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Helmholtz free energy of electrons scattered in the
presence of a strong magnetic field by randomly dis-
tributed impurity centers is developed in ascending
powers of the scattering potential to terms of fourth
order. The free energy is evaluated for impurities
represented by a short-range screened Coulomb
potential, which gives as expected a result essentially
independent of the exact form of the potential function.

For randomly distributed impurities, the first-order
correction to the free energy vanishes; this result is
independent of the exact form of the impurity potential.
The second-order correction to the free energy, which
contributes only to the periodic susceptibility, is in
essential agreement with an earlier result found by a
different and somewhat less general method. The third-
order correction to the free energy is found to contain
only periodic components involving the magnetic field.
The previous conclusion that impurity scattering does
not affect the periodic susceptibility, provided KT
))tt/r, is extended to terms of third order in the scatter-
ing potential.

The inhuence of collisions on the nonperiodic part of

the magnetic susceptibility first appears in terms of
fourth order, where, as expected, additional contribu-
tions to the periodic susceptibility also occur. The
inhuence of collisions on the constant susceptibility is
shown to be small when rt&'&))tt/r, as predicted by
Peierls; this condition is much less stringent than the
condition ET))A/r that was previously thought to
apply.

The steady diamagnetism turns out to be increased
in magnitude by collisions, a rather unexpected result.
However, as has already been pointed out by Dingle, '
this appears quite reasonable when it is remembered
that the steady diamagnetism actually has its origin
in a type of broadening of the energy levels, "'8 that
due to the unquantized motion along the direction of
the magnetic field; in a two-dimensional system the
nonperiodic, term in the susceptibility is entirely
absent. "
"S. J. Williamson, S. Foner, and R. A. Smith, Phys. Rev. 136,

A1065 (1964).
's J. Zak, Phys. Rev. 136, A776 (1964).
's R. Peierls, Z. Physik 81, 186 (1933).
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The critical-point anomaly of a plane square m)&n Ising lattice with periodic boundary conditions (a
torus) is analyzed asymptotically in the limit n -+ ao with (=m/n fixed. Among other results, it is shown
that for axed r=rt(T T,)/T„ the speci6c—heat per spin of a large lattice is given by

C (T)/kama =A o 1nn+8 (r,$)+8&(r) (in')/n+82 (r,f)/I+OP(inn)'/n'7,
where explicit expressions can be given for A 0 and for the functions 8, Bi, and B2. It follows that the specihc-
heat peak of the 6nite lattice is rounded on a scale 8=AT/T, 1/a, while the maximum in C „(T) is dis-
placed from T, by ~= (T.—T )/T, 1/n. For gp)()(0 ', where (p=3.13927' the maximum lies
above T„but for P) (0 or (((0 ', the maximum is depressed below T„when g = ~, &0, or go ', the relative
shift in the maximum from T, is only of order (inn)/e . D'etailed graphs and numerical data are presented,
and the results are compared with some for lattices with free edges. Some heuristic arguments are developed
which indicate the possible nature of 6nite-size critical-point effects in more general systems.

1. INTRODUCTION AND SUMMARY

~ 'HE experimental and theoretical study of critical
phenomena has made notable advances in the

last few years. ' ' On the theoretical side, however,
most attention has been paid to the behavior of in-
finite, homogeneous systems. Real physical systems,

*Present address: I.B.M. Corp. , Systems Development Division,
Kingston, New York 12401.

r M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967).
2 P. Belier, Rept. Progr. Phys. 30, 731 (1967).
e L. P. Kadanoff et al. , Rev. Mod. Phys. 39, 395 (1967).

on the other hand, are finite and possess boundaries,
surfaces, and interfaces which can make measurable
contributions to the observed thermodynamic prop-
erties; furthermore, real systems are usually inhomoge-
neous on some scale containing, for example, impurity
atoms, random - point defects, grain boundaries, dis-
location nets, strains, etc. , which might all be expected
to "round" or "smear out" in some way a sharp critical
point. Indeed, the best measurements of specific-heat
anomalies in solid-state systems display a rounding of
the specific-heat peaks which is definitely intrinsic to
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the samples studied' s (rather than an instrumental or
truncation effect, due to use of finite temperature
increments, etc.).

The theoretical problems posed by a serious considera-
tion of boundary and inhomogeneity sects on critical
point behavior are extensive and difficult. In this series
of articles we make a modest approach to some aspects
of these problems by studying in detail the properties of
planar Ising models which are finite, have surfaces and
interfaces and contain point impurities, grain boundaries,
etc.~"The Ising model in its various forms is known
to be a good first approximation for studying the critical
behavior of many types of systems'; our restriction to
two-dimensional planar Ising lattices is motivated by a
desire for an exact and precise mathematical treat-
ment; we hope that a rigorous knowledge of the two-
dimensional behavior will serve as a guide to drawing
reliable conclusions about more realistic three-dimen-
sional models.

The present article is mainly devoted to a calculation
of the critical properties of a finite Ising model con-
sisting of a square m&e lattice with periodic boundary
conditions (i.e., the lattice is wrapped on a torus). While
in a direct comparison with real systems, the periodic
boundary conditions are certainly artificial, they have
the conceptual advantage of enabling one to separate
the effects of finite size alone from those associated with
a real boundary or edge. (The thermodynamic prop-
erties of boundaries will be discussed in a later paper. ')
As usual, each nearest-neighbor pair of spins, i and j,
are coupled with an energy —4JS,'S,', where S,S'=&-'.i 2.

The specific-heat anomaly per spin of an infinite
square Ising lattice in zero field has the form"

C(T)/kii= lim C „(T)/kame
77', n ~co

=A p ln
l
(T/T )—1

l
+A i

+0{L(T/T. ) —1]»l (TIT.) —1I }, (11)
4 J. Skalyo, Jr., and S. A. Friedberg, Phys. Rev. Letters 13, 133

(1964).
P D. T. Teaney, Phys. Rev. Letters 14, 898 (1965); also in

Critical I'/zenomena, edited by M. S. Green and J. V. Sengers
(National Bureau of Standards, Misc. Publ. 273, Washington,
D.C. 1967).' B.E. Keen, D. P. Landau, and W. P. Wolf, J. Appl. Phys. 38,
967 (1967).

7 P. Handler, D. Mapother, and M. Rayl, Phys. Rev. Letters
19,356 (1967).

'D. T. Teaney, B. J. C. van der Hoeven, and V. L. Moruzzi,
Phys. Rev. Letters 20, 719, 722 (1968).' A preliminary account of some of our results has been pre-
sented by M. E. Fisher and A. E. Ferdinand, Phys. Rev. Letters
19, 169 (1967); and by M. E. Fisher in a lecture to the Nordita
Symposium on Statistical Mechanics, N. T. H. , Trondheim,
Norway, 16 June 1967.

~0 Related works by other authors that should particularly be
mentioned are C. Domb, Proc. Phys. Soc. (London) 86, 933
(1965), and Refs. 11-13below."P.G. Watson (a) Proc. Phys. Soc. (London) 91, 940 (1967);
(b) 1, 268 (1968)."T.T. Wu and 3.M. McCoy, Phys. Rev. 162, 436 (1967)."J.D. Gunton, Phys. Letters 26A, 406 (1968).

'~ L. Onsager, Phys. Rev. 65, 117 (1944).

where Ap is the same constant as in (1.1); he also con-
cluded that the temperature T, at which C„(T)had
its maximum was removed from the limiting critical
point T, by a term of relative order only (1nts)/I'. We
will show that (1.2) extends into the more general
critical point result

C „(T,)/knmts=Ap Inn+8(0, &)+Or (lnts)'/ts'$ (1.3)

as ns, e~~, where

(1.4)

determines the "shape" of the torus and remains fixed
fixed as m, e —+~. It is notable that the coefricient of
the divergent part lne remains unchanged.

