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A conventional perturbation approach to the problem of induced emission by an atom exposed
to electromagnetic radiation is reviewed. The calculation is known to contain a familiar math-
ematical anomaly requiring a nonphysical restraint on the time range of validity of the derived
expression for the atomic transition rate. The problem is then solved again in the formalism
of multiple-time-scale perturbation theory. This approach avoids the mathematical difficulty
in question, and yields for the transition rate a more general expression. During the re-
stricted time interval, in which the conventionally obtained result is valid, it and the more
general expression are identical.

I. INTRODUCTION

It is well known that the application of Dirac's
method of variation of constants to certain time-
dependent perturbations in quantum-mechanics
results in the appearance of secular behavior.
Classical-mechanical problems, notably those in-
volving perturbations of celestial orbits, may also
exhibit this behavior, and several techniques exist
for dealing with it on the classical level. ' A gen-
eral method developed by Krylov and Bogolyubov, '
and Bogolyubov and Mitropolskii, ' for treating
classical-mechanical systems subject to secular
behavior has been adapted for use, under the
name multiple-time-scale perturbation theory
(MTSPT), in other physical situations. Several
authors have used MTSPT in the context of non-
equilibrium statistical mechanics, and the tech-
nique has not only provided useful results but also
afforded some physical insights into the processes
under examination. ' In addition, it has been dem-
onstrated that MTSPT can be applied successfully
to quantum systems. '~' In all the cases alluded to
above, the application of ordinary time-dependent

perturbation theory results in the appearance of
secular terms in the expansion for quantities of
interest, whereas MTSPT gives acceptable re-
sults. It should be noted, however, that MTSPT
is not the only alternative approach to problems
in which secular behavior occurs. Sometimes an
ad hoc nonperturbative approach can be found';
for quantum systems, a general approach based
on a new variational principle has been proposed
as a substitute for the method of variations of
constants to avoid secular difficulties. '

In this paper, MTSPT will be applied to the
case of an atom perturbed by an incident classical
electromagnetic radiation field; this is an impor-
tant example for which ordinary time-dependent
perturbation theory fails, in the sense that secular
behavior occurs. This example has been chosen
for several reasons. First, its solution by MTSPT
illustrates well the features of the technique.
Second, the example is well known and solved in
many texts by the method of variation of con-
stants; the secular terms that consequently ap-
pear are taken into account by placing an upper
limit on the time interval over which the solution
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may be said to be valid. Third, an important re-
sult obtained through the usual solution of this ex-
ample, namely, that radiation-induced atomic
transitions proceed at a constant rate is also ob-
tained by applying MTSPT.

II. CONUENTIONAL SOLUTION

An introduction to the technique will be provided
through a review of the example of a hydrogenlike
atom in a radiation field and its usual solution by
the method of variation of constants. Some of the
results of this solution will be needed for purposes
of comparison later on, and the details of the sec-
ular behavior wi11 be used in the formulation of
the MTSPT approach to the problem.

The atomic electron is taken to be described by
a Hamiltonian H„with a set of eigenfunctions
/no(x, t) and their corresponding eigenvalues E„."
When an electromagnetic radiation field is inci-
dent on the atom, the total Hamiltonian is

written in Hermitian form

g(doV' (t)=V e '+ V e
mn mn mn

since ~mn = ~nm.
Consider the following situation: An atom, ini-

tially in an unperturbed stationary eigenstate s,
is exposed to electromagnetic radiation of angular
frequency o at time t = 0. It is desired to find
the probability that the atom has radiated energy
and made a transition to an eigenstate of lower en-
ergy by time t &0. In this emission process, the
second term on the right-hand side of Eq. (4) is
neglected, because it makes a relatively insignif-
icant contribution to the process of interest.
Equations (3}and (4) then give

da (t)
m
dt

V exp[i(E -E +tied )t/n]a (t); (5)
n mn m n 0 n

where AV is the operator describing the interac-
tion with the radiation field. The quantity & is a
dimensionless parameter characterizing the
strength of the interaction; in this perturbative
approach ~ is taken to be small. An arbitrary
state [II)' of the unperturbed atom can be expressed
in terms of the stationary eigenstates of H, by the
following expansion:

note that the corresponding absorption process
would involve the equation

da (t)
n

dt

V exp[i(E —E —l~ }t/h]a (t) .
m nm n m 0 m

(8)

o(x, t}=g a g o{x,t
n n n

where unit normalization of g is assured by re-
quiring that the sum of the squared magnitudes of
the (generally complex) constants an be unity.

