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The susceptibility functions x +(K,ru) and x**(Kara) are calculated in the random-phase approximation at
zero temperature for the Slater model of itinerant antiferromagnetism using the Hubbard Hamiltonian;
from these susceptibility functions the neutron-scattering cross section is calculated. A pole is found in
x +(K,~) corresponding to a spin-wave model As in the Heisenberg model of spin waves, the residue of this
pole approaches zero as the scattering vector K approaches a chemical reciprocal lat tice vector r, and becomes
infinite as K approaches a magnetic reciprocal-lattice vector Q. The non-spin-Qip single-particle-mode scatter-
ing is found to become infinite at an energy corresponding to the magnetic splitting of the bands at the
boundary of the magnetic Brillouin zone if the Fermi level lies in this gap. If the Fermi level does not lie in
the gap, then there is a pole in x"(K,co) for K near a magnetic reciprocal-lattice vector, at an energy equal
to the gap energy when K=Q, corresponding to a collective excitation. Acoustic plasmon poles in x"(g,u)
are also discussed.

I. INTRODUCTION

KCEXTLV, there has been a good deal of both ex-
perimental and theoretical interest in the elec-

tronic structure and magnetic properties of chromium
and alloys of chromium with manganese. ' ' The mag-
netic ordering of such metals is believed to be well de-
scribed by the itinerant model of antiferromagnetism
proposed by Lomer. ' ' According to this model, the in-

stability of the paramagnetic state towards antiferro-
magnetic ordering results from there being two pieces
of the paramagnetic Fermi surface of nearly the same
size and shape, but separated by a, wave vector Q. Jf
these states are made to coincide by translation by Q,
there will be a tendency for states of opposite spin in
these two sections of Fermi surface to mix strongly,
resulting in a static spin-density-wave antiferromagne-
tic ordering. Recent inelastic neutron-scattering experi-
ments on these materials have led to the work that is
reported in this paper. '

In this paper, we calculate the elementary excitation
of such systems that should be observed in inelastic
neutron-scattering experiments and the intensity of the
scattering from these various excitations. We have also
attempted to make contact with and compare the be-
havior of the inelastic neutron scattering expected for
itinerant model of antiferromagnetism to that predicted
by the itinerant model of ferromagnetism' for ferro-
magnets; thus we will illustrate the differences between
the predictions of the two theories.

*Work performed under the auspices of the U. S. Atomic En-
ergy Commission.
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Since in this paper we are not interested in the way in
which the antiferromagnetic ordering comes about, but
rather in what elementary excitations an itinerant anti-
ferromagnet should have, we will start out with a fairly
simple model of the electronic structure of the system:
the Hubbard model or short-range-interaction single-
band model. ' The justification for using this model
rather than a more realistic model with two or more
bands is that this model is both mathematically and
conceptually simple and that the relevant magnetic
bands resulting from this model in the antiferromagnetic
state are qualitatively the same as those resulting from
the two-band model. ' Also, for simplicity, rather than
use the more general spin-density-wave model, we have
gone to the Slater alternant-molecular-orbital model of
antiferromagnetism. "In this model, there are two inter-
penetrating sublattices with opposite spin density. The
reduced translational symmetry of the lattice in the
antiferromagnetic state results in a splitting of the single
band of each spin into two bands for each spin. This
model is easier to visualize because there exist simply
two interpenetrating sublattices with a definite direction
of sublattice magnetization. It is also mathematically
simpler because one-electron states of difIerent spin are
not mixed. These simplifications allow us to calculate all
of the susceptibility functions and to separate excitation
into longitudinal and transverse excitations correspond-
ing to spin fluctuations along and transverse to the sub-
lattice magnetization. Our calculation of the spin-wave
dispersion relation is similar to the treatment of spin
waves in the same single-band Slater model by Des
Cloizeaux. " The differences between our calculation
and his are that (i) we formulate our problem in terms
of double-time Green's functions, so that we can calcu-
late the susceptibility functions, and thus the inelastic
neutron-scattering cross section; and (ii) that we also
consider the effect of putting the Fermi level in one of

~ J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).
'0 J. C. Slater, Phys. Rev. 82, 538 (1951)."J.Des Cloizeaux, J. Phys. Radium 20, 606 (1959); 20, 751

(1959).
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the two bands rather than inside the gap between the
bands. This may be important for discussing excitations
in conduction bands that are polarized by magnetic
ordering rather than causing the ordering. We have con-
sidered excitations in both the limits g(&eg, and g)&eg,
where g is half the band splitting. The results of the first
limiting case are applicable to chromium alloys. The
second limiting case applies to the case of insulating
antiferromagnets.

In Sec. II we formulate the problem using a canonical
transformation as was done by Des Cloizeaux. In Sec.
III we set up the equations of motion to calculate the
transverse susceptibility and consider these equations
in the narrow-band limit. In Sec. IV we calculate the
susceptibility for general band widths at zero tempera-
ture and find the spin-wave dispersion relation and the
scattering cross section of the spin waves. We also con-
sider the scattering from Stoner single-particle modes.
In Sec. V we calculate the longitudinal susceptibility
at zero temperature. Here we 6nd a new collective mode
which exists when the Fermi level does not lie in the gap
and which is found below the interband single-particle-
mode continuum. When the Fermi energy does lie in the
gap, this mode merges with the continuum, but near a
magnetic reciprocal-lattice vector, and the single-
particle-mode scattering becomes very large at energy
equal to the gap energy. This is in contrast to the itiner-
ant model of ferromagnetism. ~ This large inelastic
single-particle-mode scattering should be observable in
neutron-scattering experiments and should serve as a
way of measuring the gap energy in the bulk sample to
supplement the optical-reAectance measurements of this
energy. '

II. FORMULATION OF PROBLEM
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PIG. 1. Qualitative sketch of distribution of charge density of
electrons of spin up and electrons of spin down in bands 1 and 2
on an alternant lattice. A and 8 label sites belonging to a given
sublat tice.