For fixed temperatures T&T, the approach of
C (T)/mrna to its limit (1.1) is, ultimately, exponentially
fast in es and n. However, we shall show that asymp-
totically there is a region of width

ATx(ts) = a/n

about T„over which the critical point is "spread"
and in which convergence to the thermodynamic limit
does rot occur. For temperatures measured on the cor-
responding reduced scale by

we find

r = (T T,)//ATx(n), — (1.6)

C „(T)/knmtt =Ap 1ntt+B(r, g)+Bi(r,g)(lnts)/ts

+Br(r, t)/n+Ol (inc) '/ti'7, (1.7)

where the functions 8, 8&, and 82 can be given explicitly
Lsee the formula (4.17) to (4.22) below]. From this we
conclude, in contradistinction to Onsager's special
case $=~, that for 0&/& po the "shift" in T, is

For the symmetric case ti =m, or )=1, we find

a*(1) —0.3603,

so that T, & T, ; this asymptotic result is already
evident in the explicit numerical calculations for small
m =e displayed in Fig. 1. It might be interpreted as an
indication of increased cooperation between nearby
spins as a result of extra "communication" via paths
that encircle the torus. (By contrast, if boundaries in
the shape of "free" edges are present we expect T,„

that is, it displays a logarithmically infinite and
perfectly sharp singularity as a function of tempera-
ture T. Already in his original paper, however, Onsager
considered the specific heat of an infinite cylinder
(m = ~ ) of finite width m. i4 He showed that the specific
heat of such a finite width cylinder at the limiting critical
point T=T, behaved for large e as

C (T)/kii = lim C (T,)/ knmn

=A p inc+8„+0(1), (1.2)
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FIG. 1.The specific heat per spin for small Ising lattices; exact
results for the m&&n square lattice with periodic boundary condi-
tions are displayed for m =e = 2, 4, 8, 16, 32, and 64 (1V=ma). The
limiting critical point is marked by a vertical line.

(T„see Ref. 9 and the concluding section below. )
However for an asymmetric torus we find, surprisingly,
that T,„remains above T, ONly for $p) ()$p ', where

$p 3.139; when $)$p ol $($p ' the maximum is
displaced below the limiting critical point, (i.e., a (P)
becomes positive). The reason for this change of be-
havior at $ = $p is not understood; it illustrates an un-

expected subtlty of finite-size behavior.
The main character of our conclusions can be sum-

marized by the approximate formula

C „(T)/knmn
~ep(T) in(((T/Tg) —1+(a*/11)j'+b'/B'} 'I'

gtP, p(T), (1.1O)

in which Qp(T) and Sp(T) are slowly varying functions
of T with only a weak dependence on ti and m (say,
relative terms of order 1/n). The dominant rounding
and shift of the specific-heat maximum are evident
from this formula.

The calculations leading to the above results are
based on Kaufman's exact expressions for the partition
function of a square lattice on a finite torus. " The

"Q. Kanfrnan, Phys. Rev. 76, 1232 (1949).

2. GENERAL EXPRESSIONS

The canonical partition function Z „(T) of a finite
m&(e square Ising lattice wrapped on a torus and in
zero magnetic field is'~

Z „(T)=rp(2 sinh21t)l " P Z, (K), (2.1)

in which the reciprocal temperature variable is

E=J/kT. (2.2)

and where J (=J,=J„) is the nearest-neighbor spin-
coupling energy. The partial partition functions Z, (E)
are defined by

n—1 n—'i

Z =+2cosh —'my „, Z =g 2sinh —'my „
r=O

Z, =g 2 cosh-', my, ,

r=o

n—1

Z =g 2sinh-', my „
I =0

(2 3)

"A. E. Ferdinand, J. Math. Phys. 8, 2332 (j.967)."P. %V. Kasteleyn, Physica 27, 1209 (1961); M. E, I"isher,
Phys. Rev. 124, 1664 (1961),

necessary analysis is fairly long and intricate; hence
the reader interested only in the results is advised to
omit Secs. 2, 3, and 4 and to read only the concluding
Sec. 5, where the asymptotic results are discussed
graphically, and specific results for small finite n and m
are exhibited. This review leads to a number of more
general heuristic arguments of relevance to three-
dimensional and non-Ising systems.

The general nature of the calculation is quite similar
to, but more involved than, that employed recently'
to study finite-size and boundary effects in a plane
square lattice filled with rigid dimers. ' Indeed, the
dimer problem is effectively equivalent to that of the
Ising model a] T=T„ in this latter case we find, as in
the dimer analysis, that the results can be expressed
exactly in terms of elliptic theta functions. For T/ T,
we have to define an extensive set of generalized theta
functions, and related sums and products, etc. , which
are, however, easily computed numerically.

Of the following sections the first, Sec. 2, sets out the
basic formulas for the partition function, energy, and
specific heat of a finite torus, and for various auxiliary
functions which arise, in particular, the reduced tem-
perature variable r(T) n(T —T,)/T, . fn Sec. 3 the
main steps of the asymptotic analysis needed to evaluate
the partition function for large n at fixed r and P are
presented; the final expressions are (3.36) and (3.37).
Lastly, in Sec. 4 we sketch the analysis of the range of
sums needed for the energy and specific heat; the results
are contained in (4.13)—(4.25). P. s mentioned already,
the asymptotic results are discussed and related to cal-
culations for small finite n and more general critical-
point considerations in the concluding section.
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where

so that
costi ——ci ——cosh2K coth2K —cos(hr/zz) (2.4)

yp =2K+In tanhK,

p, =lnLcI+(c, 2 —1)I&2], )&0. (2.5)

We note that y~=y2„~ and that for 0&3&m the func-
tion p& is monotonically increasing in /.

The internal energy per spin is given by

From these expressions it is clear that our analytical
task consists in the asymptotic evaluation of a collec-
tion of n-fold products and sums. An obvious first step
in view of (2.4), is to introduce the variable 4p=hr/zz
and to convert the sums on r (after taking logarithms
of the products) to integrals on Ip from 0 to 2zr. For real
co the integrands of all the integrals will be analytic and
periodic functions of co unless, for some value of co the
function y(&p), analogous to yl, vanishes. By (2.4) and
(2.5) this can occur only for temperatures such that

U d
= —(mzz)

—'J lnZ
dK

J 4 4

= —J coth2E —
L P Z ]L g Z;]—',

mrs i=1 i=1

(2 6)

cosh2K coth2E =sinh2K+(sinh2K) I(2. (2.10)

This inequality has the unique real positive solution
E=K,=J/kIIT, (pp=0) corresponding, in fact, to the
critical point at which"

sinh'2E, =1, E,= pl in(1+%2) =0.44068 . (2.11)
while the specific heat per spin is

C /knmn =(mzz) 'K'(d'/dK') lnZ „,
= —2E csch 2E

4

P Z;"
E'

(2.7)

PZ; QZ;

n—1

Zl'/Zl =2m Q y2„+I' tanhpmyz„+ I,

where the primes here and below denote differentiation
with respect to K. From (2.3) w'e obtain the more
explicit expressions

Thus, at any temperature TQT, the integrands are
analytic periodic functions of ~; under these circum-
stances the integral approximates the corresponding
sum exponentially fast in e, the modulus of the exponen-
tial being, in fact, determined by the imaginary part
of the root pip of y(zp) =0 which lies nearest to the real
axis in the complex co plane.

