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Nuclear Spin-Lattice Relaxation in Antiferromagnetic FeFs
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The nuclear spin-lattice relaxation (NSLR) of F" nuclei in antiferromagnetic FeFs has been studied
experimentally and theoretically, and is shown to be due to a two-magnon Raman scattering process. The
assumption of isotropic magnon dispersion allows simpli6cation of the calculations while still including zone-
boundary effects. This model adequately describes the total density of states for generally cubic crystals
whose exchange interaction may be expressed by a single parameter. However, processes which depend on
magnon scat tering, such as NSLR, can be calculated with reasonable accuracy only for relatively dispersion-
j.ess spin-wave spectra. This is due to replacing the true cubic Brillouin zone, in which different directions in
P space do not contribute equally to the density of states, with the model's spherical Brillouin zone in which
all directions contribute equally. Comparison of the FeF2 data with those for the isostructural antiferro-
magnet MnF2 indicates that the temperature above which NSLR is insensitive to changes in anisotropy is
much lower than the corresponding temperature for magnetization data.

INTRODUCTION

ECENTLY, Kaplan et al.' have shown that the
longitudinal relaxation TI of F" nuclei in anti-

ferromagnetic MnF2 is brought about by Raman
scattering of thermally excited magnons via the aniso-

tropic hyperfine interaction. ' The isostructural anti-
ferromagnet FeF2 differs from MnF2 primarily in that
there is a sizable initial gap kT~~ in the magnon spec-
trum caused by the large crystalline anisotropy of the
Fe'+ ion. We have studied the F" T~ in an attempt to
understand the effect anisotropy plays in determining
the relaxation rate.

The experiments were carried out on single crystals of
zone-refined FeF2 using standard spin-echo techniques.
The recovery of the nuclear magnetization was ex-

ponential with a characteristic time Tl.

PHYSICAL PROPERTIES OF FeF2 AND MnF2

e(k) = 2SZs ( j, ( L(1+()s—ps(k) j&&&

where

'y(k) =cos(sttkg) cos(sakv) cos(soke),

2SZs)f, ) Z,fs
sin'(-'ck )
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Lsins (-,' ttk, )+sins (-,'uk v)j,

5 is the spin of the magnetic ion, the coordination

a axes, respectively, are quite small and may be ne-
glected. The FeF2 lattice parameters differ by less than
5% from those of MnFs as can be seen in Table I.
Similarly, their Neel temperatures are reasonably close.
The two difluorides differ primarily in their anisotropy
constants.

The spin-wave dispersion relation for these two
crystals may be written'

FeF~, like MnF2, is a uniaxial antiferromagnet with

the rutile structure shown in Fig. 1. The magnetic ions

form a body-centered tetragonal lattice with the spin
moments of the corner and body-centered ions aligned
antiparallel. This is due to J2 being the dominant
exchange. Jl and J3, which couple spins along the c and FIG. 1. Magnetic unit cell

of FeF2 showing the possible
exchange parameters. Only
the Fe'+ ions are shown.* Supported in part by the National Science Foundation.
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'N. Kaplan, R. Loudon, V. Jaccarino, B. J. Guggenheim, D.
Beeman, and P. A. Pincus, Phys. Rev. Letters 17, 357 (1966).

'For a general review of NSLR in antiferromagnets se
Beeman and P. A. Pincus, Phys. Rev. 166, 359 (1968).

e D. ' A. Okazaki, K. C. TurberQeld, ppp R. %.H, $gevpnpon, phys.
Letters 8, 9 (1964),
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numbers Zl ——2, Z2 ——8, and Z3 ——4, a and c are the
magnetic unit-cell dimensions, the J s are appropriate
exchange parameters, k is the spin-wave momentum,
and II& is the effective anisotropy field seen by each
ion. From this, one sees that a large effective anisotropy
field II~ will cause a large gap in the spin-wave spec-
trum at k =0. A comparison of representative dispersion
curves for FeF24 and MnF2 ' is shown in Fig. 2.

