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Only the first two terms of the series (A3) is necessary
for four-place accuracy. There is no difficulty in ex-
tending the series to as many terms as needed.

Substituting the first two terms of Eq. (A3) into
Eq. (A1), integrating the complex function with respect
to x, and rearranging terms, we find that
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Here the definition of the one-dimensional Laplace
transform is used. ' From Eq. (A10) one finds, for
example, that the first sum in Eq. (A7) becomes

The other sums in I2 and I2' are obtained in a similar
Is'=(3s') 'gQ Q ((y'+R') ' —2R'(y'+R') '], (A7) way. Integrating Eq. (A13) and its counter parts for

B=j the other sums, one easily obtains Eq. (20).
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The propagation of sound waves in ferromagnetic and antiferromagnetic insulators is studied within the
framework of two models which describe the interaction between the spin system and the lattice. Expres-
sions for the frequency shifts (phonon renormalizations) at high temperatures and near the transition
temperatures are obtained in terms of time-dependent correlation functions. The frequency shifts for long-
wavelength phonons are found to be negative, to increase rapidly in the vicinity of the transition tempera-
ture, and to be less singular than the attenuation coeKcients. The ratio of the frequency shift to the un-
perturbed phonon frequency is shown to be independent of the phonon frequency for long wavelengths.
These results agree qualitatively with present experiments.

I. INTRODUCTION

KSKARCHKRS' ' have measured recently the
frequency-shift ratio (velocity-shift ratio) of

acoustic-longitudinal phonons propagating in the mag-
netic insulators, Euo, RbMn F3, and MnF2. The
maximum frequency shift occurs near the transition

' B. Golding, Phys. Rev. Letters 20, 5 (1968);and (private com-
munication).

2 B.Luthi {private communication).
s R. Moss and R. Leisure (private communication).

temperature T, and is negative. It arises from the
phonons interacting with the critical fluctuations of the
spin system near the transition temperature. The ex-
perimental ratio of Ace =hcq, divided by the unperturbed
frequency co=cd, Ao~/&o=Ac/c, is independent of the
phonon wave vector q for sufficiently small wave
vectors' ' (q(10 ' cm '). We denote the unperturbed
speed of sound by c and the shift in the speed of sound
by ~c.

We list here the recent experimental results. A log-
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arithmic dependence upon the reduced temperature
e= (I T—T,

I
/T, ) reproduces fairly well the frequency-

shift ratio measured in the ferromagnet Euo, 2

Ao)/o& —(oo inc,

as ~ approaches zero. The quantity cv is a frequency-
independent constant. A power law behavior approxi-
mates the frequency-shift ratio measured in the anti-
ferromagnet MnF2, '

AM/M ~ —GPe

The exponent f is about 0.4+0.1. Luthi' reports that
the antiferromagnetic metal Tb data do not fit a power
law c & for T near T~ (the Neel temperature) and for
$WO; but that perhaps they would better fit a logarith-
mic dependence upon e, i.e., when (=0. Experimental
plots of A~/a& as a function of temperature for the anti-
ferromagnet RbMnF3 exist. ' However, an analysis of
t.hese data in terms of power laws ($AO) or logarithms
()=0) does not exist.

We cite two reasons why these results are preliminary,
rather than definitive. First, it is difIicult to determine
the experimental background corrections for Ac.
Second, there are the additional uncertainties associated
with dispersion (the variation of c with increasing ~).
Because these two questions remain unsolved quantita-
tively, we consider at present that the experimental
results outlined above suggest only qualitative trends.