Close to T„however, convergence will be slow
initially since Im fpip} is small and we can expect to 6nd
an n-dependent scaling of the temperature deviation
from T, for which the asymptotic behavior will be dis-
tinct from that at/red TNT, . Consideration of (2.10)
and (2.4) suggests introducing the reduced temperature
variable r via

r2/zz2 = lplsinh2K+ (sinh2E) ]—1 . (2.12)

n-1
Z2 /Z2 2m p V2 +1 cothpmY2 +I

(2.8)
In terms of r the true temperature is given by Lcompare
with (1.6)]

T/T, = 1+-'E (Ir /)zz+ 14K 2(r2/zz2)+ . (2.13)

with analogous expressions for Z3' and Z4' in terms of
p&„' and y2„. The second derivatives are given by

n—1

Zl"/Zl ——(2'm p y2„+I' tanh'2my2, +I]'
r=O

n—1

+pm p tI'r2r+I tanh2m+2r~l
r=O

Z".
Z f1 ~

Z3 ~

Z4 ~

2r+1,
2r+1,
2r

2r

tanh,

coth,

tanh,

coth,

sech

icsch

sech

(The factor z=+(—1) changes the sign of the last
term in (2.9) for Z2" and Z4".)

+-2,m(y2„+I' sech'pmy2„+I)'7, (2.9)

the formula for Z2", etc. , are obtained from the
correspond ences:

In the remainder of our analysis we will consider only
the limit in which n —l~ with r and p=m/zz fixed
(with 0($( pp).

In terms of the variable 7. we have for /QO

exppyI(r) =Pi+(r/zz) 2+sin2(lzr/2zz)]1~2

+P(r/zz)'+sin'(lzr/2zz)]'" (2.14)
while

cI —1 =4/(r/zz) +sin (hr/2zz)]

X)1+(r/zz)'+sin2(hr/2zz)]. (2.15)

From here and (2.5) we find

yp ———2(r/zz) ——2'v2(r/rz) 2+OP(r/rz) '] (2.16a)

and for 1&0 and l/zz«1

VI(r) = (2/&)(r'+-'P~')'"
—(zr/24) (P/ZZ') (L1+ (2r/zrl) ']2I'

+(8/P)L1+(2r/zrl)'] '~2}+, (2.16b)
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which displays clearly the pertinence of the variable 7.
For later convenience we introduce the notation

~(r q) (r2+s.2g2)1/2

and observe that

p(r, g) =mg as g ~~ .
Lastly, we note that

yo' ——2(1+csch2E) =4+2&2(r/n)+O[(r/n) ],
y(' ——c'(ci2 —1)—'~' (lWO),

yo" ———4 csch2E coth2K = —492 —12(r/n)
+O[(r/n) '],

c"——(ci' 1)—'" (c—')'ci(ct' 1)—'~' (l&0)

where

(2.17)

(2.18)

(2.19)

(2.20)

c' =ci' ——2 cosh2Ã(1 —csch'2E)
8(r/n—)+O[(r/n)'], (2.21)

and

bounded as

~
lnP4(n) ~2 &-,'n in[1 —exp( —m», )) '. (3.5)

Now for t/n«1 we may use the expression (2.16) for
yi(r). For a suitable constant di and s))r/vr, we can
hence obtain a bound

~
InP4(n) ~2 &din exp( —7r $s) . (3.6)

This will vanish as 1/n' when n —+~ provided we choose
s=s(n) such that

s(n) = [(3/~P) inn]. (3.7)

With this value of s we return to the first sum in (3.4)
and note that the expression (2.16) for y,„may be used
throughout the range; in particular, we have

my~„(r) =2@(r,r)+ , fm(r'/—n'). + (3.8)

from which we obtain

c"=ci"=8 csch'2E cosh'2K+4(sinh2E —csch2E)
= 16+24&2(r/n) +0[(r/n) '] . (2.22)

It is evident from (2.19), (2.20), and (2.16) that many
of the sums required for Z and Z;" will be singular for
small r and r. Our approach will consist of isolating suc-
cessively the most singular pieces and bounding the
remainders as e —+~.

s—1

&d& P (r3/n2)e 2yty(r, r)— (3 9)

for a suitable constant d&. On the right we may remove
the largest value of r', namely, (s —1)' from the sum-
mand; on extending the sum to r = ~ a relative error
exp[ —p$q(r, s)] exp( —p7r(s) is introduced, but by
(3.7) this vanishes as 1/n'". On substituting these results
back into (3.3) and interchanging the sums on p and r
once more, we finally obtain

3. ANALYSIS OF PRODUCTS FOR THE
PARTITION FUNCTIONS

From the definition (2.3) we have

n—l
Z4 P4(n) ex—p—[-',m P &2,][1—exp( —mpo)],

r=o
(3 1) lnP4(n) =2 Q in[1 —e '«&' '&]+ [0(l n)n'/ 'n], (3.10)

r=l
where

n—l
lnP4(n) = P in[1 —exp( —m», )), (3.2)

or

P = II [1-e—'«i' '&]'=m4(r, (),
r=l

(3.11)

with a similar expression for Z3, the expressions for Zl
and Z2 are analogous except that the factor involving

yo does not arise. To evaluate P4(n) we expand the
logarithm, which is justified since y2„does not vanish
for 0(r(e; this yields

[Qn]

lnP4(n) = —2 p p ' p exp( —mpy2, ), (3.3)

where in view of (3.6) and (3.7) the error term arises
from the right-hand side of (3.9).

By the same means we obtain the asymptotic formula
for the other products

n—1

Pi(n) =II [1+exp(—m», i)]
r=o

where [g) denotes the largest integer contained in x.
Now the sum on r may be split into two parts as follows:

S„(n)=P exp( —mpy2, )

n—1

P2(n) =II [1—exp( —m».+i)]
r=o

lknl

+exp( —mp», ) P exp[ mp(», y2.—)). (3.4—)

In the second term y2„—y~, is a positive monotonic
increasing function for r&s. Thus, this sum is bounded

by the product of its first term and the number of terms,
namely, ([—',n) —s+1); its contribution to lnP4 is hence

n l
P3(n) =II [1+exp(—m&2„))
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where, in each case, the errors are of relative order
(lnrs)2/N2. Now, recall that when r =0, so that T =T„
we have 2y(O, r) =22rr; the products on the right of
(3.11) can then be reduced to elliptic theta functions of
modulus q=exp( —sr)). In a notation adapted from
Whittaker and Watson' we have

where

Ho=+ (1—e " &]=e &i"(-'8 8 8 )'
r=l

(3.13)

82=82(O, e &) =28pe '& '
g L1+e '"r&]
r=l

82 ——82(0,e &) =Hp g L1+e l " '~ &]
r=l

(3.14)

8 =8 (O,e ~&) =8 g L1 —e "" "~&]'
r=l

R;(rs) =Z;/Zi. (3.16)

From (2.3), (3.12), and the formulas analogous to (3.1)
we have

Ri 1, R2(22) =R2 s——r2(r, p)/sr 1(r,&),
——(3.17)

while

Rs(22) =Re = 2 COSh(22wyp)Ppsrp(r, $)/sri(r, p) 1

(3.18)
R4(N) R4=2 sinh(2222pp)Ppsr4(r, &)/srt(r, p),

where I'0 denotes the e-independent limit of

n—1 n—1

lnPp(22) 2222[ z 72r(r) 2 72 +1(&)j (3 19)
r=0

The errors arising from the factors m-; are, as before, of
order (ln22) 2/222 for fixed r and P.

We will evaluate lnPp(22) as a power series in r2

which will be convergent for small enough v. To this
end write

Thus, at the critical point itself (r =0) we find

Pi=sri(0, $) = 82/Hp, P2=2r2(0, $) =84/Hp,
(3.15)

Ps=srs(0, t) =-2'82/Hpe
—r&", P4=2r4(0, () =Hps.