Our Hamiltonian is the well-known Hubbard Hamil-
tonian which can be written in the reciprocal-space
representation as

U
Se=g e(k)c&. c&.+—P c&+&.t c& & cs.+& &est, (1)

ko / Zzq

where c~, is the annihilation operator of the electron of
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t1'
2g

ENERGY

ENERGY BANDS (EITHER SPIN)
K

spin o. in the Bloch function of wave vector k.' We as-
sume that the lattice has inversion symmetry Ltherefore,
e(k) = e(—k)j. In our model, we consider only one band
in the Hartree-Fock approximation, when the system is
paramagnetic. We have not included the anisotropy
energy in Eq. (1). When the system is in an antiferro-
magnetic state, this single band wi11 split into two bands
for each spin, one with greater charge density on sub-
lattice A than on sublattice 8, and one with more charge
density on sublattice 8 than on sublattice A. For the
opposite spin, the sublattices are interchanged (see Fig.
1). One band of each spin will lie lower in energy than
the other and, therefore, will tend to contain more elec-
trons than the other band of the same spin. For crystals
with inversion symmetry, corresponding bands of oppo-
site spin will be degenerate. "

I.et us assume that we have such a simple lattice
which can be divided into two interpenetrating sub-
lattices A and 8, such that the nearest neighbors of the
3 sublattice belong to the 8 sublattice, and let us call
the lower-energy band of each spin, band 1, and the
higher-energy band, band 2. Since the symmetry of the
lattice is now reduced (each unit cell containing two
atoms instead of one), the Brillouin zone is divided into
two zones, each containing the same number of states.
If k lies in the new first Brillouin zone, then k+Q, where

Q is one of the magnetic reciprocal lattice vectors, is a
vector in the new second Brillouin zone modulo a vector
in the paramagnetic reciprocal lattice. "The vector Q
has the property that e'&'"&' can be 1 on sublattice A
and —1 on sublattice B. The new band structure is
illustrated in Fig. 2. Because of the two-band structure
shown in Fig. 2, we will get a single-particle-mode con-
tinuum for both spin-Rip and non-spin-Rip modes like

'~ C. Herring, in Mcf;netism, edited by George T. Rado and
Harry Shul (Academic Press Inc. , New York, 1966), Vol. IV,
p. 312.

"Simple structures such as the simple cubic and bcc lattices,
for which no nearest-neighbor site is a nearest neighbor of any
other nearest-neighbor site, have the property that if Q is a mag-
netic reciprocal-lattice vector, all other magnetic reciprocal-lattice
vectors can be written as Q+c„,where c is a vector in the chemi-
cal reciprocal lattice.

Fio. 2. Qualitative sketch of band structure: one-electron energy
versus wave vector k for one direction of tg.
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that illustrated in Fig. 3. In Secs. III and IV we will

also find collective modes in the gap 2g (Fig. 4).
The new one-electron wave functions, which are solu-

tions of the problem in the Hartree-Fock approximation,
are linear combinations of the two of the original para-
magnetic Bloch functions, one of which is in the inner
half-zone and the other of which is in the outer half-
zone (as is shown on p. 312 in Ref. 12). We trans-
form our Hamiltonian to a representation in terms
of these new Bloch functions by the following canonical
transformation:

otherwise speci6ed. On making this canonical transfor-
mation, Eq. (1) becomes, in the new representation,

H= P L«(k)Rk„, i (O,k)+«(k+Q)R1, „,2 (O,k)7

Xdkkrr dkprr

+ Q W(p+qxo, kgo. '; k+q$o, pro')
kp) pago 0'

X irq qk kq ' irpir' k+q( ( )

where the matrix 8' is given by
dki. = ck. cos-', Ok

—ock+o .sin-,'Ok,

dkq. ——a ck. sin-, Ok+ ck+o, cos-, Ok,
1 1

(2a)
W(p+qka, kga', k+q$o-, pro. ')

(2b)
U=—2 LRk. '"(q,p)+Rk, .;+1-'(q,p) 7
Ã )'=&,3

X(R«„'"(q,k)+Rr, ;-.'(q, k)7 (5.)

Here j is summed over the values 1 and 3 only. The
matrix R«„; '(q, k) is a transformation matrix defined
such thatmined so as to make

where di, q is the annihilation operator for an electron of
wave vector k and spin a in the band labeled by X,

where X takes on the values 1 and 2.
The index 0. takes on values &1 depending on whether

the spin is up or down, and sin —,'0~ and cos—,'ek are deter-

8
1—dkk. ——K,.(k)dkk.

8$
(3) ckr+qrr ckqrrr =P Rrqj (qrk)dkyqrrr dkqrrr r

in the Hartree-Fock approximation. The wave vector
k is assumed to run over the reduced Brillouin zone.
From now on all summations over k will be assumed to
go over the reduced magnetic Brillouin zone unless

where if j=1, ki=k and k2=k, and if j=3, ki=k and
k2 ——k+Q. The values of ki and k2 for j= 2 and 4 are
the above for j= 1,3, respectively, but with k+Q sub-
stituted for k. Using Eq. (2), we find that

R«„'"(q,k) =R,'"(q,k)

Cos(g Ok~q) COS(20k)

oa' sin(-', Okq.q)»n(&0k)

a.' cos(~8k+q) sin(~8k)

.a Sin(10k+,) COS(-,'8k)

aa' sin(28k+q) sin( —,'Ok)

cos(g Ok+q) cos(g Ok)

—a. sin(28k+q) cos(~i Ok)

—a.' COS(-', Ok+, ) Sin(-,'8k)

—' o (l0+) (l0.)
a Sin(20k+q) COS(~ Ok)

cos(q Ok+q) cos(q Ok)

—aa' sin(-', Ok~q) sin(-,'8k)

—a sin(kOk+q) cos(20k)

a.' cos(iaOk+q) sin(120k)
, (6)—aa.' sin(1~8k~q) sin(20k)

cos(q Ok~q) cos(q 8k)

where n= 1 if (&rp) = (1,1), n= »f (5,p) = (2,2), n= »f
(],q) = (1,2), and n=4 if ($,g)= (2, 1). In Eq. (4),
R(„,'(q, k) = Rr„,' (q,k).

We will now choose the function Ok so as to make
dkk satisfy Eq. (3) in the Hartree-Fock approximation.
The equation of motion for dkk, in the Hartree-Fock ap-
proximation is found to be

&k.(k)dkk.

=P P«(k)R„„,.(O,k) y«(k+Q)Rk„, 2 (O,k)7d„„.

+ p iver(k'$a', kpo", k'$o', kxo)nk «, dk„

—g g (k'$o, kpo; kyar, o.,k'Ca)nk «dk„„(7)
err

g

where n &,
= (d~k, td~k, ), in which ( ) denotes a thermal

average.