In this paper, we calculate the frequency shift of
acoustic phonons interacting with the localized spins
in isotropic Heisenberg magnets. We have shown in
Ref. 4 that the phonons interacting with the spin
system experience an angular frequency shift Aa&(h, q)
which is given to lowest order in the spin-phonon
coupling by the expression

Ao P.,q)

/e, (X,q)P;,Lq; ~(X,q)+ibje;(X, q)q
=R.e»ml' ' " ' ' ' ' I. (1)

2(o P.,q)

The subscripts i and j refer to the components of the
Cartesian coordinates. We obtain the phonon eigen-
frequencies o~(X,q) and the polarization vectors e(X,q)
by solving the secular equation for the unperturbed
phonon part of the crystal Hamiltonian. The acoustic-
phonon eigenfrequency ~P, ,q) becomes o (X,q) =c(X)q
in the small wave vector q limit. We denote the magni-
tude of the wave vector q by q and the speed of the
acoustic phonon having polarization X by cP ). The
space-time Fourier transform of the polarization kernel,
P;, (q;oi), depends upon four-spin correlation functions.
We refer the reader to Sec. II of Ref. 4 for a develop-
ment of the above equation and for a discussion of the
approximations used to compute Aa& (X,q). The formalism
is valid only for the paramagnetic region and only for
those regions in which IA&v(&, q) I/~(&, q)&&1. Approxi-

' H. S. Bennett and E. Pytte, Phys. Rev. 155, 553 (1967).

mating the four-spin correlation functions by the sum of
all possible factorizations in terms of lower-order correla-
tion functions, we find from Eq. (40) of Ref. 4 that the
(angular) frequency shift of an acoustic phonon due to
its interacting with the spin system becomes

AcuP, q) = Q' v),2(k, q)
2o~ P„q)ME

+oo d I +oo d tI—x"(k,oi')x" (k-q, o)")

-n ((v') —n (oi")
X

GO
—M —07

(2)

The mass of the magnetic ions is M; the total number
of lattice sites is E; the quantity I' represents the
principal value of the frequency integrals; the effective
spin-phonon coupling function is Vi'(k, q); the spectral
weight function for the longitudinal-pair-correlation
function is x"(k,cu); and n(cg) =Le&~""&—1j '. The
parameter P is the inverse temperature measured in
energy units, i.e., P = 1/kT, where k is Boltzmann's
constant.

x(q,0) =w —' AM x (q,M) & (4)

and I'(q, ~ =0) is the static diffusivity. s

We insert Eq. (3) into Eq. (2). Because the low-

frequency behavior contributes most significantly, we
approximate n(cu') —n(oi") bv the expression (co"—co')/
Pkcu'oi". This is valid for Pbco'«1 and for /ha&"&&1. We
then obtain the expression for the angular frequency

E. Pytte and H. S. Bennett, Phys. Rev. 164, 712 (1967).' H. S. Bennett, Phys. Rev. 174, 629 (1968).

II. CALCULATION OF Aoi(X, q)

We restrict the calculations to the paramagnetic
region P(P„where (kP,) is the inverse transition tem-
perature. We consider the phonon wave vector to
approach zero. The energy A~(li, q) of the unperturbed
phonon is Ac/. )q, and the condition P,kc(li)q«1 is
valid for sufficiently small q. The low-frequency be-
havior of the spectral weight functions contributes most
significantly to the double-frequency integrations. 4 ' We
may verifv this by observing that the factor (o&' —o~"
—o) ' is largest for values of or' near co"+&a and that
the density-of-states factor for absorption and emission
of the eigenmodes associated with the spin system
n(oi"+~) —n(&u") has the limit —pkoLn(a&"))' e'e"""
for small frequencies co. Following Ref. 6, we use the
low-frequency form of the spectral weight function

x"(q,~) =x(q,O)»(q, O)/L~'+I" (q, O)3 (3)

The static susceptibility x(q, O) satisfies the sum rule
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shift, namely, TABLE II. Temperature dependence of the angular frequency
shift predicted by Eq. (5). The temperature factor for the ferro-
magnet is fp(X,p) and Fp [(XF——)s/pg, F,= [(Xt)444/(84rp) J, and
P,'=4/(15P). The equations to which we refer in this table are
those of Ref. 4.