Similar reductions to elliptic 0 functions take place at
T=T, for the other sums and products arising below in
the analysis.

Now the sums of Z; in (2.1), (2.6), and (2.7) are
conveniently dealt with by removing Zl and consider-
ing the ratios

g2(8)= —n—4go '(1+o') 'l'+o '(1+o') 'l'5 (323)

while in the expression for g;(8) terms of the form

22 2ia—2i+—1+2k(1+o2)—k—i k=012 . . . i) 7 7

appear. Such a term makes a contribution to lnPp(N) in
(3.19) equal (essentially) to 222 times its sum on l;
since (1+o') k 2& 1, this sum is bounded by

2n —1

nsrs
—2i Q a —2i+1+2k

l=l

n

((2~) 24+1+—2kn 2k Q—
J 2i+1+2k— (3 24)

l=1

This sum is convergent for
~

r t ( 222r (in accordance with
the range of validity of the error estimates). For numeri-
cal purposes it is convenient to sum on i explicitly for
the first one or two terms in the expansion of the zeta
function: |(s) =1+2 '+3—'+

As the next stage we evaluate the term of order v'
which involves the sum

n—1

where for the purposes of estimation we have used the
approximation ai ——sin81=8=br/222. For k=i the final
sum on / diverges as lne but for k(i it converges as
e —+~. Hence, all those terms with k& 1 give contribu-
tions to g;(8) of order at most (ln22)/n', furthermore, in
view of the prefactor (22r) "+' in (3.2) the coeKcient of
the corresponding error term in g(r, H) obtained by sum-
ming on i, can be bounded for all

~

r
~
(22r. This limita-

tion on the range of r will prove quite acceptable.
Let us then evaluate to leading order the coeKcient

of T" for i & 2 in the expression for lnPp(22): it is

1 — 1 (]+o 2)
—1/2

mrs-"
sin nr e

(1+o2,+1') '"
r=0 Sin f & ~ jg

Now, as above, we may to leading order replace
Sin(rsr/22) by (rsr/I) and reduCe the SumS tO Riemann
zeta functions; in the term for i =2 this again leaves an
error term of order (ln22)/n2, but for i&2 the error is
only of order 1/n2. The total contribution of the terms
of order r4 and higher is hence —$Zp(r), where

—2,) 2r "
Zp(r) =sr P ~

— L1 2 "+2]—l (2i 1) . (3—.25)

lV4(r) =g(r, H) =gp(8)+r'gt(8)+r'g (8)+
with 8 =br/2N. Then

gp(8) =lnLo+ (1+a-')' 'j o =o 1
——sinH,

gi(8) = 'rs 'a '(1+a--')—'l2— —

(3.20) gi(22) =n ' p cschL(r —22)sr/rs)L1+ sin'(r —2)sr/22$ '*

r=l (3.26)

and a corresponding sum 52(22) in which r ——,
' is replaced

by r. We may expand the second factor of the summand

(3.22) to yield
re f —

2
1'E. T. Whittaker and G. N. Watson, A Cogrse of Modern CSChL(r —2)sr/rsj+p

~
Sin " '((r —2)sr/22]. (3.27)

Analysis (Cambridge University Press, 1927), 4th ed. , Chap. 21. k=1 k
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Because sin" '0 is a polynomial in e+'~, each term for
k+ 1 may be summed explicitly over r to yield

1 n zr

—g sin'P '(r —-', )vr/vz —=vr ' sin" '8d8

G vr 1)
-,'m P yz, i(0) =2mpi —+—)+0 —~, (3.34)

,=p w 12 vz')

G=1—'—3—'+5 ' — . ~0.915965594
2k —22k —4 422

~ ~ ~

2k —12k—3 53m

On substituting into (3.26) one obtains simply

Sz(vz) =vz ' Q csch((r —s)vr/vz] —vr 'ln2.
r=l

(3.28)

(3.29)

is Catalan's constant and the order of the error term
follows from the boundedness of the corresponding
derivatives of y(pv). Note that by (3.1) these expressions
are also needed to evaluate the Z;. On combining all
these results we conclude that

lnr, (~)=,'~~ (1 n4—/~) ~r'

vz+3
~ ~ +

2vz —1 2vz+1

00=- 2 (—1)'(4L~(t+1)]—4(~~+1))

where P(s) = (d/ds) lnF(s) =f(s+1)—(1/s), is the
digamma function which varies as lns —1/2s+0(s ')
as s —+~. This estimate together with P(1)= —Ca and
Wallis's product

2 244 7rln---- ~ =ln-
1335 2'

finally yields

Sz(vz) = (2/vr)flnvz+ln(2'vz/vr)+CE]+0(1/vzz) (3.32)

Because the forms of Si(vz) and Sz(vz) are so similar the
only contribution to 1nPp(vz) in leading order is a term
—(2 ln2/vr)$rz; the individual expressions for Sz(vz) and
Sz(vz) will, however, be needed later.

Lastly, we must evaluate the contribution inde-
pendent of r which arises from (3.21). The correspond-
ing sums in (3.19) can be handled. by the use of the
Euler —Maclaurin summation formula. Since the identi-
cal analysis arises in the dimer problem" we quote here
only the results, namely, for T=T, :

The remaining sum has been evaluated by Onsager"
correct to order 1/vz', using his expression we obtain

Sz(vz) = (2/vr)hlnvz+ln(2ov /vr)+Cz]+0(1/vz') (3 30)

where CE=0.5772 . . is Euler's constant.
The sum Sz(n) corresponding to (3.26) with r in

place of r —
2 is calculated similarly. Following Onsager's

method the divergent part is decomposed in the form

rvr)
n ' Q csch —

~

r=l vz i
2 1 1

=— 1+p+p+ +
7t n 1v—z+1

lnZ „(T)—mvz(z ln2 sinh2E)

= mvz (2G/vr) +(vr/12) $—ln2+lnvrz(r, $)

+ln L1+Rz(vz)+Rz (vz)+R4(vz)]

+j~oo(r)+OE(inn) z/vz'], (3.36)

where, to recapitulate, the functions vr; and R;(vz)
=R;+0(1/vz) are defined in (3.11), (3.12), and (3.17),
(3.18), and (3.35), while Zpp(r) has the same form as
Zp(T) in (3.25) except that the factor (1—2 "+') must
be replaced by (1—2 "+'). At the critical point this
expression reduces to

lnZ~„(T, ) = mvzt(2G /v)r+-,' ln2]+ln(8z+8z+84)
——', ln(48z8z84)+OL(lnvz)'/I']. (3.37)

Note that there are no terms proportional to (m+zz)
in these expressions since the periodic boundary condi-
tions allow no "edges. " The results (3.36) and (3.37)
should, of course, be invariant under interchange of m
and vz, or, equivalently, the replacement of $ by $ '.
This symmetry may be checked explicitly at T=T„by
using Jacobi's imaginary transformation of the 8

functions, "namely,

8z(0,e z&) =$'z'84(0, e ~&),

8z(0,e- Z&) = $'zz8z(0, e- Z),

8 (Oe—'&) =&'"8 (Oe—~&)

(3.38)

PJacobi's transformation plays a similar role in the
dimer problem. zo]

Tn the symmetric case m=vz (/=1) the 0(1) terms
in (3.37) reduce to 1n(2'z'+2 zzz). We may also note
the limiting result

—tZo(r)+0(lnvz/vz') (3 35)

where Zp(r) =0(r') is defined for
~
r~ (zvr by (3.25).