One might expect the density of states in FeF2 and
MnF2 to be quite different because of the disparity in
the initial spin-wave gaps. This, however, is not the
case. The density of states D (E) is directly proportional
to 1'dk, where the integral is over a volume in k space
bounded by constant energy surfaces at E and E+dE.
As this volume gets larger at higher energies, the largest
density of states occurs at the zone boundary. Increas-
ing the anisotropy increases the minimum spin-wave

energy, which effectively pushes states to higher ener-

gies. However, since the number of states moved to a
higher energy is small compared to the existing density
of states at that energy, they have little effect. Thus,
the larger anisotropy cuts off the low-energy tail of the

TABLE I. Physical properties of FeF2 and MnF2.

(A) (A) ('K) ('K) ('K)
J3 FX~

('K) ( K)

FeF2
MnF2

4 70tL 3 3/a 78 12b p 03c 2 6pc 0 14c 27 7c

4.87' 3.31' 67.34 0.32' —1.76' 0.00' 1.06'

a Reference 6.
b G. K. Wertheim and D. N. Buchanan, Phys. Rev. 161, 478 (1967).
c Reference 4.
d P. Heller, Phys. Rev. 146, 403 (1966).

Reference 3.

spectrum and has relatively little effect on the peak in

the density of states at the zone boundary.

4 H. J. Guggenheim, M. T. Hutchings, and B. D. Rainford, J.
Appl. Phys. 39, 1120 (1968).

T1 PROCESSES INVOLVED

Nuclear spin-lattice relaxation in antiferromagnetic
insulators arises when a nuclear spin interacts with the
spin-wave spectrum via the "hyperfine" interaction.
Here in "hyperfine" we include all electron-nucleus
interactions. Because of the large gap, the minimum

allowed spin-wave energy is much larger than the
nuclear Zeeman energy, and therefore the direct process
in which a single magnon is emitted or absorbed is not
allowed in FeF2 or MnF2 due to energy conservation.
When expanding the components of the electronic spin
in magnon operators, one finds only S, contains a term
corresponding to the destruction of one and the creation
of a second magnon. To change the nuclear quantum
number M, by one unit, the interaction must couple to
I or I„.Thus a two-magnon process can only occur if
off-diagonal elements exist in the hyperfine coupling
tensor. This mechanism is allowed in both FeF"2 and
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FrG. 2. Comparison of spin-wave dispersion. The solid line
is MnF2 and the dashed line FeF2.
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+ sin'8
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(3)

where 0 is the angle between the axes of quantization of
the nuclear and electronic spins. In the antiferromagnet
FeF2, the Fe'+ electronic spins are collinear with the

' P. Pincus and J. Winter, Phys. Rev. Letters, 7, 269 (1962).
'A. M. Clogston, J. P. Gordon, V. Jaccarino, M. Peter, and

L. R. Walker, Phys. Rev. 117, 1222 (1960).' T. Moriya, Progr. Theoret. Phys. (Kyoto) 16, 23 (1956); 16,
641 (1956).

s J. Van Kranendonk and M. Bloom, Physica 22, 545 (1956).
9 A. Mitchell, J. Chem. Phys. 27, 59 (1957).

MnF' 2, and as has been shown' is the dominant process
in MnF2. The three-magnon process, which was con-
sidered for MnF~ and was shown to be one order of
magnitude less important, ' is not allowed in FeF~
because of energy conservation. In such a process one
creates two and destroys one magnon, or vice versa, and
therefore twice the minimum available spin-wave
energy must be less than the maximum spin-wave
energy: 2'„~&co . This condition cannot be satisfied
for FeF2, since erg, ~=0.66co,„.Thus one is led to the
conclusion that the fluorine nuclear spin-lattice relax-
ation in FeF2 proceeds via two-magnon Raman scatter-
ing. Contributions to 1/Tt from the magnon-phonon
coupling' have been considered and are found to be
orders of magnitude too small.

In FeF2 each fluorine nucleus is coupled via the trans-
ferred hyperfine interaction to three neighboring Fe'+
spins as shown in Fig. 3. The off-diagonal terms in the
hyperfine-interaction tensor come mainly from the
dipolar fields of spins I and I . This interaction may be
written

X'= I„A„,'S,'+ I„A„.'S.'.
The syrrmietry of the crystal requires that A„,

= —A„, ', so that the static hyperfine fields at the
fluorine site arising from these terms cancel. ' However,
the dynamic relaxation of the fluorine nuclei by these
terms does not vanish.