Using the inverse of the transformation in Fqs. (2a)
and (2b), Eq. (5), and Eq. (6), and assuming (Ck,tCk, )
independent of spin, we find

Ei,(k)dki =- P«(k) cos'(—',Ok)+«(k+Q) sin'( —',Ok)7dki,

+~2 p«(k) —«(k+ Q) 7 sinOkdk2

—ag slnOkdklrr+g cosOkdkqrr r (ga)

Eq, (k)dk2, = [«(k) sin'(-', Ok)+ «(k+ Q) cos'(-', 8k)7dkq,

+a-,' P«(k) —«(k+ Q)7 sinO„d„,.
+g cosOkdki —ag sinOk dk2„(8b)

where g= (U/X)pk (nki, —nkq ) sinOk and «(k)= «(k)
+U gk (Ck,tCk, ). To make the right-hand side of Eqs.
(Sa) and (Sb) proportional to dki and dk2„respectively,
we take

tan8k ——2g/(«(k+ Q) —«(k)7.
The angle Ok takes on values from 0 to qr/2.
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After some manipulation, we 6nd from Eqs. (8) and

(9) that

f'Zt. (k) = sl:«(k+Q)+«(k)]
Ez,.( )

~Lg'+(lL«(k) —«(k+Q)])']'" (1o)

We see from Eq. (10) that the parameter g can be inter-
preted as half the minimum energy gap between bands
1 and 2. The one-electron term in Eq. (4) may be re-
written as

P Ex.(k)dg)„tax, —VnF,

2g &

.W.

where

1/nF —p (—1)~Lr4(«(k+Q) —«(k))s+ gs]tls
(b)

&&sin'(-'Hq)d~q. ds&„+g o-', L«(k+Q) —«(k)]

XsingsLdsr. dss, + dies, 'dst

The Hamiltonian is now in the same form as the
Hamiltonian in Yamada and Shimizu's paper. ' The
term VHp is an effective field term like the one that
Yamada and Shimizu add to their Hamiltonian to make
the band indices correspond to the band indices of the
Hartree-Fock approximation one-electron states. The
basic differences between the antif erromagnetic prob-
lem and the multiband ferromagnetic problem are that
the wave functions of the various one-electron states in
the antiferromagnetic state must depend on spin in such
a way as to give the interpenetrating sublattice struc-
ture and the bands of opposite spin in the antif erro-
magnet do not have a net spin splitting. If we do not
require that (Cs tCs ) be independent of o but allow
there to be a net magnetization, we could treat an
itinerant ferrimagnet. Had we made c~ and c~+g in
Eq. (2) be of opposite spin, let Q take on any value in
the first Brillouin zone, and let k go over the whole zone,
we would have treated a general spiral spin-density-
wave state. In this paper we will for simplicity restrict
ourselves to the simple two-sublattice antiferromag-

2g(

Fro. 3.Qualitative sketch of single-particle excitation continuum
corresponding to the electronic structure of Fig. 2: excitation
energy versus total wave vector of electron-hole pair making up
excitation.

COLLECTIVE MODE

2g &

FIG. 4. Qualitative sketch of complete excitation spectrum: (a)
the transverse spin excitations; (b) the longitudinal excitations for
&p not in the gap. Dashed lines denote part of collective-mode spec-
trum not calculated.

netic state. Many of the results for the simple antiferro-
magnet should carry over to the more general spin-
density wave state. For the simple antif erromagnet,
the problem is simplified because, since there is a definite
direction of sublattice magnetization, the equations of
motion for spin-correlation functions along and trans-
verse to the direction of sublattice magnetization are
not coupled.

Besides making contact with Yamada and Shimizu's
treatment of ferromagnetic spin waves, another ad-
vantage in transf orrning the single-band antif erromag-
netic problem to a multiband problem is that this
formulation makes contact with other simpliled multi-
band models of antiferromagnetism, such as Lidiard's
model. "We obtain this model by neglecting the k and
p dependence of the matrix elements 8' and by keeping
only intraband and interband exchange interactions.
Lidiard's model does not allow the bands to overlap
onto both sublattices and hence misrepresents the be-
havior of the magnetized bands. More will be said of
this model in the next section.

Had we used a two-band Hamiltonian but neglected
the wave-vector and band-index dependence of the
interaction, the' development would essentially follow
the same path, but in that case the index j on the matrix
(6) would label transitions between two bands —one
evaluated with wave vector k and one with wave vec-

'4 A. B. Lidiard, Proc. Roy. Soc. (London) A224, fdf (1954).
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tor k+Q —instead of one band at these points in the
Brillouin zone. The transformed Hamiltonian fEq. (4)7,
however, would have essentially the same form as it
does for the single-band model.

III. THE TRANSVERSE SUSCEPTIBILITY

In this section we will obtain the equations necessary
to calculate the transverse susceptibility function
& +(q,o~), which is given by the well-known expression

00

«e"" ' '«&5 (q) 5'(—q)» (12)2~—
where &( » signify a double-time, retarded thermal
Green's function of time argument t, and the spin opera-
tor 5+(q)=s*(q)+isv(q). s By definition, the poles of
this susceptibility function give the spin-wave energies.
The inelastic neutron-scattering cross section of mag-
netic excitations is given by the well-known formula

8'o (2pe' ' k'—2 (~-s —k-ks) I R(K) I

'
BQBoi k 'rite k

2AX— —Irnx s(K,co), (13)
1—exp( —Ao~/kit) ir

where y is the gyromagnetic ratio of the neutron, nz is
the electronic mass, k and k' are the incident and final
wave vectors of the neutron, K= k —k', and F(K) is the
atomic form factor. "'6

In order to find the transverse susceptibility, we con-
sider the Green's function

~~.~'(q, p)

1
dt '" " ((d, , d,„;5;.+(—q))), (14)

2x

where 5;+(—q)=s+( —q) if j'=1, and 5+(—q+Q) if
j'=3. Making use of the relationship

1
S;-(q) =—P (cv+,itcvf+cv, o„etc.+oi)

In Eq. (15), when j= 1, q is measured from a chemical
reciprocal-lattice vector, and when j=3, it is measured
from a magnetic reciprocal-lattice vector.

Taking the commutator of di,+s»td»t with Eq. (4),
writing out 5,+(—q) in terms of the d operators, and
decoupling in the random-phase approximation, we 6nd

Ã»(p+q) —E,i(p) —~jG~„; (q,p) —(n,„t—n,+,»)
xg w(P+q ) l, k~j'; k+qg, Pt j')Gr„;,(q,k)

(+»i +9+%»)LRxyj'( q& p)+RAN j+l(qqp)]. (16)

For the case of the simple antiferromagnet, we have n„),
independent of r, and hence from now on we will drop
the spin indices on the average occupation numbers and
one-electron energies. The interaction matrix t'V now has
a complicated k and y dependence because of the com-
plicated behavior of the Bloch functions as a function of
k, which leads to the correct two-sublattice magnetiza-
tion structure. In Lidiard's model we approximate LV,
neglecting its complicated wave-vector dependence.
We do this by confining each of the two bands of each
spin to its own sublattice.