With this result we are already in a position to evalu-
ate the partition function, or free energy, near T„'
we obtain

+Ot (lnvz)'/vz'], (3.39)

lim (mvz) 'lnZ „(T,) =(2G/vr)+zzjn2+vr/12vzz

-', m P ~,„(0)=2m& ——-~+0~ —,
6 kvz'

"Reference 14, p. 1.43. although strictly this requires a closer look at the re-
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mainder terms to ensure that they remain bounded as
P~~ (or 0).

4. SUMS FOR THE DERIUATIVES

To calculate the energy and specific heat we must
evaluate asymptotically the sums appearing in the ex-

pressions (2.8) and (2.9) for Z and Z,".The analysis
follows the same general lines as in the last section, so
we will not present all the (fairly lengthy) details.
These sums involving tanhx and cothx are split by
writing tanhx=1 —(1—tanhx) which leads to the con-
sideration of the typical sum

1—coth-,'F2„
Q, ,4(n)=2n ' Q

~=1 [(r/n)'+sin (rir/n)] "[1+(7/n) +si n(r 2/rn)]*'
(4.1)

where t& |;we will only require the values t=1 and t=3 here. By expanding the hyperbolic cotagent into a series
in powers of exp( —n2y2„) we are lead to consider the sums Q, 4(n, p) of the same form as (4.1),but with exp[ —prny2„]
(p=1, 2, ) in the numerator. As in the analysis of the sum in (3.3) defining lnP4, we split the sums over r at
r =s(n). The sum for r& s can then be bounded, as previously, by a term of order n exp( —2r{s) which vanishes as
1/n' with the same choice, (3.7), of s(n) By.use of the estimate (3.8) for n2y2„(r) the numerators of the sums for
r(s can again be expressed in terms of 1/1(r,r) alone, at the cost of an error of order s'/n' (inn)'/n2. To this
order, therefore,

exp[ —2p&1/ (r,r)]
Q1 4(n, P) =2n

~=1 [(r/n) '+sin2 (r2r/n) ]"[1+(r/n) '+sin2(r2r/n) ] l
'

(4.2)

As in the analysis leading to (3.25), neglect of the second
factor in the denominator incurs an error of order no
greater than (inn)/n'. Similarly, the approximation of
sin(rir/n) by (rir/n) in the first factor removes the n

dependence and is quite easily seen to be correct up to a
term of order s'/n' (inn)'/n'. Finally, with comparable
accuracy the sum on r may be extended to ~. Sub-
stitution back into (4.1) and summation over p then
yields

Q, + below to denote the asymptotically approximating
sums (which are independent of n).

The special sums Qi, (n) and Qi,~(n) which arise in
(2.8) and (2.9) are logarithmically divergent with n and
must be handled separately. Apart from the dependence
on v they are similar to the sums S& and S2 calculated in
the previous section [see (3.26)]. In fact, by dealing
with the r dependence via an expansion (valid as before
for IrI (222r), we obtain

Q1,4(n) =2 p {1—coth[)y(r, r)]}[1/(r,r)] '
r=l

+0[(inn)'/n']. (4.3)

A set of other sums Q&,;(n) and Q, ,~(n) may be de-
fined in analogy to Q, ,4(n) by the correspondences

oo

Q,+(n) =S (n)+ E
k)

(1+2~ 2) 4n—1

n
—2/t. —1 Q

(1+~„2)1/2]22+1
(4.5)

Q1.1(n):

Q1.2(n):

Q1.2(n):

Q, , 4(n):

Q, , (n):

Q1.+(n):

Q2.1(n):

Q2.2(n):

Q2.2(n):

Q2.4(n):

r ——1
2

f 1
2

r ——1
2

{1—tanh},

{1—coth},

{1—tanh},

{1—coth},

{1}
{1}

{sech'}

{—csch'},
{sech'}

{—csch'} .

with a similar expression. for Qi, where, as before,
o/ ——sin(l2r/2n). As in the steps leading to (3.25) the
term in braces in (4.5) can be reduced to a Riernann
zeta function by neglecting the factors (1+20') and
(1+0') and replacing 01 by (12r/2n). For k=1 this
introduces an error term of relative order (inn)/n' but
for k) 1 it is only of order 1/n'. The prefactor (2/2r)'2+'
enables the leading terms and the error terms to be
summed on k for IrI( —2,2r, so that by recalling the
formulas (3.30) and (3.32) for Si and S2 we finally ob-
tain, correct to order (inn)/n',

(4 4)
Qi+(n) = (2/2r)[inn+in(2'"/2r)+CR]+Xi(r), (4.6)

Qi.—(n) = (2/2r)[lnn+1n(22/'/2r)+CE]+22(r) (4 y)

where
Kith the corresponding replacements, the asymptotic
formula (4.3) remains valid for all these sums except for
Qi, (n, ) and Qi,+(n) We will use t.he symbols Q, ,; and

(4.8)



840 A. E. FERDINAND AND M. E. FISHER

4 ~ —-'2) 2T
Z2(T) =—Q ~

—
1 (2&+1)[1—2 2" l]. (4.9)ki

but
n—1

(r 2 pl sech-',m'r 2„)'=~ («') 'Q2, l,
r=o

(4.11)

%e are now in a position to substitute into the
formulas (2.6)-(2.9) for the energy and specific heat.
For certain of the sums factors pp pp ol pp appear
for 1=0 (r=0); we remove the corresponding terms
from the sum and carry them separately; thus we have,
for example, to leading order,
n—1

P (y2„' sech2mp2„)'
r=o

where we recall the definition (2.21) of c'. As an ex-
ample of another term occurring in the reduction we
quote

n—1

22 ' p y2,+2" tanh'2my2„+2
r=p

=2~"(Ql,——Ql, l) —2(«')'(Q2 — Q2, l) (412)

= (p, ' sech —'mp, )'+4(«')'Q2 2. (4.10) After further lengthy algebra we find for the energy

—U „(T)/Jmll=v2 (4/2r)—T(ln22)/22 (4/—lr)[ln(2'l2/2r)+Cz —42r](T/22) —[R2 tanhT$+R4 cothTt](2/R22)

where

+{Q R,Q1 j—(Rl+R2)Z2 —(R2+R4)[&l—(4/lr) ln2])(2T/R22)+0(1/l2'), (4.13)
i=1

R=P R; (4.14)

and the R; are defined through (3.17), (3.18), (3.11), (3.12), (3.35) retaining now only leading order terms in each
case, and Zl and Z2 are defined in (4.8) and (4.9).

At the critical point (T =0, T=T,) this reduces to

2 020304—U„„(T,)/J mTl =V2+ +O(1/~ ),
22 02+|t2+84

(4.15)

where the 8 functions were defined in (3.14).The leading term agrees, of course, with Onsager s result for an infinite
lattice. The invariance of the second term under 22 ~m in j~ $

' can again be checked with the aid of Jacobi's
transformation (3.38) .

Lastly, we can write the specific heat as

where

and

C „/knm22 =A 2 ln22+B(T, $)+Bi(T,$) (1n22)/22+B2(T, ()/22+0[(ln22) 2/222],

A2 ——(8/2r)E ' = (2/lr) [ln(1+2'~')]'=0.494358

(4.16)

(4.17)

8 4 4
B(T,$)/Z, ' =—[ln(2'i'/2T)+CE —~2T]——p RiQl, ~

—(Ri+R2)&2 —(R2+R4) zi ——ln2
i=1 7r

4

8 [R3Ql 3 tanhT)+R4Ql, 4 cothT)] 4 [(Rl+R2)Q3 —+—(R3+R4)Q3 y p R '(Q2, +(Q2,+(Qi,2)]
E E. i=1

+4—{(Rl+R2)(R2+R4)(1+T Z2 )+R2' sech'T f R4' csch2Tt-
R2

+2T(R2 tanhT f+R4 cothT)) [(Rl+R2)Z2+ p R;Q, ;]

—2T'&2[(Rl+R2) (RBQ1,3+R4Q1,4) (R3+R4) (RlQl, 1+R2Q1,2)] T'[ Q R,Ql;]'),
i=l

(4.18)
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where
&s ——Zi —Zs —(4/7r) ln2, (4.20)

and where the sums Q, ,;, etc., are defined via (4.3)
and (4.4).