According to theory, ' ' the longitudinal relaxation
rate 1/Tt in an antiferromagnet has an angular de-
pendence
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crystalline c axis. The resultant hyperfine field at each
H&lorine nucleus, arising from the three neighboring
magnetic ions, points along the c axis (see Fig. 3). Thus
0=0 in FeF2 and zero-field measurements will give
us 1/Tio.

The angular-dependent part of Eq. (3) can be
measured by applying a static field H, pp perpendicular
to the c axis (see Fig. 3).Under this condition the result-
ant field H„at the F"site is (Hq42+H, »2) "2, and makes

an angle 8=tan '(H„»/Hhi) with the c axis. The
directions of the magnetic spins are essentially un-
changed by H pp because it is small compared to the
exchange field Li.e., the electron spins are canted by the
angle +=sin '(H, »/2H, „)].Thus by measuring 1/Ti
as a function of H pp perpendicular to the t,

- axis, one can
determine 1/Ti'.

It was shown' that the appropriate expressions for
1/Tio and 1/Ti' are

exp(E„/kI1T )

(
1 4m-

(+ I)2 Q (Nk224k, 2+pk2p~, 2)

two-magnon Lexp (Eg/kii T) —1/2
sin2I (k —k') (rI —ri')/2)8(E2 —E~ ) (4a,)

1
((2(g 1)2+(g 11)2)(24 224 2+~ 2~ 2) +2 (g I)2

Ty two-magnon

X(24k 24k'+2k ~k') cos((k k)'(i i )) 4Agg Agg 24k242'2+2+'

exp (E2/kI4 T)
&(I cos((k —k'). (r' —r"))+cos((k—k') (r' —r' ))))— 8(E,—Eg ) . (4b)

Lexp (Eg/kI1 T)—1)2

IO

t j I
In these expressions E1, is the energy of the magnon

of wave vector k, and the remaining notation is that of
Ref. 10.

MODEL CALCULATION
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Both T~' and T~' have been calculated numerically
for F"in MnF~, ' and the agreement between experiment
and theory was found to be excellent in the temperature
region of interest (i.e., where noninteracting spin-wave
theory is applicable). We have instead calculated the
same quantities for F' in FeF& using a simplified model
for evaluating Eqs. (4a) and (4b).

The model is useful only for generally cubic crystals
whose magnetic properties are dominated by a single
exchange interaction, a condition which is satisfied for
FeF2, where

I
Ji/J2 I

=0.01 and [J2/J4 I
=0.05.4 In this

case for the rutile structure the spin-wave dispersion
relation (1) becomes

where

$= H~/25Z2
l
J2 l, y(q) = cos2'q, cos2'q„cos2'q, .

Here q is the reduced wave vector and related to k by
q;= k;x;, where x; is the length of the unit cell in the j
direction.

The approximation of our model consists of replacing
vR) by

V(q) =«»(2V).
FJG. 3. Longitudinal relaxation of F'~ in FeF&. Solid and dashed

curves are the rates calculated for 1/TI two-magnon and 1/TI'
two-magnon, respectively. The insert shows the symmetry of the
Quorine site.

"Review article by V. Jaccarino, in 3Iugnetism, edited by G. T.
Rado and H. Suhl {Academic Press Inc. , New York, 1963},Vol.
2A, Chap. 5.
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considerable improvement on the so-called long-wave-
length approximation in that it does include zone-
boundary effects in a reasonable way. Although this
reproduces a reasonable total density of states, there are
distortions introduced into k space by changing the
Brillouin zone from cubic to spherical. At a given
energy, different directions in a cubic Brillouin zone
contribute differently to the density of states, while for
a spherical one, all directions contribute equally. Thus
the probability of a magnon scattering in a given direc-
tion in k space will be different for cubic and spherical
Brillouin zones. This changes the average value of the
sine-squared term in the relaxation rate equation (4a).
These distortions are enhanced for a crystal having
more than one exchange such as MnF2. Here, due to a
significant J&, the zone-boundary magnon peak splits,
corresponding to two directions in reciprocal space."
The inadequacy of the model, where all directions in it
space contribute equally to the density of states, tq
account for this anisotropy in phase space is pointed up
in Fig. 4. Here the exact zero-6eld two-magnon relax-
ation rate' for MnF"2 is compared to the model calcu-
lation using identical parameters. At higher tempera-
tures, where the zone-boundary magnons dominate, the
approximation overestimates the relaxation rate be-
cause the magnons have preferred scattering angles due
to the anisotropy in phase space. These preferred
scattering directions tend to preserve the s component
of momentum, and thus reduce the angular factor in the
relaxation rate equation (4a). At lower temperatures,
where the anisotropy in the dominant part of the spin-
wave spectrum is less, the error is still large because the
function containing the angular factor is the difference