One way of accomplishing this is to make the Coulomb
interaction V very large compared to the bandwidth.
We find from Eq. (9) that in this limit Hq is identically
equal to —',s.. We see from Eqs. (5) and (6) that, in this
strong interaction limit, bands localized on different
sublattices do not interact. In our notation we see that,
for example, electrons in band 1 of spin up interact only
with electrons in band 2 of spin down, since bands 1 and
2 of opposite spin are localized on the same sublattice.
Hence, in this limit, our model reduces to Lidiard s
model without interband exchange.

In the rest of this section, we will calculate the
transverse susceptibility in this limit and compare the
results to the results obtained when an interatomic ex-
change interaction is included. Since 8~ is now a con-
stant, we know from Eq. (6) that Ri,„(q,k) =Ri,„, inde-
pendent of k and q. From Eqs. {5)and (6), we find that
W is independent of k and p, and

=—2 LR~. "(qp)+». +i"(q p) jdH-~ »'d»t
E p)~

which follows from Eqs. (2) and (6), we find that

«s,-(q); s,'+(-q) »

=—2 LR.„"(q,p)+R..;+i"(q,p)j
lV p&s

X((d~s»td»&, ' S;+(q)&&, (15)

using Eqs. {2)and (6). It will be assumed from now on
that

R.„(q,p) =R.,'"(q,p) .
"T. IzuyaDIa, D. J. Kim, and R. Kubo, J. Phys. So@. Japan

18, 1025 (1963)."L.Van Hove, Phys. Rev. 95, 1374 (1954).

W{1l 1j' 1l,lj') = W(1l2j'; 2l, 1j)
=W(2l, 2j' 2l,2$)=0,

W(1l, lj; »,1n= W(2l, »; »2j)
= W(1l, 1j'; 2l,2j') = 0,

W(1J.,2j'; Il,2j') = W(Zl, 1j'; 2l, lf) =2P/Ã.
Hence Eq. (16) reduces to

L&~(p+q) —&.(p) —~Ã~.i'(q, p)

=2&/&(~» —~v+s~)Z G~.~'(q»)

(+» +1&+s~)(Rxrv'+Apt'+i) (17)
when Amati, and when X=ti the right-hand side of Eq.
(17) becomes zero. Solving Eq. (17) for (1/&)P Gz„;.
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X(q,p) and using Eqs. (12) and (15), we find that

L"'(q)
X"-+(q~)=—g (Ri, +R), +,)'—,(18)

1—2 ULz„'(q)nymph

np+qp
L~.'(») =—2—

X & Ei,(p+q) —E„(p)—co

Now, 1—2UL223(q) has a zero at co= 0, »=0, w»ch
goes into a spin wave for nonzero g, since in the large-U
limit Ei,(p) reduces to —

22l e(p+Q)+e(p) j+g, and hence
at q= 0 we have

L22'(»=0) =——g (2332 —2222) .
2gg p

Since by definition g=(U/cV)po (rt» —22») since, in
the large-U limit we get zero at co=0, q=0, for
1—2UL22'(q). Since (R2»+R2U+&)' has the same value
in the large-U limit for j= 1 and j=3, the scattering is
the same on both magnetic and chemical reciprocal lat-
tice points. This is in contradiction to the Heisenberg-
model results. ' The reason for this contradiction is that
here the bands become restricted completely to separate
sublattices in the large-U limit, and, since in our model
electrons must be on the same lattice site to interact,
electrons on diferent sublattices are no longer coupled.
Essentially, we are getting ferromagnetic spin waves on

a single sublattice, as normally occurs in the Heisenberg
model antiferromagnet at the zone boundary. We must
include an interatomic exchange in order to get correct
ground-state spin fluctuations, " as was done by the
treatment of this model by Rajagopol and Brooks."ln
the Appendix we consider the zero bandwidth limit when
an interatomic exchange is included in Eq. (1), as was
done by Antono8 and Englert in their paper, ' as ex-

pected, we recover the Heisenberg-model results. In
particular, llwe find that on chemical reciprocal-lattice
vectors the spin-wave scattering goes as ET/J, and near
magnetic reciprocal-lattice vectors the scattering goes
as ETJ/(Cq)', where C is the spin-wave velocity, as ex-

pected. "Also, the spin-wave energy is given by

~= 223((~(») —J(&))P(&+q) —J(&)j}'",

G (q) =-2 ~~. (»,p)
Q pap,

and

nys ny+0&
X Mi,» (q,p) (20)

&2(p+») -&,(P) -~

with

G '(q) =—2 t)f~. (»,p)G2, ' (q,p),F p&j

tM" (q,p) =Ri. (q,p)+R~. +i(q, p)

For simplicity, let us first consider the zero-tempera-
ture case with np2—=0 and ny~ =—1 in the Hartree-Fock
ground state. Then, using Eq. (6), Eq. (20) becomes

G»'(q) =—Z»n'2(g, +&+0,)
Ã p

Xl &22'(q, p,~)+&22'(», p, —~)j, (21a)

G33'(q) =—Q cos'-,' (0,+,—0,)E p

XLT '(»,P, )+T '(», P, —)j, (21b)

G23'(») =G32'(») =—Z»ns((is+. +Os) coss(tl.+.—(13)

Xp 22 {»PP) 2 2& (» P +)j (21c)
where

np„—ny+
T&e (q~p&co) =

~.(p+q) —&.(p) —~

~e have made use of e(k) = «( —k) in obtaining Eqs.
(21) from (20). Expanding Eqs. {21a), (12b), and (21c)
to lowest order in q and co, with the help of Eq. (9) and
the definition of q, vre find

both sublattices. We will not include interatomic ex-
change in this section.

Dividing Eq. (16) by Ez(p+») —E„(p)—co, multiply-
ing by 1/NLRB, »(q, p)+Ri»+i(q, p) g, and summing over
y, A., and p, we obtain

G-'(q) =U Z G-t'(q)Gi;(q) —G "(q),
Z=1,3

where all indices run over the values 1 and 3 only, and
where

which agrees with the Heisenberg model. "
IV. INELASTIC NEUTRON SCATTERING FROM

SPIN-WAVE AND STONER SINGLE-
PARTICLE MODES

G,io(q) =2(2g) 2D+0(co2)+O(»2),

G33
0(q) (1/ U)+2D(co)

2 e2
2
g

2)

Gis'(q) =4gcoD,

(22a)

(22b)

(22c)

In this section, we will calculate the susceptibility
when U is Gnite and bands are allowed to. overlap onto

'2 R. J. E11iott and R. D. Lowde, Proc. Roy. Soc. (London)
A230, 46 (1955)."P. W. Anderson, Concepts in Solids (W. A. Benjamin, Inc.,
New York, 1964), p. 175.