At the critical point T=T, only the first two terms
and part of the last term in (4.18) survive; these
reduce to

2
B(0 () =—Dn(1/2'")]'Pln(2'"/7l) yCE —t47r]

Pln(1+2"')]' 4 4 yes'es'84'
—g 8; lne,+, '(4.21)

Ho+Ho+84 m' ~=s Ho+Ho+84

which takes the value 0.138149 at /=1. If we allow
$~~ (when Hs, 84 —+ 1, Hs —+0), we obtain

B(0,~ ) = (2/vr) Pln (1+2i~s)]sLln(2s~s/w)+ CH —r 7r]
=0.187902 -. (4.22)

As observed before, both )=0 and (= oo correspond to a
torus (or cylinder) infinitely long compared to its
width; as expected the value (4.22) agrees with
Onsager's result' for this special case. When we let
$ —+oo for general r, we find Qi, ;, Qs, ;, Qo, ;, pals, $84,
$Qr, ;, (Qs, ;~ 0 (t'. =1, 2, 3, 4), Rt, Rs ~ 2, and the
formula (4.18) for B(r,g) reduces to

B(r, oo )/E, ' = (8/7r) Lln(2'"/vr)+Cg ——,'7r]

+4(Z, —r'Qs ) . (4.23)

Since both Zs(r) and Qs, (r) are symmetric about the
point r=0, B(r, oo) itself is also symmetric about T,.
If we apply Jacobi's transformation $+-+ g' to (4.21),
we find the relation

B(0,$) =B(0 $ ')+(2/s. )t'ln(1+2'~')]' jn(. (4.24)

More generally it follows from the definition of r and
the symmetry of C (r) in tn and n that we must, in
fact, have the relation

B(r,))=B($r,j ')+Ao ln). (4.25)

Although we have not verified this analytically from
(4.18) it has been checked numerically; indeed this
provides a very stringent test on the correctness of the
formula. We may hence write (4.16) in the manifestly
symmetric form

C~~(T)/knnrn=Ao in(ns '+n ')'i'
+B(r,))+Ot (inn)/n], (4.26)

where

B(,~) =!LB(,~)+B(~,~')+A. »(~+r')]. (4.27)

It is clear from this expression that the magnitude of
C(T) near T, is limited primarily by the smaller of m
and e. Incidentally, one may usefully introduce a new
temperature variable, say,

r*=27 $/(1+$) L2ntn/(n+m)](DT/T, ), (4.28)

which is invariant under $+-+ $ '.

, Lastly, we remark that an explicit expression for
Bs(r, cc) may be found by straightforward but tedious
algebra; it derives from the higher order r/n depen-
dence of yo', yo", c', and c" Lsee (2.21) and (2.22)]
entering through expressions like (4.10)—(4.12). Since
the general expression is long and unilluminating we do
not quote it; at the critical point (r =0) it reduces to

eg0304
Bs(0 &) = ——',&2[in(1+2'ls)]' . (4.29)

Ho+Ho+84

The terms of order (inn)'/n' in (4.16) represent our
bounds on the remainder; in fact the next correction
term is probably of the slightly higher order (inn)/n'.

5. DISCUSSION AND NUMERICAL RESULTS

The general character of the speci6c heat per spin
C(T) of a finite nr&&n Ising torus is already evident
from Fig. 1, which shows the exact results for a "square
torus" (n=m) computed for n =2, 3, 64 by direct
evaluation of the formulas (2.3) to (2.9)."The nearly
equal increments in height of the maximum consequent
upon doubling m are indicative of the logarithmic
behavior

C(T.)/4 =A o inn+0(1), (5.1)

which follows from (4.16) for all n and ns The.
"rounding" of the anomaly clearly decreases with e;
in view of the asymptotic result (4.16), we now know
that the scale of this rounding is asymptotically set by

r =2E,n(T T,)/T, =0(1). — (5.2)

More explicitly, the deviation Lc(T)—C(T,)] of the
specific heat per spin from its value at the limiting
critical point T, approaches a limit B(r,)), which is
independent of n and ns t see (4.16) and (4.17)],although
it does depend on the ratio $=m/n. The limiting form
of the rounded critical point anomaly is plotted in Fig. 2
for the case )=1 (solid curve). The broken curves for
e =8, 16, 32, and 64 are derived from the data of Fig. 1
and indicate that the rate of approach to the limiting
form is not so rapid. From Fig. 2 it is clear that the
maximum in C(T) lies asymptotically above T, and
varies generally as

e =1—(T,„/T,)=a*(P)/n, (n —+~ ) (5.3)

"We have also compared the exact results for the specific heats
of finite tori of sizes 4)&4, SX8, and 12)&12 with the interesting
Monte Carlo calculations of C. P. Yang, Proc. Symp. Appl. Math.
15, 351 (1963) (American Mathematical Society). Away from the
maximum the Monte Carlo results are accurate to within their
standard deviation of 2 or 3+o. In the vicinity of the maximum,
however, errors or order 10—15'P& occur in all three cases. These
errors are about 7—12 times the standard deviations and have a
somewhat systematic appearance. Yang makes some pertinent
comments on the difficulties of the Monte Carlo calculations in the
critical region but probably one would still not have anticipated
errors as large as our comparisons revealed. )Graphs showing the
exact and Monte Carlo results are given by A. E. Ferdinand,
Ph.D. thesis, published by the University of London (1967).j
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as was mentioned in the Introduction. From the data
for Fig. 2 we find

0.10
5
I

6 7 8 10 16 32 co
I I I I I I I

B,(1)=B(0,1)=0.1381'49 v. ,„, (1)=0.31'/75

so that
B, (1)=0.201359

(5.4) TIIIOII TC

Tc

—a*(1)~0.36029. (5.5)

A test of the relation (5.3) t with (5.5)) for finite n is
indicated in Fig. 3; the approach to limiting behavior is
reasonably rapid and, indeed, by numerical extrapola-
tion (5.3) had originally been conjectured with
—u*(1)~0.353.

The result (5.1) for C(T,) may clearly be supple-
mented by

C„.„=C(T . ) =C(T,)+knLB,„(t)—B(0,&)j,
(e, m~~). (5.6)

The rate of approach of C(T,) and C, to their limiting
behavior is revealed in Fig. 4. Because of the presence
of the (Inn)/I term at r~r, „(but not at v=0) the
approach is slower for C, .

The change of form of the limiting rounded anomaly
for an asymmetric torus is illustrated in Fig. 5 which
shows the asymptotic deviation of C „(T) from its
critical value C „(T.) versus the reduced temperature r
for various values of $. As ( changes, r, , the position
of the maximum shifts. In terms of the symmetrized

C„„(T)—C„„(T)
n k

0.06—

0.04—

0.02- n X n Tor

I

0,3 0.2
1/n

0.1

FIG. 3. Variation of Tma —T, with n for finite tori with (= 1. ; the
broken curve indicates the limiting behavior as n ~~.

temperature variable r~, defined in (4.28), the shift of
the maximum is dowrnvards as $ departs from the
symmetric value unity. The variation of r, with t
is shown in Fig. 6; the most striking feature is that for

$ =$~~3.139278 or $ = $0 '~0 318544.

the maximum occurs, asymptotically, aI, T, =I,.
As ( rises above Po or falls below $o ', the maximum
moves below T, Lsee Fig. 5). The extreme excursion of

.06—
n

I

5 6 8 10 16 2550
I ) I

i I I III) 1 1
I

.20
Pp—

0

-.0 I—
.10

0.2 OA

2" Kc T c/

0.6

I

0.5
I

0.2
I

0.1
Fio. 2. Plots of the specific heat per spin relative to its

critical value versus the reduced temperature variable
0.881n(T—T,)/T, for )=1 (I m); the lim=iting behavior

for e —+~ is shown by a solid line, the broken lines show the
results for finite m=8, 16,32, and 64.