That is to say, we assume the spin-wave spectrum is
isotropic in reduced space—the surfaces of constant.
energy in q space are spherical. This has the effect of
redistributing the states of large q value. However,
since the dispersion relation is relatively Bat in this
region, the energy of these states is changed very little.
As a consequence the density-of-states function is
essentially unaffected. The total number of states is
conserved by normalization of the new density of states.
Using this approximation, Eqs. (4a) and (4b) can be
reduced to one-dimensional integrals on energy as is
shown in the Appendix. Equation (4a) becomes

4x A 8
(A r)2 , (7a)

Tt' A 2L2 (A r)'+ (A „rr)'j 4(A „')'
and Eq. (4b) becomes

(7b)1/T, '= (~/h) (Aye —2C),
where

&maz

Emax48
8= (A ..')'

m'(Eo)
D(E)C(E)F(E)

min

E)' 'I' 1/2

X (1+t)'——
~

1+ —
~

—(1+&)'
Eo& — Eo&

and

@maz96
C =—A „'A.."(Eo)'

min

A =L2(A ')'+(A„")'j D'(E)F(E)C(E) dE—
&min E

(1+))2— (E 2-1/2

X (1+()'—I—
E3 I,Eo

E 2 —1/2

X 1———(1+$)' F(E)dE
+0
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where the notation is explained in the Appendix.
Figure 3 shows the comparison between theory and

experiment. The zero-field relaxation rate calculated
using expression (7a) for the F" nuclei in FeFs was
fitted to the experimental data by adjusting A„, . The

value for a best fit to the experimental data is
7.1X10 ' cm '. This may be compared to an A„, value
of 5.4&(10 ' cm ' used to fit the MnF'92 data. ' The
calculated (Tt') ' values contain no adjustable param-
eters as A „and A„were previously determined by
Stout and Shulman. " The 4.2'K point for 1/Tt' is

suspect, since it requires T& measurements on the order
of several hours, thus making it very susceptible to
"paramagnetic" impurity effects.

It is to be noted that the present approximation is a

"J.W. Stout and R. G. Shulman, Phys. Rev. 118, 1136 (196O).
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FxG. 4. Zero-held longitudinal relaxation of F'9 in MnF~. fhe
solid curve is the exact calculation (Ref. 1) and the dashed curve
is calculated using the present approximation.

&2 S. J. Allen, R. Loudon, and P. L. Richards, Phys. Rev.
Letters 16, 463 (1966).
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between two large quantities. Thus small errors in
eit er term can produce significant errors in the relax-
ation rate. The present approximation has also been
applied to susceptibility calculations" in MnF2 with
good results. This is because the susceptibility only
depends on the total density of states and not their
angular distribution in k space.

Thus we may summarize the conditions under which
t e present approximation is useful as follows:

e magnetic ions must form a generally cubic(ai Th
attice and the exchange must be describable by a

single exchange parameter.
(b) For two-magnon or higher-order processes, the

spin-wave spectrum must be relatively dispersionless
(i.e., a large gap at k =0).

COMPARISON OF FeF2 AND MnF2 RESULTS

Judging by the range over which the relaxation rate
may vary, it might appear surprising that the FeFi'2
NSLR is so similar to the MnF"2 results. As can be seen
in Fig. 5, the ratio R of these relaxation rates is Oat
above 0.1kT/E, & and rises sharply below this tem-
perature. The sharp rise is due to the relaxation rate no
longer being dominated by the zone-boundary magnmagnons;

us MnF2 with a smaller gap tends to have a faster
re axation rate. The fact that the ratio is not unity
above 0.1kT/E. & may be partially explained by the
difference in A„, values. A plot of the ratio