The method of variation of constants assumes
that, when the perturbation is present, an arbi-
trary state g of the perturbed atom may still be
expanded in terms of the unperturbed eigenfunc-
tions as in Eq. (2), except that the expansion co-
efficients an become functions of time an(t); of
course, the sum of their squared magnitudes is
still required to be unity for all t. The time de-
pendence of the an{t) is found by substituting the
expansion for g into the perturbed time-dependent
Schr6dinger equation, and then making use of the
orthonormality properties of the eigenfunctions
of H, . The result is

da (t)
mik

a '"(t)= const= 5
m ms' (8}

—V (exp[i(E —E +if& )t/tf]- I}
&~)( )

m8 m 8 0
m (E E+ tt(u )—

m s 0

In the case of transitions terminatiag at state
m = R, where ER —(Es —tf~0) = 0,

In the problem under consideration, Eq. (5) is
solved according to the initial conditions sn(t = 0)
= 5ns. The conventional method of solution is to
expand the an(t) in a power series in X,

a (t)=a ' '(t)+Ra '"{t)+~ ~ ~,
n n n

substitute into Eq. (5}, equate the coefficients of
equal powers of &, and solve the resulting differ-
ential equations for the expansion coefficients.
The results to first order are, for all m,

V' (t)exp[i(E -E )t/Ija (t),n mn m n n

where Xvmn(t) is the (mn) matrix element of the
operator A. V(x, t}with respect to the basis of un-
perturbed eigenfunctions. If the incoming radia-
tion has angular frequency oo„vmn(t) may be

(10}

The expression for aR '"(t) is an instance of
secular behavior in the exixtnsion for aR(t). From
Eqs. (8) and (10), it is seen that the up-to-first-
order approximation to 1 aR(t) i', i. e. , the prob-
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ability of observing the atom in state R at time t,
will eventually exceed j., a physically unacceptable
result. Additionally, it is observed from Eq. (9)
that, in general, the magnitude oscillates between
zero and 12XVms/[E —Es+ W0]i. Thus, for any

state r belonging to the set M defined by

A, iv rs
IE -E+S~ j 2s 0

the quantity I &«ar '" (t) I can at times exceed unity
and contribute in a physically unacceptable manner
to Iar(t) I'. By the smallness of &I V I, M clear-
ly consists of those states in a narrow energy in-
terval about ER, thus satisfying Er- Es+S0=0.
For such states r,

a &»(t)=--tV t/ifrs

for suitably small values of t. Equations (10) and

(12) suggest that one way to retain the results ob-
tained thus far is to require that t/I be sufficiently
small that the expressions for I War'&«(t) I, rc M,
are physically sensible in magnitude, say

I Xar'&«(t) I
« I; with this restriction on the time

Eq. (9) is acceptable for all m.
The probability Ps(t) that the atom has made a

transition out of state s by time t&0 is given, up
to first order, by

P (t)= Q ~a '0«(t)+Ra '"(t)~',
s m mmAs

(10) and (12}be physically meaningful. The seem-

ing contradiction in the time restrictions can be
resolved by assuming that the coupling constant
P. is so small that the quantity I h. ar "'(t) I, rc M,
will be «1 even for moderately large values of

t/t&, i. e. , values of

t/enlarge

enough to make Eq.
(16) a valid approximation. Thus, Eq. (17) is
valid over a time interval whose lower bound is
large enough to make Eq. (16) valid, and whose
upper bound is small enough to make Eqs. (10)
and (12) physically acceptable. The lower bound

can be understood physically as the time at which
the system has completed its initial reaction to
the sudden application of the perturbation at t = 0,
and has settled into the constant transition-rate
behavior. On the other hand, the upper bound
exists merely to account for a mathematical
anomaly appearing in the solution process. It is
just this anomaly that is to be avoided by the ap-
plication of MTSPT.