22 A. K. Rajagopol and H. Brooks, Phys. Rev. 158, 552 (1967)."J.M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, London, 1964), p. 320.

where

P (rt rts ) sinse-
E2gt N 3

and

t iq31
Dvss ——

l

—
l

—g (22„—2232)
(2g) E &

X»nsesl g(0 &s)2&2(p) —smesl0. &Ps(p) l'j (24)
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In deriving Eq. (22b) we have made use of the definition
of g:

U
g=—P (n, i —np2) sin8p.

S u

When written out, Kq. (19) becomes

(2 —(2g) 2'UD 4gUD—tp Gii(q) Git(q))
—4gUD(p 2UD(«—p2 v22q2) —G,i(q) G22(q)1

where a is summed over nearest-neighbor lattice sites
and 8 is a constant. By the definition of the magnetic
reciprocal lattice vector Q,

«(k+Q) = —«(k). (30)

Let us approximate «(k) as linear in k =
~
k ( and, hence,

the Fermi surface as a sphere. Then we may write

«(k) = v(k —k,), (31a)

«(k+ Q) = —v(k —k.), (31b)—(2g)'D —2gDGO

(»)
2gD~——(1/2 U) —2D(~2 —v2'q') &

This equation has a solution

1 1 D(«p2 v22q2)

G»(q) =—+-
U U D(o2 —D[1—(2g) 22UD)v22q2

1 1—2g2UD
G»(q) =——

U U UDtd2 UD[1 (—2g)22UD—7v22q2

(26a)

p1' 0
(26b) Dv2' =

I

— d'p(n, i —n, 2)
(2g (22r) 2

where the Fermi energy is chosen to be zero, where ~ is
the Fermi velocity, and where k, is the magnitude of the
vector —',Q. These one-electron energies are mathe-
matically of the same form as those in Fedders and
Martin's work. ' From Eqs. (23), (24), and (10), we
obtain the following integrals:

which has a pole at

(p = [1—2 (2g)'UD j'~'v2q. (27)

sin'8 v2x2(sin'8 —cos'8p)

From Eqs. (12), (14},(15), and (27), for the residues at
chemical and magnetic reciprocal lattice points we have

ResX +(q,~) ~
ehemieel point =ResG11(q)

(2g) 2Dv2q
(28a)

2[1—2(2g) 2UD)" 2

ReS& +(q, te)
~

megnetie point =ReSG32(q)

L1 —2(2g)'UD3'"
(28b)

2U2De2g

From Eq. (23) and the definition of q, we know that
(2g)'UD is of the order of but smaller than 1. Hence,
we have the same q-dependent behavior of the residue
of X—+(q,to) at spin-wave poles near chemical and mag-
netic reciprocal lattice points as in the Heisenberg
model. 2 When we include the Bose factor in Eq. (13),
we And that we have a cross section near chemical
reciprocal-lattice points which becomes small at low
temperatures, and one near magnetic points which be-
comes very large as the wave vector of x—

+(q,tp)

approaches the magnetic reciprocal-lattice point.
Now let us examine the expression for the spin-wave

energy in some detail. From Eq. (27), it is seen that we
must know the parameter e22 in order to calculate co.

In order to get some quantitative feel for the behavior of
the spin-wave energy as a function of the parameters
U and the Fermi energy, let us consider the following
simplified model of the band structure of the system. If
we approximate our energies by nearest-neighbor tight-
binding functions, the energy is given by

«(k) =8 Q e"' (29)

+g cos82 sin'8 —(1—x2) (32a)

(1' 0
D=(—

E2g (22r) '
O'P(n, i n, 2)—sin'8„ (32b)

111 7vk)2
Dv2 =———'v-

82m'9 v'k. ' g )
1 1 y vk, )2

8 22r2 v'k, ' g )
where y is a numerical factor chosen so that y/k, 2= Q.
From Eq. (27) we have

(33b)

1 2g ' U 2ek,
Q)2 p2g2 ] py ln =-', v'q' (34)

8 2z2 vk, pk, g

when g«vk, e Just as Fedders and Martin get a large
velocity spin wave in a spin-density wave state, we also
get a collective spin-wave mode with large velocity. This
is consistent with the neutron diGraction results of
Muhlestein and Sinha, ' who observe a mode with veloc-
ity at least as high as 10' cm/sec.

The occurrence of a real spin-wave energy and, hence,
a stable antiferromagnetic state for ~&))g, is purely a
consequence of the form that we took in Eqs. (31a)
and (31b) for the one-electron energies. Had we chosen
the one-electron energies in a more realistic manner for

where 0 is the volume of the magnetic unit cell, x is
p q, and the integral is taken over the magnetic Bril-
louin zone, which, in the model of Kq. (31), will be
spherical (of course, npi —n„2—=1 in this zone). In the
limit 2g«vk, = «z, by integrating Eqs. (31a) and (31b)
and using the definition of 8p in Kq. (9), we obtain
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a single-band model, we might get a positive imaginary
spin-wave energy at some value of g/e& because there
is no a priori reason to believe that the single-band
model will lead to a stable antiferromagnetic state.

Now let us consider the case where the Fermi energy
lies below the top of band 1. In that case there will ap-
pear extra terms in Eq. (21) due to intraband transition.
There will probably be no new spin-wave poles due to
intraband excitation since the interaction in Eq. (16)
tends to pull collective states out of the bottom intra-
band continuum rather than push them out of the top,
and the intraband continuum starts at co=0. We will

now show that the main effect of intraband excitations
on the spin waves will be to modify the spin-wave veloc-
ity. From Eqs. (6) and (20), we find that the intraband
terms to be added to Eqs. (21) are given by

1
~Gii (q) =—Z c»'k(Hp+~+Hp)

E y

+F7 ii (q PP')+2 &2 (q P ~)) (35a)

1
DG„'(q) =—Q sin'-,'(8, ,—8,)S n

&&L2'»'(q, p,~)+2'»'(q, p,~)1, (35b)

hG»'(q) =—g sing(Hp+g Hp) cosy(Hp+q+Hp)
E p

&&t T,iP(q, p, (u) —T,2'(q, p,s))). (35c)

Let us assume that n»—=0 and band 1 is nearly com-
pletely filled. Then T»'(q, p, id) is zero. For small q~cu,
we may expand T»' to lowest order in q and co. Proceed-
ing in this way, we find that Eqs. (35) at T= 0 become

q V,E (p)
AGiiP(q) =—g cos'Hp

A p q vpEi(p) —(o

XH(Ei(p) —Er), (36a)
1 1

aG„'(q) =——Q )cot(-', Hp)+tan(-,'Hp))16' p

( q'v E (P)
)((q V cos8 )'~—

kq VpEi(p) —(u)