(Am/m) (MnFs)M=-
(6m/m) (FeFs)

where Am/m is the normalizedmagnetization deviation, '4

low t
is also shown in Fig. 5. Both R and M

'
h 1an rise s arply at

ow temperatures, indicating the lar eer energy gap in
FeF2. However, the knee in R
'0.&sr

occurs muc' lower
( . kT/E, ii) than the knee in M at 0.2kT/E, Ii. This
rejects the fact that Ti is a two-magnon pr dprocess an

us epends on the density of states squared, which
tends to enhance the importance of the peak in the
density of states, whereas Am depends on a first-order
process. This domination by the zone-b dzone- oun ary mag-
nons is further evidenced by the ble reasona e agreement
obtained when calculating the functional form of the
re axation rate using an Einstein- d 1re

' '
-mo e spin-wave

spectrum, i.e. , a dispersionless spectrum (see Fig 5

CONCLUSIONS

The NSLR in FeF"2 has been measured in the tem-
perature region 8—28'K. The res ltresu s are in excellent
agreement with the calculated relaxation rates for a

re uces the problem to a one-dimensional integral. This
model adequately describes the total magnon density
o states of generally cubic crystals in which the ex-
change interaction may be described b 1e y a sing e param-
eter. Utilizing this model calcul t' f
suc' as T

a cu a ions o quantities
which involve two-magnon scattering

processes, are possible only when th
trum is relatively dispersionless. This is due to the
sensitivity of the magnon scatterin 1 t'n" ang e o anisotropy
in the distribution of states in k space.

lndlc
Comparison of these results with the MnF"e n 2 results

in icates that at relatively high temperatures NSLR is
insensitive to changes in anisotro , since secon -order
processes are dominated by the zone-b done- oun arymagnons.

I.O—
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APPENDIX: DERIVATION OF EQUATIONS
('7a) AND ('71)

Vv"ith the assumption of isotropic m d'magnon isper sion,
the dispersion relation becomes

1

O. l

I I

0.2 0.3
TEMPERATURE (I(T/E )max

0.5

FIG. 5. Solid l
and FeF

ine is ratio of zero-field relaxation rate
'

M F
2. Dashed hne is ratio of zero-field relaxation rate in F~ ~ ~

S iil il

and rate cal l dculated assuming an Einstein spin-wave spectrum.
x ion ra e in eF2

This ratio is normalized to one at the highest t . 3f '

e ra io of normalized magnetization deviation in MnF2 and
e maximum spin-waveFeF2. The temperature is in units of the

energy.

"M. Butler, thesis, University of California at Santa B b
1969 (unpublished).

an a ar ara,

E(0)=Eot:(1+5)'—cos'(-'V) 7" (A1)

2~ +1

q2dqdpd8 =1=
Emaz

D(E)dE. (A2)
min

"For comparison of FeF2 and MnF2 magnetizations see Ref. 10.

where Es=2ss~ Ps ~5. The Brillouin zone is spherical and
o a radius m- in q space; thus normalization requires
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Since the energy only depends on the magnitude of q,
the density of states may be written

Using the identity

to show
sin22:+ cospx = 1

3 dE~
D(E) =—q'

dql

Using Kq. (A1), we find

dE Ep'
cos2g sing(

dq 2E

(A3)
sin-,'q= [1+(E/E, )'—(1+()7 &',

and the identity

we obtain
sinx= 2 sin~x cos~x,

q'= {arcsin[2((1+$)2—(E/Ep) ) I'

X(1+(EIE )'—(1+5)')'"7}'.
and - lq= L(1+~)' (E!E—.)'7'"

Thus the density of states for the isotropic magnon
dispersion model is

6E {arcsin[2((1+()'—(E/Ep)')'"(1+(E/Ep)' (1+$)')'—]}'
D(E) =

~'Ep' [(1+5)' (E—/Ep)']'"[1+(EIEo)' (—+&)']'"
(A4)

The Hose factor is defined

F(E) VE/»T/(VE/»T 1)2

method:
&max

D(E)dE,

where

Equation (4b) may be written as a sum of four terms:

'"" A=[2(A„)+(A..-)]P F(E)D(E)

1
A=—2 [ (A-')'+(A*")']

N2 kk'

X(uk uk' +vk vk' )F(E)&(E» Ek') ~

1
& =—2 2(A-')'(uk'uk '+v»'vk ')F(E)

N2 kk'

X[u'(E)u'(E')+v'(E) v'(E') ]h(E—E')dE'.