)&x(k,0)x(k —q,0), (5)
Interaction and mode

Temperature factor
f~ p. ,p)

where 4p(),q) =c(h)g. We observe that the angular fre-
quency shift does not depend explicitly upon the spin-
diffusion coe%cient

D=lim q
'1"(q 0)

q-+0

for ferromagnets and

Eq. (10) longitudinal

Eq. (10) transverse
Eq. (12) longitudinal

Eq. (12) transverse

p~O
PQ

PQ

PQ

PQ

P ~P.
p
p t

pc
p

A= lim F(q,0)

for antiferromagnets. The vector K0 is one-half a
reciprocal-lattice vector. We contrast this with the
ultrasonic attenuation, which is inversely proportional
to the respective diffusion coeScients.

Because only small wave-vector acoustic phonons
propagate easily in a lattice, we shall evaluate the sum-
mation in Eq. (5) in the limit of small g. Acoustic waves
typically have wave vectors q j.0 '

q0, where q0 is the
Debye wave vector and is of the order of the inverse of
the lattice constant d, q0 d '. Using the modified
random-phase approximation' (RPA) for the static
susceptibility X(k,0), we have for the ferromagnet

xp(k, 0) ={FLe'+F—'s(k) j}—' (6)

and for the antiferromagnet

xg(k, O)= (ALbs —A —'s(k —Kp)j} ' (7)
where

u'= (xF)—', X =xs (0,0),
b'= (x'A) ', x'=x~(Kp, 0).

The ferromagnetic nearest-neighbor exchange integral
is P and the antiferromagnetic nearest-neighbor ex-

TABLE I. The effective coupling S)t' for the small wave-vector
limit. The direction of propagation is q= q(sin8 cosy2+sin8 sin yg
+cos8i); the longitudinal-mode polarization vector is eL, =q/q;
and a transverse-mode polarization vector is ez = —sinqS+cospg,
where q, 8, and y are the spherical coordinates with one of the
crystal axes as the s axis. The quantity Q is the spatial gradient
of the exchange integral, and Gi~ and G44 are the temperature-
independent coupling constants for the point-ion magnetostric-
tive interaction. The equations to which we refer in this table are
those of Ref. 4.

Interaction and mode

lim S 'P' ( )=
N-4ao s (2~) s

CQ

k'dk

sine dp( ),

where the identity It'/ ' Pk' ——1 determines

qp
——(6vrs)'"d '.

change integral is —A. We denote the ferromagnetic
static susceptibility by XF (k,0) and the antiferro-
magnetic static susceptibility by xz(k, 0). The function
i(k) is I(0)—I(k). The lattice transform of the exchange
interaction I(q) becomes for a simple cubic lattice with
only nearest-neighbor exchange interactions,

I(q) =27(cosk,d+cosk„d+cosk, d),

where J=Ii & 0 for the ferromagnets and J= —A (0
for the antiferromagnets.

When we evaluate the lattice summation in Eq. (5)
for the ferromagnet, the dominant contribution arises
from the small k values, and we may use the small
wave-vector limit of xp(k, O). Since x~(k,O) for the
antiferromagnet has the form (7), the dominant con-
tribution to the lattice summation arises from those
values of k near the point k= Kp. We write k' =k —K,
and displace the origin for the summation over the first
Brillouin zone. We may use then the small k'=k —Kp
limit of x~ (k'+Kp, 0). En order to perform the resulting
lattice summations for a cubic lattice, we assume that

the first Brillouin zone contains many points. This is
equivalent to stating that E, the number of lattice
sites, is extremely large. To eGect a further simplifica-
tion, we approximate the polyhedron for the 6rst
Brillouin zone by a sphere in wave-vector space, i.e.,

Eq. (10) longitudinal

Eq. (10) transverse

Eq. (12) longitudinal

Fq. (12) transverse

6Q2d2

[9(64r')'"/35)Q'4f' sin'8 sin&y cos'y

( 3G444[cop'8 (cos'8 —sin'8)
+sin48(cos4y —sin'y cos4y+sin4y)]
+4G44' sin28(cos'8+sin28 cos2y sin2p) ';