a (t}-a (r), for all m
m m

(18)

is made, where 7 stands for an infinite set of
time variables (ro, r„r„.. .). Based on the ob-
servation that the first-order correction XaR'"(t)
grows in magnitude linearly with Xt, the following
perturbation expansions are assumed":

III. SOLUTION BY MTSPT

To set up the MTSPT formalism, Eqs. (5) and
(6) are considered. In these equations, the trans-
formation

or, when Eqs. (8) and (9) are used, by

4i~V.(')= ~ (E E,'8. )mes m s 0

x sirP[(E —E +g~ )t/2tfj.
m s

Applying the formula

(14}

a (r)=a ~ &(r)+ha ~ «(r) +X a '(r)+
m m m m

for all m

8 8 2
8—= —+A, — +A.2 — + ~ ~ ~

dt 8r f}}7', ~v

(i9)

(20)

lim (sin'&xx)/vox'= 6(x),
Q «oo

(15)
Associated with the above expansions is the follow-
ing set of correspondences:

Eq. (14) can be written in the following asymptotic
form for large t/2I:

P (t)=2»iAV iI'(t/tt)6(E -E +I~ ), (16)

from which the rate of transition is

dP /dt=2vII«&. V
~

tt '6(EE —E +W ). (17)

Equation (17) has been obtained under a set of
conditions which will now be reviewed. First, in
regard to writing Eq. (14) in the form of Eq. (16),
it has been necessary to assume that t/2k is
"large. " Second, and in contrast, t/ft has earlier
been required to be "small" in order that Eqs.

7'p= t, 7~= Ag, 7'2 ——A. t, (2i)

Briefly, the method consists of substituting Eqs.
(18)-(21) into Eqs. (5) and (6), and solving the
resulting equations, according to the appropriate
initial conditions, to various orders. In the course
of carrying out the solution, the 7'p Yy ., are to
be considered as independent variables, and
otherwise unspecified functional dependence on
7 p +y ~, can be chosen arbitrarily for conve-
nience. When the solutions are obtained, in terms
of &p ~y they are conve rted to expres sions
in terms of the physical time t by Eq. (21), which
defines what is called the "physical line. "

After substitution of Eqs. (18)-(21), Eqs. (5)
and (6) become
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d 8
in + x + [a &"(r)

BT0 8T m

a
ih a & &(r)=0, for all m

~T0 rn
(25)

+)a «&(r}+ ]=XX V
yn n mn

xexp[i(E —E +n&u )r /n]
m n

x [a 'o'(7')+ A a "'(r)+ ~ ~ ~ ],n n (22)

a '"=a ' '( l, r2, ~ ~ . ).
m m

(26)

In accord with initial conditions, the behavior of
the am '" is further specified to be

is obtained, meaning that a~"' has no T, depen-
dence, i.e. ,

8 8
in +A + ~ ~ ~ [a '"(T)+ha '"(r)+ ]BT BT n n

V exp[i(z -Z —n~ )r /n)
m nm n m 0 0

a &'& (r, r, ) w 0,s

a &o&(r, r, . . .)ao, for rcM;r
a &0&( r, r, . . . )=0, for ktM, kes

(27)

x[a ' &(7)+ha '"(r)+ ~ ~ ].
m m

(23)

(r=O)= fI pl s (24)

The problem is, as before, to find the probability
that an atom in state s at time t = 0 will have made
a downward transition (emission process) at time
t & 0, in response to perturbing electromagnetic
radiation incident upon it beginning at t= 0. The
initial conditions for this problem are

by the following argument: The application of
ordinary time-dependent perturbation theory
shows, from Eqs. (10) and (12), that probability
tends to flow from state s into states rc I, pre-
dominantly. For states k, kt s, and k4M, Eq.
(9) shows that I&ak'"(f)1«1, for all f &0, and,
thus, that lah(t) I «1. The acceptance of these
predictions of ordinary time-dependent perturba-
tion theory as qualitatively valid is here used to
assert that, for k4M and kws,

where T = 0 means T, = 0, T, = 0, . . . . The equa-
tions generated by comparing coefficients of equal
powers of ~ are now considered. From the co-
efficients of ~0 the equation

a (7)=0+la "&(r)+
k k

that is, that ak(r }is never larger than 0(&&) in
magnitude.