1/n
FIG. 4. Approach of C(T,) and C to their limiting behavior

for )=1: (a) ka ~C(T,) —Ao inn, (b) kn ~C~» —Aping, (c)» 'Ã .*—C(T.)1+fl(o,1).
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the peak below T, is reached for $ 0.17 or 6. Ulti-
mately as $ —+~ (or 0) the maximum shifts back into
asymptotic coincidence with T,. Notice the limiting
curve for $= ~ shown by the broken line in Fig. 5.
The reason for the nonmonotonic behavior of r,„($)
is not understood; it seems to arise from a subtle inter-
play between the four different terms making up the
exact partition function and the various cross terms
brought into existence by differentiating the free energy
twice. The value of fs has been checked by deriving,
from (4.18), an explicit expression for the gradient

(5.7)

oo 20 10 7 5 4 3 2.5 2 1.6
T T T

0.1 0,2 0.25 Q.4 0.5

B(z,g)

0.2—

1.2

0.667

B(z,(')

0.3

0.3
z%

fAOX

0.2

at v-=0 in terms of the elliptic theta functions. This
gradient must vanish at $s when the maximum is at
v =0.

A further impression of the effect of changing P may
be obtained from the curves in Fig. 6 showing the
parameters B, (() B(r,„,t) (solid line) and B,(g)

B(0,$) =B(0,$ ') (broken line) occuring in the
symmetrized formula Lsee (4.26))

C(T)/kii =As ln(m '+n ') "—'+B(r, —m/ti)+ . (5.8)

O.l—

NOX

-0.1—

-0.2—
1

0.2 0.4 0.6
ZC/(i+6

I

0.8

0,1

-0.1

-0.2

1.0

0.06

Cmn (T) —C&(Tc)
Nll kB

0.04

0.02

-0.02

-0.04 0.2
z = 2K n (T-T )/T

0.4 0.6

FIG. 5. Dependence of the limiting rounding of the specific-heat
anomaly on g m/I Note th=e brok. en curve represents the limit

while the curves for )=6, 8, and 10 are dotted for carity.

The over-all variation is not large but both curves dis-

play somewhat unexpected maxima around $ = 1.4
and 2.3, respectively. The two curves touch at $=$p
which is simply a consequence of r,„,„($) passing
through zero at that point.

In the limiting case (—+oo of an infinitely long tours
we have B =B(0,ixi) =0.18790, and, as men-

FIG. 6. Variation with & =m/e of the symmetrized specific-
heat maximum, B,„=B(r,„,p), and critical value, ,8=B(0,$)
[see Eqs. (4.26) and (4.27)5, and of

r,„*=2)(1+$) 'r, =$2nm/(ri+m)5(T , T,)/T. ,.—
(Note that the top and bottom horirontal scales correspond
identically. )

tioned, i.„„=0.Although to order 1/e this implies
T,„=T, the actual asymptotic deviation of T, from
T, is now determined by the term of order (inc)/n in
(4.16); if B(r,~) =B(0,0o) b (s~s)r'—+0(r'), we find
from (4.19) when $ —+ao, that

Ec(T)-C(T.)j/&s =
—

s bs(~ )r'+s v2A sr(inn)/n . (5.9)
from which we obtain a maximum at

r,„'(~)=s ALA s/bs(ao )j(inn)/ri,

so that
(T,„—T,)/T, =at(inn)/n'. (5.10)

As expected, this result is of the same form stated by
onsager for the special case m —+~, rs finite. From
(4.23) we find bs(~ ) =168E,'f(3)/rr', and 'hence,
at =s'v2/281 (3)=0.4146¹,where t (3) is the Rie-
mann zeta function. A similar analysis could evidently
also be carried out for the case t =Ps or gs ', the relation
(5.10) would remain valid but with some different
value of the constant ut.

The results discussed above are, of course, limited to
the somewhat unrealistic periodic or toroidal boundary
conditions. Another case which may be discussed
analytically is that in which periodic boundary condi-
tions are imposed in one direction only, leaving two
free edges parallel to, say, the y axis (there might be
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A heuristic argument presented previously' sug-
gests that if one has any finite d-dimensional Ising
lattice (or more general system) of size rtiXn2X Xnz
with free boundaries one should expect a depression of
T, below T, in accord with (5.3) where n is a suitable
average of the e;. Explicitly, it is reasonable to expect
that

ksT, /ksT, E(iti, rig)/nin g rtdEp, (5.11)

where E(ni, . nd) is the ground-state energy of the
system with boundaries while Ep is the limiting ground-
state energy per spin in an infinite system. Any mean-
field argument will lead to this sort of conclusion; for the
depression of a bulk critical point by regular changes of
interaction it amounts to little more than the observa-
tion that kT, must scale with the energies of inter-
action. Since E(ni, nq) falls below the "bulk"
energy m1' ' Nd+0 by an amount proportional to the
surface area

S(ni, nd) =2(rig nd+nin3 rid

FIG. 7. Specific heats per spin of n &&n Ising lattices with free edges.
Note the large depression of the maxima below T,.

terms cylindrical boundary conditions). This situation
will be discussed in a later paper in this series; in
particular, results for infinitely long strips of finite
width e will be obtained as a limiting case of a uniform
lattice which is perturbed by a periodic array of parallel
"grain boundaries" constituted by "ladders" of altered
J, interactions. (When J,'=0 one obtains independent
finite width strips. ) In this case we find the rounded
specific-heat maximum is depressed befool the limiting
T, but the scale of rounding and depression is still of
relative order 1/n.

We have also studied numerically a few small m)&e
lattices with four free edges (no periodicity). It is
feasible to construct the exact partition functions for
n=2, 3, and 4 as polynomials in v=tanh(J/k&T).
Again the maximum is depressed below T, as evident
from Fig. 7. One finds T,„/T, is about 0.5533, for
rt =2, and 0.7305 for n =4; the relation (5.3) appears
to be va, lid with a*(1) close to' 1.35, which is of sig-
nificantly larger magnitude than the toroidal value
of —0.36.

where

+nin~n4 n,g+ ),
=2ni n„/n, (5.12)

1/n = 1/n, +1/ng+ +1/rt~, (5.13)

we conclude that (5.3) should hold with the identifica-
tion n ~ n (although a* might still have some residual
shape dependence and would certainly depend on the
details of the boundary conditions'). It would be
interesting to check this by calculations on three-
dimensional systems.
g Our results for the plane Ising model have shown that
the scale of the rounding, e=AT/T„ is of order 1/n
(for $=m/n fixed). The essential mathematical origin
of this rounding can be understood by the following
rough argument. The complete expression (2.1) for the
partition function involves the sum of the four products
(or partial partition functions) Zi to Z4, but to obtain
the correct result in the thermodynamic limit m,

m —+~ it is sufhcient to retain only the erst of these
products, Z1. This product can, in turn, be expressed
more symmetrically as a double product" "of the form

m—1 n—1

II II f(T) g(T) «s (—2r+1)——a(T) «s (»+1)—
r=p a=p

(5.14)

which brings out the relationship to the periodic structure of the lattice. Correspondingly, if we ignore the effects
of Z&, Z3, and Z4, the free energy per spin can be written approximately as