I 9G444 sin'8 sin'y cos'y
+G44'[cos'8+sin'8 (cos' y —sin' y)'] I

We 6nd that

4444p (),q) = $SPq/2Mc (X)F'jfp ()4—.;P)

for the ferromagnets and

54p(h, q) = —LSy'q/24Mc() )A'jfz ()4;P)

for the antiferromagnets. We tabulate the wave-vector-
independent coupling coefficients Sq' and the tempera-
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Lho~ (long. )/c (long. )q j cP—c f, (10)

TABLE III. Temperature dependence of the angular frequency the volume magnetostrictive interaction has the form
shift predicted by Eq. (5). The temperature factor for the anti-
ferromagnet is fz(y, P), and AO=L(x'A)u/P] A P(X~A)i12/87rfi] (whe» is near 2.)
and A, '=4/(15p). The equations to which we refer in this table
are those of Ref. 4.

Interaction and mode
Temperature factor

f~(X,P)

Eq. (10) longitudinal

Kq. (10) transverse
Eq. (12) longitudinal

Eq. (12) transverse

p~0
Ap

Ap

Ao

Ap

p —+p,
A,
A, '

A,
A,

ture factors fi& and f~ in Tables I, II, and III,
respectively.

III. RESULTS AND CONCLUSIONS

Expressions (S) and (9) are valid only for

(~ 4&v
~
/cq)&&1. Because the decoupling procedure is not

valid for values of e«10 ', the expressions (S) and (9)
also become more suspect the closer we approach the
critical temperature. We see from Tables II and III
that the angular frequency shift in a ferromagnet
behaves with temperature in a manner similar to that
for the antiferromagnet. The static susceptibilities X and
X have within the context of static-scaling-law descrip-
tions the same temperature dependence near T,.

We know from Eq. (B4) of Ref. 4 that our theory
overestimates the critical fluctuations because it pre-
dicts that the specific heats behave for P near P, as
the square roots of the static susceptibilities behave;
namely,

C„(F) (XF)'" and C„(A) (X'A)'~'

Following the suggestions and results of the heuristic
improvement for the ultrasonic attenuation coefficients, 7

we should not be surprised if replacing the temperature
factors Ii, and A, by

F.= [C„(F)/87rPj and A, =LC„(A)/S~g

gives better agreement with experiment.
In order to compare our results with experiment, we

note that the velocity-shift ratio Ac/c equals the
angular-frequency-shift ratio do~/cq Ac/c. Our theory
predicts that the velocity-shift ratio for longitudinal
acoustic phonons in a magnetic insulator dominated by

7 H. S. Bennett, Phys. Rev. 181, 978 (1969).

where e is defined in Sec. I. The exponent $ has the
upper and lower bounds 0.66~& $& 0. The upper bound

$ =0.66 obtains from the scaling law result that
xF =X'A e 4" —Th.e lower bound )=0.0 obtains from
the heuristic suggestion in Ref. 7 that

and

(XF)'i'~c (F)~inc+a

(X'A)'i'-c„(A)-inc+9,
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where a a,nd b are constants and where C„(F) and
C„(A) are the respective specific heats. The range
0.66~& $&~0.0 agrees qualitatively with the known ex-
perimental data. ' '

The ratio of the angular frequency shift to the
damping coefficient I',

~

Ace ~/I', gives us an additional
expression containing the diffusion coeKcients. We
expect that this ratio will be influenced to a lesser
extent by the approximations used to treat the four
spin-correlation functions, then either the frequency
shift h~ or the attenuation coefficient n=I'/c. For
example, when P is near P, and when we employ the
longitudinal-volume-magnetostrictive interaction, we
have

~

ho~ p I /r p ——2D/(XF) qd'c

and
~/r =4'/qc. (12)

Expressions (11) and (12) are meaningful only when
they are much less than unity.

We see from Eq. (12) that our theory states that the
antiferromagnetic ratio ~d,&vg~/I'~ depends upon tern-
perature in the same manner that the diffusion coeffi-
cient A depends upon temperature. This suggests either
a test of the validity of the theory if both A and
~A&uz~/I'z are known independently, or a way to de-
termine the temperature dependence of A near T, from
a knowledge of the ratio

~

Acoz
~

/I'~.