Making use of Eqs. (27), and noting that the process under consideration is an emission process begin-
ning with state s, the following equations are found from the coefficients of X' in Eqs. (22) and (23): for
m =s, the initial state,

ih a "&(r) + a ' &(r, r, . . . ), = g V exp[i(E -E —n«&)T /n]a
S s 1' 2' '

' sr s r 00 rcM

for m=r(=M

x(r, r, . . . )+ V exp(-i(ur )a ' (r&&, r, . . . );1' 2' ''' ss 0 s 1' 2' ''' (2S)

in a '"(r)+— a "&(r,r, . . . ) = Q V,exp[i(z —E,+n(u)7 /n]a, "&
8 a

T0 r +1 r 1 2 0r'{=M

&& (rl, r2, . . . )+ V exp[i(E -E + n&u)r /h]a &0&(r, r, . . .);rs r s 0 s

for m=k, (kvs, k@M)

ak&" (r) = 2 V„exp[i(E —E +n&d)r /h]a & &(r, r, . . . )k 0r(=M

+ V„exp[i(E E+ n&u)7 /h]a &"-(7„r„.. . ).ks k s 0 s (3o)

Before proceeding with the solution of these equations, the problem under consideration must be de-
scribed in more detail. For a nearly monochromatic classical light source, the electromagnetic z'adia-
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tion contains a distribution of frequencies f (~), with some frequency, say ~0, corresponding to the peak
of the distribution. In the discussion above, &, satisfies the relation Eff —(Ee —S&p}= 0; it is now assumed
that the frequency distribution is so narrow that, for any & for which f (~)= 0, Em —(Ez —S~) o0 for sll m,
unless m =R a&&d ~ = ~, . This means that the width of the energy distribution of the incident radiation (cal-
culated by E = Su} is less than the distance between EE and its neighboring energy levels. For generality,
Eqs. (28}-(30}have been written in terms of ~ [those values for which f (&) &&0] rather than &»0.

When Eq. (28) is integrated with respect to r„ the term

a
a &"(r, ~. . . , )=0,s 1' 2'

so that ae "& = ae "&(r2, . . . ). The remaining portion of Eq. (28} can be integrated with respect to r, to
give

(31)

a '&(&v', &, . . . ) = g {-iV J ' dgexp[i(E -E —8&»)&])
r, /ff

s 0' 1''''
M

sr 0 sr(= M

~T~ S

which is clearly independent of 7'0 makes a contribution that is proportional to &, to the expression for
as "'. To avoid this difficulty, it is permissible to set

(32)

a
a ' &(r, r, . . . )=0 or a "'=a '"(r2, . . . ).r 1' 2' ' ' ' r r

Noting that Eq. (33) holds for all rcM, integration of the remaining portion of Eq. (29) with respect to
7'„yields

(33)

x a &0&(&,r, . . . ) —iV J ' di exp(-ih~f)a &0&(r, . . . ).s 2'

Considering Eq. (29), it is observed that to avoid secular blowup with r~ in ar &»(r), it is necessary to
set

a &»(r, r, . . . }= Q [- V,/(E —E,+I&e}]{exp[i(E —E,+5+)r /ff]- Ij0' 1' "', rr' r r' r r' 0r' (=M

xa, &"(r, . . .)-iV J ' df e px[i(E -E +8&»)g]a "&(7, . . . ).
Finally, Eq. (30), containing no terms independent of 7„ is integrated at once to give

(34)

a &"(r, 7', . . . ) = Q [- V /(E -E +Ed)]{exp[i(E„—E +ff~)T /8] —I)
r(=M

V
xa "&(r, . . . )- 8 {exp[i(E -E +8~)r /8]-1)a ' &(r, .. . }.

k s

Next, the coefficients of A' in Eq. (23) give the following equation for az "'(7'):

N a &"(r)+ — a "&(r)+ a "&(r ) = Q V exp[i(E -E —R&e}r /ff]a "&(r)
a 2 a 8

~7'0 S ~~ S s 2'''' n sn s n 0 n

(38}

Z V exp[i(E —E —I~)r /5] a "&(r)+ g V exp[i(E E —ff&»)r /Pf-]a '»(r)sr s r 0 r
kg M k+ sk s k 0 krcM k& Mykes