&& H(Ei(p) —Er), (36b)
M

AGip'(q) = ———P cosHpt cot(pi8p)+tan(28p))
4Ã p

q. V, cosHp( q VpE, (P)
X

i
i&(Ei(p) —Ep) . (36c)

kq VpEi(p) —(o)

If we examine Eq. (36) we see that, as q and ~ ap-
proach zero such that co= cq, where c is some finite con-
stant, G» is of zeroth order in q, G22' is of second order
in q, and G~2 is of first order in q. Hence, the Green's
functions in Eq. (22) are still the same order in q and
cu. Therefore, the form of Eq. (25) does not change, but
the various constants e2' and D appearing in it do

change; they are dependent on the ratio ~/g, but not on

q or co independently. Thus, we find that the spin-wave
dispersion relation will still be linear in q for small q, and
the residues calculated in Eqs. (28) will still have the
same dependence on q. Of course, it is entirely possible
that when e~ lies in band 1, the ground state is not
stable, and hence the spin-wave energy could turn out
to be positive imaginary, signaling this instability. The
stability of the state with e+ in band 1 is not con-
sidered in this paper.

Let us now consider neutron scattering from Stoner
excitations (spin-fhp single-particle excitations) between
bands 1 and 2. The intraband single-particle excitations
are of low energy, and the neutron scattering from them
is qualitatively not much different from the scattering
from a paramagnet. To calculate neutron scattering
from the interband Stoner excitations near the bottom
of the continuum for small g(a& 2g), we need only con-
sider the interband contributions to the Green's func-
tions given by Eq. (21), since the intraband contribu-
tions of Eq. (35) are small for small q and nonzero cu 2g.
Now in Eq. (21), for ~=2g, only T2iP(q, p, ~) contributes
significantly, and most of the contribution to G' in the
summation comes from values of p of the order of k„
where sin8~=1. Therefore, all three Green's functions
G»', G»', and G»' are approximately equal to the func-
tion G', which is given by

1
G'(q) =—Z &»'(q, p,~) . (37)

Using the simplified band structure of Eq. (35), we get

ImG'(q=0) ~ir (0+k )'dkHL2(v'k'+g')'~' —(u)

G»(q) = G3p = —G'/(1 —2 UG') . (39)

Therefore when &d ~ 2g, Gii(q) and G„(q) —+ 1/2U,
a real number. Hence, the single-interband Stoner-mode
scattering becomes zero when ~ is of the order of the
gap energy. In the case of single-particle excitations
without spin fiip, however, we will find in the next sec-
tion that there is very strong single-particle-mode neu-
tron scattering near cv=2g. LFig. 4(a) illustrates the
results of this section. )

V. LONGITUDINAL SUSCEPTIBILITY: ZERO
SOUND AND LONGITUDINAL SPIN

WAVES

We now wish to calculate the longitudinal suscepti-
bility (susceptibility for magnetic field along the sub-

g
(3g)

2p k~-2g)

The real part of G' remains finite as co ~ 2g, and we find
from Eq. (24) that
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lattice magnetization) which is given by

x, . $8(q 'M)
——

2'

where j and j' can take on the values 1 and 3. Using the
relation

1 0'

S,*(q) =—Q -cpy2 cpE p~ 2

i+& 0
Z -».1 (q,p)& + 1.'~ " (41)

g pox@, L=j 2

which follows from Eqs. (2) and (6), we find that

~+& 0
XJ' **(q10) =—2 2 -R"1'(q,p)G1."(q,p), (42)

Q pp) o L=J 2
where

Gi„"(q,p)

dh ' "-'"'((d.+. .d,„.; 8,'*(q))). (43)

Proceeding in the same way as we proceeded to get Eq.
(16), we find

—~1(p+q)+&,(p)Ã1„' (q,p)

W(p+qX0. , kgo'; ppo, k+gi 0')

U
=—Z LR1.'(q,p)+». +1'(q p)3+ q=&, 3

XLR~„;"(q,k) +R~„; "(q,k)g . (45)

Taking the large- U limit, as was done in Sec. II, we find
from Eqs. (6) and (45) that W is zero unless l% = p, and
$= g. Hence, in this limit only intraband collective ex-
citations are possible —as is expected, since electrons of
the same spin can only interact if they are both on the
same site; since each band is confined to a diA erent sub-
lattice, they must be in the same band to interact.
Hence, in the large- U limit, there will be no poles in the
longitudinal susceptibility corresponding to interband
collective modes.

Let us now consider the more general case of U and
the bandwidth being comparable and look for possible
collective modes. To do this we calculate the Green's
function of Eq. (43) by solving Eq. (44). To solve Eq.
(44), divide it by E1.(p+q) —E„.(p) —cv, multiply by
R1„p(q,p)+R1„,;+, (q,p), and sum over p to obtain

G '(q) +O 2 G 1"(q)Gi ' '(q) = —~ '(q), (46)
I 2

G "(q)=—Z I R"'(q, p)+R1. +1 (q,p)1E p&~

+Q W(p+ql10, kg —0,' ppo, k+q( —a.)
k) 27

X(,„—„,.)G„,'--(q, k)

X
&.(p+ q) —&.(p) —~

and where

LR1."(q,p)+R1.' (q,p) j, (47)

= —-( ..— + )LR ."(q,p)+R .J + '(q p)j (44)
2

1 i+3
G;,"(q)=—2 Z Ri.i (q,p)G1. ' (q,p) (48)E p&~ &=i

where W is given by Kq. (5), but can be rewritten in the We solve the matrix equation (46); and using Eq. (42),
following more illuminating form: we find

1 I 1+«-"(q)X1-OF- (q»+O G-"(.)F- (q)
X»**(q)=

2O 2O I
1-O'-. (q))I 1-O F-.(q)3-O'- (q)F-.(q)

1 L1+OG»" (q) jL1—O' F»'(q)] —O'G12'(q)F» (q)
&»*'(q) =

2O 2O L1—O' F»'(q))L1 —O'F '(q)] —O'F '(q) F21'(q)

(49a)

(49b)

wh ere

F;;.(.) = Z ~ (q)G, '-.(q) . (5o)

1
G»'(q) =—2 c»'2(~2+2+ |t2)

E p

From Eqs. (6) and (47) at zero temperature when n2, = 1
and mp2 = 0, we have

1
G»'(q) =—Z»n'2 (t 2+2

—t 2)
Ã p

XLT210(q,p,co)+T212(q, p, —~)), (51b)

G12'(q) = —0.—P sin-'2 (02+,—8,) cos-'2 (82+,+0,)
Ã p

XI T 1'(q p,~)—T»'(q, p, —~)l, (»c)

XI T21 (q&pp&)+T21 (q p) M)j (51a) us~kg the notation of Kq. (21). Let us examine Eqs.
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~ *(q=0)
~
chemicai point =0 t (52a)

1
(q= 0)

~
magnetic point = (52b)

2U 2U 1—UG222(q)

using Eq. (50). The result in Eq. (51a) is well known for
the Heinsenberg-model insulating antiferromagnets. In
our model, it is a consequence of having the Fermi en-
ergy fall in the gap. Had the Fermi energy not been in
the gap, this result would be correct only for TWO.