Performing the integral is equivalent to replacing E' by
E. Changing the second sum to an integral leads to the
required expression for A:

Xcos[(k—k') (rr —rr. )]b(E»—Ek.), Email Ep
D'(E)F (E) C(E)dE, —

E
(A7)

1
C=—p 4A„'A„"ukuk vkv». F(E)

Xcos[(k—k') (rr rrz)]B(E» E—» ), —
where

A =[2(A„)'y(A„)'7

and
Ep 3 2-2

&)4+ (1+5)2-I—
(Ep

C(E) =
I

— (1+
D=—p 4A» A~4 ukuk~vkv»~F(E)

—,)
Xo[( —k') ('- )]( — ) „,b,

The I's and the e's are coefficients of a transformation
which decouples the two sublattices. They are dined
as"

12
&=—(A ')'—ZE /

F(E) (u,'u, '+v, 'v, .') (q')'

where
Qp= Cosh~ l9g

&
5/c= —slnh~0I2;

&

tanh8» ———(cos-,'q)/(1+ &)

E 8 —')
dp Ig

(q q
Xcos (qu —A')

Ep sing

and
where the energy 6 function has been replaced by one in
reduced space. Performing first the integration over q',

Writing these coeKcients as a function of energy yields

E 2-1/2

u= —(1+$) and v= (1+$)2——
E E Ep

Considering the terms in order and changing from sums

over k space to integrals over energy by the following

12
8 (A z)2 P F(E)(u„4+V„4)q2

x' N

X — cos[q(p —
4 ')]du .

Ep' sing
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we find

2
cos (a+be) dx =—cosa sinb,

b

24 1 jy8=—(A„r)'—P F(E)(uk'+vk')q cosqp.
g a E02

Replacing the second sum by an integral over q space,

36 +1

8=—(A „r)' F (E) (uk4+vk4) q'- — cosqp dp dq,
~0 —I

and then performing the integration over p, , we have

72 E
8=—(A,.r)' F(E) (uk4+r k')q' sinq dq.

gp

Converting the integral over the q space, one over
energy finally yields

Carrying out these two integrations yields

z
C=D= —Q F(E)u 'i '

7l lV 0 Ep SIIlg

Xcos(-,'qp'l sin(-,'q) .

Changing the second sum to an integral, we obtain

144A IA Ir
F (E)v q'u, '

gp

sing g
+

X- cos (-,'qp) dpdq.
sing

96A IA II z E2
F(E)D(E)

m in E3

Performing the angular integration and then converting
to an integral over energy, we have

488= (A„r)'—@mar E
F(E)D(E) E04/E4

g 2

2—1/2 — g 2

X (1+$)'—— 1+ ——(1+t)' dE
F0 jap

E 22
X (1+~)'+ (1+P)'——

+0
By using the identity

sin'(-', x) =
2 (1—cosx),

—1/2

(1+])2
~

1+ (1+()2 dE (A8) the zero-field two-magnon relaxation rate may be
E,i E, written as a sum of two terms:

By considering the magnetic unit cell for the rutile
structure, it is possible to write r r ' and r in terms of
the unit-cell dimensions. Then by going to q space and
performing the appropriate rotation of the coordinates,
it becomes obvious that C and D are equivalent and
equal to

1
C =D=4A „rA„rr Qu, u;v p;F (E)—

X- Ll(q. —q.')]b(E,-E, ).

where

1/Tio= (4m/h) (A' —8'),

and

1
&'=—(A,.')' 2 kF (E) (uk'uk'+i k'~'')

kk'

1
(Aw+ ) 2 2F(E)(uk uk' +ik &k' )~(Ek Ek')

Converting the sum to an integral and the 8 function to
one in q space, we obtain Noticing that

XcosL(k —k') (r —r ')]Xb(Ek —Ek.).

24A rA rr E
F(E)

802

, (q')'
Xuquq~vqr q~5(q —

q )
Sill/

cosP, (q'p —q'p, ')]dp'dq'.

and

A ' =A (A „,r)2/2 L2 (A I)2+ (A „rr)2]

&'=&(A"')'/4(A**')',

we have the necessary expressions to perform relaxation
calculations for an isotropic magnon dispersion model.
The energy integrals were calculated using an IBM 360
model 65.