+ V exp(-i(ur )a &»(r).ss 0 s (38)

Now, in the above equation the term Veee 'noae &'&(r), which describes the transition from state s to
state s through the influence of the perturbation, must be omitted. It is clear that the states correspond-
ing to a„"&(r)on the right-hand side of the first equality in Eq. (38) are to be regarded as the initial
states in an absorption process terminating at state s, i.e. , the reverse of the emission process under
consideration. Since the states a~'"(r) and af& &»(r) have previously been calculated as final states in an
emission process beginning with s, they are acceptable for use here. On the other hand, ae'"(r) was, of
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course, calculated as the initial state in such a process, and cannot consistently be one of the a„'"(r}in

Eq. (36}. The resolution of this difficulty is easily accomplished by allowing h =a in the term

V exp[i(E —E —h(d)r /h]a '" (r) .
k@M, kcs

With this alteration, and using Eqs. (34) and (35) for ar ("(r) and ah ("(r), Zq. (36) yields

) Z Z E E h {exp[1(E E )T /fi]s r' 0rcM r ~+ ~r ~r

—exp[i(E —E, +h(()}r /h]}a, (')(v&, . ~ ~ )+ Q
~

V ~'-a (0)(T, . . . )
rc M

~{-iJ ' dre~[i(z -Z +h~)(&-T /h)]}+ 2 Z [-V V /(Z -Z +h~)]
0 k4M, k~s r=M

x {exp[i(E —E }ro/h]- exp[i(E —E —h(d)r /h]}a ( '(r, . . . )+
v

kg&M, kws k s

&l exp[i(E —E —h(d)&0/h]a ' ) (T&, . . . )+
s k 0 s 2'

kgM, kWS
[-

i
V i'/(E —E +ha)]a (0)(r, )ks k s s 2' '''

—V V

+ — exp i E —E i 8 —exp —i~a a
rcM s r

+ [exp(-i(dr ) —1]a ("(r, . . . ).
0 s 2' (37)

A certain asymptotic form of Eq. (3'l) will now be developed. The integral appearing in Eq. (3'I) can be
rewritten as follows:

dye~[i(E -E +h~)(&-r /h)]=-i f ' dye~[i(z -E -h~)y].r, /h ~,/h
S 0 S

The relation

, QQ 6'—i J dyexp(ivy) = ——iv6(x),
0 x

gives

(33)

(39)

lim —i f ' dyexp[i(E -E —W)y] = — —i7(&(E —E —h~).io 6'
(4O)s r E -E —S~ s(r./h)-- S

The equation resulting from substitution of expression (40) for the integral (38) is the asymptotic form of
Eq. (3'7) for ro/h very large. Several terms independent of 7'„and thus, capable of causing secular blow-
up in the expression for as '" (r), occur in the resulting equation; they are eliminated by specifying the v',

dePendence of as ")(r3, . . . ) in the following way:

a (")(7, . . . )= Q ~V ~'{i[S/h(z -E -h~)] „V(E -Z ---h~)}
rcM

kgM, kts
I I v„ I*tv(v„-z ~ s )]„Iv I*/v* ), & (,2, , ) (41)

Equation (41) has the solution

&' ( 2, . . . ) = t" ( 2
--o, , . . . )e v g '( )I v I' ~v —

I

v I*a(z —z —v ) /v
s n

(42)
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where the summation is over all the unperturbed eigenstates of the atom. This expression for as '"
(r„.. . ) contains an exponential decay factor, so that Eq. (34) for ar "&(r) is bounded in magnitude. In a
similar fashion, an expression for az'" (r2, . . . ) can be calculated, and shown to be such that as "&(r) is
also bounded in magnitude. Equation (35) for ay'»(r), is also, as a consequence, bounded in magnitude,

but does not contain any potentially secular terms to begin with.
The physical quantity of interest is the probability las(t)l' that state s is occupied at time i &0. An ap-

proximation to this probability can be obtained from Eq. (42). First, as '"(T2, . . . ) is expressed on the

physical line by applying prescription (21)