From Eqs. (9) and (51b), we have

D(p)' Sgg Sp2
G»'(0) =—2 (53)

LD(p)2+g231 2 4D(p)2+4g2 to2

(52a) and (52b) for poles corresponding to collective
modes, when q=0. When q=0, we see from Eq. (51)
that only G22 (q) is nonzero. Hence, in this limit, Kq.
(49) reduces to

peratures below the Neel temperature. The pole occurs
at the bottom of the continuuni (tp=2g), and therefore
it appears to be a type of resonant state (i.e., a collective
mode that does not get completely pulled out of the
continuum). It is a spin-fiuctuation state associated with
oscillations in the 2' component of the magnetization.
When the Fermi energy does not lie in the continuum
but instead lies in band 1, we see from Fig. 2 that the
interband single-particle continuum will begin at a
higher energy. We must include intraband terms in Kq.
(51) in this case, but, when q= 0 and cpWO, these terms
are zero; hence the analyses leading to Eqs. (52) and
(53) are identical. We see from Eq. (53) that this new
mode will still be found at co=2g, and hence it will be
a real collective mode pulled out of the single-particle
excitation continuum.

Let us calculate the dispersion relation of this mode
for small t1. To do this, we must consider Kqs. (51) to
lowest order in q and 2g —co. Letting

where

D(P) =-:Lg(p+~) -g(p)3

From the definition of g in Eq. (25) and from Eq. (9),
we find from Kq. (53) that when tp'= 4g' G2 '(0) is 1
and hence (52b) has a pole. This result is true at all tem-

~(P, a) =&2(P+a) —&2(P),

P(P, q) = cos'2 (8p~g+82) —cos'8p,

u'= (2g)' —'

we write Eq. (51b) to lowest order in q and u as

(54a)

(54b)

(54c)

1 4P(p q)(D(p)2+g2)1/2 4~(p tl) u2(D(p)2+g2) —1/2

G»'(q) =—+—2
U g p 4D(p) 2/u2+4Q(p q) LD(p) 2+.gtj1/2

(55)

Using the simplified band structure of Eq. (30), the
summation in Eq. (55) can be written as

for u') 0. If we place the Fermi energy in the gap (i.e.,
set k2 = k,), we integrate (57) to get

(22r)2
(k+k, ) 'dk

0 k, 'm-——v2vi1(u2+2v2q2) '/'
(22r)2 2v 2g

Q k 2 1 (u2+2v2~2x2) 1/2

ds
(22r)2 2v

——2v(k, —k2)——arctan
2 (u2+ 2v2q2x) 1/2

(57)

4P(Q tl)(v2k2+g2)1/2 —412(Q q) u2(v2k2+g2)1/2
X— , (56)

4v2k 2+u2+4t2 (Q q) (v2k2+g2) 1/2

where x is the cosine of the angle between k and q
and where k=p —k,. We can break up the integral
over k into an integral from —k, to —kq —k„where
u'«v(k, —ki)«g, and an integral from ki —k, to k p —k, .
The integral from —k, to k~ —k, can be shown to con-
tribute to order q' and I', whereas the integral from
k~ —k, to kp —k, contributes a term of 6rst order in q
and u, if v(k„—k p) and u are of the same order of mag-
nitude. Hence, to lowest order we integrate from k~ —k,
to k~ —k, to obtain

42vq+ (u2+2vtq2) '/'
+u' ln — . (58)

42vq —(u2+2vgq2) '/'

Since this factor does not become zero for qAO for any
I'&0, we see that if the Fermi energy falls in the gap,
the collective mode will not pull out of the continuum
as q increases. Let us now integrate the second term in
Eq. (55) for cd) 2g but to —2g&v(k, —k 2).

To accomplish this, we substitute O'= —I'= cv'
—(2g)'. Proceeding as previously, we obtain, to lowest
order in v(k, —kp)/g,

Q k 2 I (2v2/t2x2+g2) 1/2

dg
(2tr)' 2v 1 2g

2v(kc —k p) y (2v'q'x' —u') '/

)&ln —,(59)
2v(k k ) (2v2g2x2 u2) 1/2

which, to lowest order in (2v2g2x —u')'/'/v(k, —kp), is



780 J. B. SOKOLOFF

given by

0 1',~1

(27r)s 2v 2g

2e'q'x' —I'
dg

v(k, —k p)

0 k, ' 1
=(s s'g' —u') .

(27r)' 2p gz(k, —kp)
(60)

1 20 k,'I'——ReG33"=
U (2s-)' 4n g'

2Q k, ' u
ImG33' = —2x—.

(2ir)' w g

Substituting in Eq. (62), we obtain

(63a)

(63b)

Imx„(q) = s (1/U') (s-vk, /Qk, ') (g/oi —2g) 'r', (64)

for co close to 2g.
Therefore, we see that if the Fermi energy lies in the

gap, there should be strong inelastic scattering at an
energy equal to the gap energy. This strong scattering is
not simply a result of there being a high density of
states near the gap, but it is a result of electronic inter-
action since it does not exist in the Hartreee-Fock ap-
proximation. It should be observable in a neutron-
scattering experiment since the gap energy is known
from optical data to be of the order of 0.15 eV.' Such
energies have been reached at Oak Ridge in neutron
scattering from ferromagnets. "A measurement of the
gap in this way by inelastic neutron scattering would
serve as a check on measurements of the gap by optical
reflectance. ' Whereas light measures closer to the sur-
face of the sample, neutrons measure bulk properties.

» J. E. Graebner and J.A. Marcus, Phys. Rev. 175, 659 (1968).
2~ H. A. Mook, R. M. Nicklow, K. D. Thompson, and M. K.

Wilkinson, J. AppL Phys. 40, 1450 (1969).

This expression is set equal to zero to give a collective-
mode dispersion relation of the form

~= L(2a)'+ s~V]'"=2C+ s("g'/2g) . (61)

Hence, a collective mode does pull out of the continuum
if the Fermi energy lies outside of the gap.

