while H, gives different results.

(2) For the asymptotic form of the Ruderman-
Kittel interaction Et2~~'(R) between two impurities,

the result is not even qualitatively the same. H, and
H; give an isotropic interaction, while H gives a strongly
anisotropic interaction. In fact, these differences can
be easily understood, because H, and H; are both built
with l=o type states while H is built with real 1=3
states.

(3) The main difference comes in the Rondo effect.
With a negative value for J, H; gives no Kondo effect
for cerium alloys, in contrast to the experimental
results. ' ' H, and H both give the K.ondo effect with
different coefficients.

The second point we consider is the derivation of J
and Eo from the experiments. The Ruderman-Kittel
interaction is at present not useful for this purpose
because there are not experiments relating to it in
cerium alloys. The Kondo properties are not precise
enough to give the absolute value of J, but they can
give a definite result for the sign of J.J is negative in
Y-Ce and La-Ce alloys because they present a Kondo
effect. ' ' Then we can use the spin disorder resistivity
and the depression of the superconducting temperature
in order to obtain the value of J.' ' '

The value of the density of states of the conduction
band for pure lanthanum and pure yttrium has been
deduced from specific heat data. "The density of states
can be taken as n(E~)=2.2 states/eV at. and the
effective mass no* =3 for the two lanthanum and
yttrium hosts. '8 But, in fact, the conduction band is
composed of both a 6s band and a narrow Sd band.
Band calculations on yttrium' have shown that the
contribution of the 6s electrons at the Fermi level is
small compared to the contribution of the 5d electrons.
We estimate the contribution of the 6s electron to be

n(E') =0.5 states/eV at. and m*= 1.

TA&Lx I. Comparisons among the three Hamiltonians for cerium alloys for which J&0.

Hamiltonian

Spin-disorder
resistivity R,

FI,= —2Js, S

27T1n*n (E~)cJ's (s+1)

FI;= —2J(g —1)s, ~

2~hz'e(Ez)cJ'(g 1)'j(j+1)—
A'M'~~M~Ar'C j,Mkk™

2~m*n(Es)cJ'4j(j+1)

se'A se'A zemi (2j+1)'
Depression of the super-

conducting tempera-
ture dT, /dC

e(EJ)
J's(s+1)

n (E&)—
z

' J'(g —1)'jU+1)
n(E&)J 4j(j+1)

2
kp (2j+1)2

Asymptotic form of the J'm*k+4 cos2kzR
Ruderman-Kittel (2S1.S2)MM
interaction E12MM'(R) H (2k')3

J'm*k~4 cos2k~R
(g—1)'(2J1 J2)MM

(2k~R)'

Jr*k~4 cos2k JR
Gym, m')

(2k')'

Kondo temperature Tq

Kondo resistivity R

TI,=D exp
2~ J["(E~)

0.77D
Rz, 1+2~J~N(E~) In

kgT

No Kondo effect

No Kondo e8ect

TI,=D exp
(2j+1)

~
Jl"(Ez)

0.77D
Rp 1+(2j+1)Jn(E~) ln—

kgT

' P. G. de Gennes, J. Phys. Radium 23, 510 (1962).
K. Andres, Phys. Rev. 168, 708 (1968); T. Satoh and T. Ohtsuka, J. Phys. Soc. Japan 23, 9 (1967)."T.I-. Loucksp Phys. Rev. 144, 504 (1966).
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Table II gives the values of 2J computed in the two
limit cases, namely, n(Ep) =2.2 states/eV at. and
ns* =3, which gives a lower limit for

i
Ji, and n (EF)=0 3

states/eV at. and ns*= 1, which gives an upper limit for
i Ji. Table II gives also the corresponding values of
Eo. Because the Coulomb integral U is much larger than
Eo in cerium alloys, J reduces to the simple form

J=
i &.,i'/Es. (43)

We can compute Eo either as a function of the Hartree-
Fock half-width of the level, as previously done, 7 or
directly, by taking a reasonable value for the mixing

parameter VI,~. We cannot hope for better than a rough
magnitude agreement, and we use a value V1,~=0.07 eV
in the calculations of Table II. The values of tEpi
are slightly overestimated because we have not con-
sidered here the normal Heisenberg exchange
interaction. 7

The results of Table II must be analyzed carefully.
In a resistivity experiment, for example, a current is
given almost exclusively by 6s electrons, so that the
values of 2J and Eo which we deduce from this experi-
ment correspond roughly to the 6s band parameters
n (Ep) =0.5 states/eV at. and ns* =1.On the other hand,
both 6s and 5d electrons contribute to the super-
conductivity mechanism, and the values of 2J and Eo
will be rather close to the values corresponding to the
total conduction-band parameters n (E~) =2.2 states/eV
at. and m~=3.