"'(~t &= a "'&et 0, . .=. &exp I ~~v ~*—— ~~v ~'n&E -z -s &t/nI.s s n E —E —5& ns ns s ns n

Ignoring the higher-order (».'f, etc. ) time scales, the squared magnitude of as '0&(»'t, ~ ~ ~ ) is

(f=o}I e~(- [~„2vl~V„,I'5+ -E -~~)]&/~].(0) 2 (0)
(44)

Since the distribution of frequencies in the light incident on the atom is such that only , has the property
that h~, exactly equals the energy difference between Es and a lower-energy eigenvalue (in fact, K&0= Es
—EII), the behavior of I as "& (i) I' when contributions from all frequencies in f(~) are superposed will be
the same as

la (i)l = lu (f=o)l exp[-(2v/»l~v„ l'5(E -z„-a~ )I].(O) 2 (0) 2
(45)

Finally, consistency, to this order, with the initial conditions of the problem requires

l. «&(I = 0}l = 1, (45)

so that

(o)
(47)

This result has been obtained from the asymptotic form of Eq. (37) as r, /ff- very large; on the physical
line, this condition is t/ff very large. More specifically, Eq. (47) is valid for times large enough that

(43)

IV. D1SCUSSION OF RESULTS

The transition rate (&f/dt)Ps(f) can be calculated
at once from Eq. (47):

—P (f}= —l. &&(f)l =(2;/»d d
dt s dt s

x lAV l'5(E -E —ff~ )exp[- (2»/»

x l~v l'5(E -z —a'&d }f]

=(2v/»I&V„ I'«E -E~- tf~o}lu '"(f)l'

(49)

The transition rate is proportional to the proba-
bility of occupation of state s at time t. In Eq.
(49), if IA Vfl I t/8 is sufficiently small, the ex-
ponential may be approximated by the zero-order
term in its expansion, so that

P(t)=(2»/h'}l—h. v l'5(E —E —I~ ). (50)

This result is to be compared with the expression
for dPs/df given by Eq. (17). The conditions
under which the two results are valid are compa-
rable. In both cases, a lower bound for the time
is established by the desire to consider the asymp-
totic forms of similar expressions appearing in
the calculations leading to each result. The con-
dition is that f/ff be large enough to ensure the
applicability of formula (15) in the one case and
formula (40) in the other. In addition, an upper
bound for the time is imposed in the two cases.
As previously noted, to avoid a mathematical dif-
ficulty arising in the course of obtaining Eq. (17),
it is necessary to take l&Vsff lf/ff "small" —cer-
tainly less than unity. Application of the same
condition to Eq. (49) leads to the approximation
(50). Thus, results (49) and (17) are equivalent,
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when the same time restrictions are applied; in
each case, the compatibility of these restrictions
is accomplished by assuming ~«1. Further, by
comparing the two forms of the right-hand side of
Eq. (49), it is seen that the effect of the upper
limit on the time is to approximate as '"(t) by 1

in the expression for the transition rate; this cor-
responds to the choice as '" (t)= 1 made in the ear-
lier approach. Mathematically speaking, how-
ever, no upper limit for the time is required to
ensure the validity of the results obtained by
MTSPT. From a physical point of view, though,
the results cannot be considered true for arbitrar-
ily long times, for the equations to be solved
were explicitly restricted to deal with a particular
induced emission process.

The imaginary part of the exponential in expres-
sion (43) for as '"(f) corresponds to an energy cor-
rection. Taking into account the frequency dis-
tribution of the perturbing radiation, this energy
correction is"

Z, J d~~&V (~)~'
Z0 S Pl

since Vns(~) includes the distribution function

f (&u), only those values of ~ for which f (~) c0 con-
tribute to the integral. If a slightly different prob-
lem, namely, that in which the perturbing radiation
is the electromagnetic field of the atomic electron

itself, is considered, the energy correction be-
comes

2. ~~V„,( )i' E „„,(52)
photon s n

where g h t stands for summation over all pos-
sible momenta of electromagnetic radiation; in
this integral all angular frequencies ~ are equally
weighted. When Eq. (52) is explicitly computed
for hydrogen using the dipole approximation for
the perturbation interaction, a nonrelativistic val-
ue for the Lamb shift is obtained. "
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