P $ m—1 n—1 (2r+1)~ (2s+1)m
P ln k'(T)+2 1—cos +2 1—cos +e(T),

meki3T 2me r=o ~=0 m 'fl
(5.15)

where h(T) and e(T) are known analytic functions of T independent of m and n (except for minor terms). In the

~1 See M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (4952); and M. E. Fisher, Lectures in Theoreticu/ Physics (University of Colo-
rado Press, Boulder, j.965), Chap. VII c, p. 58.
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limit n, m -+po the sums in (5.15) may be replaced by integrals and we obtain correctly Onsager's famous result"
for the limiting free energy per spin, namely,

p $ m de m' d~—ln[ks(T) +2 (1—cosH) +2 (1—cos 22)]+ e(T) .
kgT 2 „2x' „2' (5.16)

nz~kg T
1nfh2(T)+q']qdq+e(T), (5.19)

which should reveal some of the dominant finite size
effects. From this expression we find by straightforward
differentiation that

C„(T)/mnkn
~(2',p(T) lnLk2(T)+qp2] 't2+$(T) (5.20)

where

On differentiating this expression under the integral
sign twice with respect to T one obtains an expression
for the specific heat. The critical point is then readily
identified by the vanishing of 12(T); specifically, we
have

k(T) = hp(T —T.)/T, (1+0(T—T,)) . (5.17)

At the same time the logarithmic divergence is seen
to arise from the vanishing of the argument of the
logarithm in the integrand which occurs when 0= y=0.

To see the dominant effects more explicitly we may
approximate the integral over the Rrillouin zone in

(5.16) (for that is what it really is) by a spherically
. symmetric integral over the reduced wave vector

21
= (H, p2). We need an upper cutoR q =Q 2r independent

of m and ns, to represent the zone boundary. In the
limiting case m, e ~~ the lower limit of the q integra-
tion should be zero; we may, however, approximate the
truncation eRects in (5.15) for finite m and n by impos-
ing the natural lotoer cutog

qp =qp(n m) =
) (Hp (pp) [

=
[ (pr/m, pr/n) (

=2r(m '+n ')'t'. (5.18)

Then we obtain the approximation

where b=( r/2kp)2 T. his displays the expected sym-
metric logarithmic singularity rounded on a relative
scale b=b/n with

n—'=-,'(m-'+n —') . (5.24)

However, it does rot show the shift e of T, from T,
)compare with (1.10)]; the shift evidently arises from
the "interference" between the different partial-
partition functions Z; in the exact expression (2.1),
which correctly represents the detailed form of the
boundary conditions.

An interesting feature of the above results for the
plane Ising models is that 8, the relative width of the
rounding, is of the same asymptotic order, namely, 1/n,
as the depression of T, . The heuristic arguments just
presented suggest, however, that the "mechanisms" of
the two effects may be distinct so that this coincidence
is a peculiarity of plane Ising models. As suggested
previously' it is plausible that the rounding of a sharp
specific-heat anomaly sets in when the range of cor-
relation 1/~(T) in the corresponding homogeneous
infinite system approaches the characteristic dimension
of the system n, defined generally, say, in analogy to
(5.24). If' s(T) vanishes as (T—T,)" as T —+ T„ this
would imply a width varving as

b =AT/T, =c/n 't"—(5.25)

For planar Ising models one knows' "that v = 1 so that
(5.25) is consistent with our exact results. More
generally, if the specific heat of an ideal infinite system
varies' as

~

T—T,
~

— one is lead to conjectures that the
formula

C~(T)1Vkn—(2', (i t*i —1)/n+$(T)+ (5.26)

with 6, and 8 relatively slowly varying functions" of

and
ep(T) =T2(I2')'+Tskk"+2Tkh' (5.21) T and E and

t*'=P(T/T, )+e]2+b2 (5.27)

$(T) ~LT2(kl) 2+T2kk~~+ 2Tkk~] inP 2+Q2]

+ T (k'2) Ik22j(k2+Q2)+k2/(k2+qo2))
+2Te'+T'e", (5.22)

in which the primes denote differentiation with respect
to T. Now $(T) remains a slowly varying and analytic
function of T, even when e, ns —+00, so that gp~0.
As T —+ T, we find from (5.17) that Q,p(T) approaches
the constant hp . Finally, therefore, near T, we can write

C „(T)/mnkn
~Ap ln([(T/T, ) —1]'+2b'(n '+m 2))

+8+~, (5.23)

might be a reasonable description of the dominant be-
havior of a finite system of E=m&. . e& spins near
its critical point. )Note that when n -+ 0 the singularity
becomes logarithmic and (5.26) and (5.27) reduce to
(1.10) which characterizes our results. ) Since in most
three-dimensional systems one has v~—,'(1 this con-
jecture suggests that the rounding of the transition, 8,
should be smaller, asymptotically, than the shift or

2' This formula already presupposes exponent symmetry about
T, (i.e., n=o. ') but in general B(T) would have to contain a more
or less sharp step at T, to account for the residual lack of sym-
metry above and below T, observed in most three-dimensional
speciltc heat anomalies. (See also below. )
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depression e of T . There is some experimental
evidence in support of this conclusion. ' ' To test it
theoretically, however, calculations must be made on a
system for which ~W I. A related consequence of
the conjecture is that C~(T,)/JV varies as X ~" but
C~, , /N=CN(T, „)/1V varies as cV ~~".

As a final speculation we remark that the guess
(5.25) for b leads naturally to the suggestion that for a
general finite d-dimensional system the approximation
(5.19) for the free energy might be extended to

F~/16k—n T

1nLh'(T)+q""]q" 'dq+e(T) (5.28)

o. =n'=max{2 —dv, 0) . (5.29)

When v&-,'d this result is the same as the usual
d-dependent correlation homogeneity or scaling con-
jectures. " For p=~d the singularity is a logarithmic
divergence but for v&~d the limiting specific heat
remains finite at T=T„although it may be cusped
there. Among a variety of objections to the conjectural
formula (5.28) we mention: (a) that the scaling-law
conjecture u =2 —dv is, like the other dimension-
dependent relations, most open to doubt, since, in

where D is constant, or slowly varying, and as before,
we suppose the lower cutoff, qo varies as 1/n E '~". If
to allow for a displaced specific-heat maximum we
postulate that h T T. an—d T .„T, (b/n), th—e
specific-heat anomaly will be rounded on the scale set
by (5.25) as required. On the other hand, the nature
of the specific-heat anomaly in the thermodynamic
limit (1V ~~, qo~ 0) is now determined by d and i.
A straightforward analysis shows that the exponents
of divergence of the specific heat' implied by (5.28) are

particular, it seems to be in disagreement with the
numerically estimated values near and p 9/14 of the
three-dimensional Ising model" "; (b) that the ex-
pression in no clear way represents the asymmetry
about T, observed in most three-dimensional critical
points. Thus, even if there is an equality of the expo-
nents above and below T, (n=n') some sort of super-
imposed "step" in the specific heat remains a dominant
feature of the transition. One could postulate that this
is contained in the e(T) term but its apparently intimate
relation to the critical point makes this an artificial
assumption.

In conclusion, then, the detailed exact results found
for the square Ising lattice do serve as a check on, and
a stimulus to, various heuristic, but more general,
arguments concerning the distortion of specific-heat
anomalies by finite size. One may hope that further
accurate, even if less detailed and exact, calculations
will extend the checks beyond the present limits.
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