Therefore, this analysis gives the following results:
(1) In Y-Ce alloys, the value of 2J is of order —0.4

eV and the 4f level lies an order of 0.03 eV below the
I'ermi level. The eRect of pressure will be particularly
large in this case, because the 4f level is extremely close
to the Fermi level. Because of the extreme smallness
of Es in Y-Ce alloys, the second-order formula (43)
is relatively dubious at normal pressure and cannot give
better than an order of magnitude for Eo. Moreover,
this formula should not be valid for high-pressure
experiments, because Eo tends to zero.

(2) In La-Ce alloys, the value of 2J is smaller, of
order —0.1 eV, and the 4f level lies roughly 0.1 eV
below the Fermi level. The effect of pressure on the
superconducting transition temperature has been
already studied and gives an important increase of

~
Ji

(by s under a 10 kbar pressure) and a corresponding
important decrease of Eo.'

In the above discussion, we have neglected the
Heisenberg exchange, although, as we mentioned, it is
no doubt dominated by the strong hybridization ex-
change in Ce and should not modify our conclusion. In
addition, we have studied only the 4f' configuration and
have not treated rare earths other than Ce. For the 4f"
configurations (n) 1), the angular momentum algebra
is more involved and has been treated in a diRerent
model by Watson, Koide, Peter, and Freeman. 2' Since

"R. K. Watson, S. Koide, M. Peter, and A. J. Freeman,
Phys. Rev. 139, A167 (1965).

TABLE II. Values of 2J and E~ for La-Ce and Y-Ce alloys.

e(By) =0.5 states/eV at. n(Bz) =2.2 states/ev at.
m+ =1 m+ =3

Y-Ce alloys (from
spin-disorder
resistivity l

La-Ce alloys (from
spin-disorder
resistivity)

La-Ce alloys (from
superconducting
temperature)

2J = —0.43 eV
Bp = —0.025 eV

2J = —0.14 eV
Bo = —0.07 eV

2J = —0.18 eV
Bp = -0.055 eV

2J = —0.12 ev
Bo = —0.08 eV

2J = —0.04 eV
Bp = —0.25 eV

2J = —0.08 eV
Bo = —0.12 eV

the hybridization exchange is no doubt less important
in these other rare earths, they are of less interest from
the above point of view.

We note that the 4f" configuration (one 4f hole) can
be treated as above by interchanging holes and elec-
trons. Thus, the preceding results can be applied to
magnetic ytterbium alloys, with a total angular momen-
tum j=—,. In this regard, a resistance minimum has
been recently reported in some silver-gold alloys con-
taining ytterbium impurities. "

The preceding analysis suggests several types of
experiments:

(1) Look in detail for a spin and orbit compensated
state at temperatures below TI, in Ce alloys, such as
La-Ce and Y-Ce, by methods used for transition.
impurities.

(2) Look for changes of Tq and other Kondo prop-
erties with pressure, since Eo is likely to be a strong
function of pressure. ' Perhaps one can see the dis-

appearance of magnetism'and the Rondo effect at very
high pressure in La-Ce and Y-Ce alloys.

(3) By comparing various transport and magnetic
properties, establish the validity of the new exchange
interaction (6) relative to the conventional sf-
interactions.
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7. CONCLUSION

Thus, we have derived an exchange Hamiltonian and
have accounted for various properties for the 4f'
con6guration of cerium. This analysis gives a consistent
description of the resistance minimum and resolves the
difhculties encountered by the conventional s fex--
change model. New results for the spin-disorder resis-
tivity and the depression of the superconducting tem-
perature versus impurity concentration have been
derived, and a strongly anisotropic Ruderman-Kittel
interaction has been obtained.