Experimental data is consistent with having the
Fermi energy within the gap. ' "Therefore, we will in-
vestigate the intensity of the neutron scattering for eg

in the gap for co of the order of and slightly greater than
the minimum energy of the single-particle continuum

(2g in this case). From Eq. (52b), we find

Imxss(q)

ImGsss'(q)
(62)

2 L1 —U ReG3s'(q)]'+PU ImG3s'~(q)]'

We integrate the second term in Eq. (56) by dividing

up the region of integration into one in which D(p)«g
and one in which D(p)))n', as is done in integrating
Eq. (56), where I'=o~s —(2g)' in this integration, and
approximate the integrand in each case. We thus obtain

Thus, we would perhaps get some idea of the amount by
which optical reflectance measurements are a6ected by
differences of electronic structure in the surface of a
metal from that in the bulk metal. Of course, this strong
neutron scattering may get smeared out at temperatures
near T~.

For completeness, let us consider neutron scattering
from zero-sound oscillation in the itinerant antiferro-
magnet. In our short-range model, the plasma mode will

be zero-sound mode, a collective excitation whose energy
goes to zero at q=0. The possible existence of such a
mode in a real metal can be justified as follows: If some
part of the Fermi surface were to lie in band 1 near the
top of the band or in band 2 near the bottom, instead of
being in the gap, then there could be intraband excita-
tions involving charge carriers at this point in the band.
These carriers have high effective mass because of the
Qatness of the bands. If there were other bands whose
effective masses at the Fermi surface were smaller, the
carriers in these bands could screen the interaction of
the carriers in bands 1 or 2, resulting in an acoustic
plasmon. "This is not inconsistent with existing band
calculations. '4 (In addition to the inain gap which re-
sults in the truncation of part of the Fermi surface,
there could be gaps lying in other bands near, but not
at, the Fermi surface for some alloys of chromium. ) This
zero-sound mode, which is an oscillation of charge den-

sity, will also cause the spin density to oscillate when the
system is Tnagnetic and the Fermi energy is near the
gap; thus it should scatter neutrons.

To calculate the zero-sound mode, we assume that
the Fermi energy lies in band 1 and calculate the Green's
functions of Eq. (51) for small q and o~, including the
intraband terms. Using Eqs. (6) and (47), we obtain

Gii"(q) =—Q cos'-,'(8~,—8s)
2V p

XLT»'(q, P,~)+T»'(», P, +~)], (65a)
1

Gss'(q) =—Q sin'-', (8s~,+8s)
A p

+L2 ii (a,p,~)+&»'(a, p, +~)]
1

+——P cos'8, sin8, (n, i —rr, s), (65b)
2gA p

1
G&s' (q) = —o.—g coss (8s+~ —8s) sins (8s~~+8s)S p

&&LT '(6 P ) —T '(il P )] (65c)

In our model, when the Fermi energy is much larger
than the gap energy, we may neglect the second sum-
mation in Eq. (65b) compared to the 6rst; hence only
intraband excitations contribute to the zero-sound
mode. The net result is that we may write Eq. (65) for

"D.Pines and J. R. SchrieGer, Phys. Rev. 124, f387 (196j.).
'4 S. Asano and J. Yamashita, J. Phys. Soc. Japan 23, 714

(1967).
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where

G»'(q) = ~(q),

G33o (q) = n(q) sin'8»,

Gig" (q) = —on(q) sin8»,

(66)

(67)

(68)

~(q) =—Z 7'»'(q, p,~),E p

for small q and &o. Using Eqs. (49) and (50), we obtain

1
x»(q o~) =

2U 2U 1—U'n'(q) cos'8»

1 2U'n'(q) sin'8» cos'8»+Un(q)+L1+U'n'(q) sin'8» cos'8»$
(69a)

1 1
x33(q,oi) =

2U 2U

—2U'a'(q) cos'8» sin'8»+Un(q) sin'8»+L1 —U'u'(q) cos'8»j

1 U—'n'(q) cos48»
(69b)

Equations (69a) and (69b) both have a pole correspond-
ing to a zero-sound mode when

1+Un(q) cos'8, i =0. (70)

By the definition of n(q) and T»(q, p, cu) below Eq. (21),
the zero-sound-mode dispersion relation can be found
for small q in much the same way as for a paramagnetic
system, "except that for the antiferromagnet the Fermi
velocity and density of states of the paramagnetic sys-
tem are replaced by those for the antiferromagnetic
system. According to Eq. (70), when the Fermi energy
is close to the gap, since cos8„p is small, we are in the
weak coupling region, " and therefore the zero-sound
velocity is close to the Fermi velocity and, hence, very
small. If we calculate the residue of Eq. (69), we find
that, since it is multiplied by a factor of 1/cos8„~, the
residue can be quite large. In general, since the residue
must be multiplied by the Bose factor, the cross sec-
tion will be of order ET/U on both magnetic and
chemical points. When the Fermi energy is far away
from the gap, we see from Eq. (69) and (70) that, since
cos8~p=1 and sin8~p —0, there will be no zero-sound
pole in the susceptibility. This is true because the zero-
sound oscillations, which correspond to Fermi surface
oscillations, will not affect the spin density if the Fermi
surface is not near a gap in the band. Of course, if it
happened that the Fermi surface did fall right below
the gap in a real system, the acoustic plasmon or zero-
sound mode would still probably be strongly damped by
mixing of the bands, but it could still lead to strong
single-particle-mode scattering at low energies for small

g. LFig. 4(b) illustrates the main results of this section).

functions at zero temperature in the random-phase ap-
proximation. We And a pole in the transverse suscepti-
bility as expected, corresponding to a spin-wave mode.
The energy of the mode is linear in the wave vector, and
the expression for the spin-wave velocity is like that
found by Des Cloizeaux" for this same model. The
velocity, calculated using one-electron energies like the
ones Fedders and Martin used, is of the same order of
magnitude as theirs. The q dependence of the residue
of the spin-wave pole near magnetic and chemical
reciprocal-lattice vectors is found to be similar to the
behavior in the Heisenberg model. ' When intraband
contributions to the spin-wave energy are considered,
we find that the dispersion relation does not change
qualitatively; it is still linear in q.

We have also calculated the longitudinal suscepti-
bility x"(q,oo) at zero temperature. Near a magnetic
reciprocal-lattice vector, if the Fermi energy does not
fall in the gap, X"is found to have a pole corresponding
to a collective mode at co=2g when q=0, with a dis-
persion relation quadratic in q. When the Fermi energy
lies in the gap, this mode merges with the continuum,
but there is still intense single-particle-mode scattering
near the gap energy 2g. This should be observable in in-
elastic neutron-scattering experiments, and it would
serve as a measure of the gap energy 2g in the bulk sam-
ple to be compared with optical reflectance experiments. '

We plan to follow this paper with another in which
our results will be calculated explicitly at temperatures
close to the Neel temperature. We also plan to consider
some of the effects of band structure on the spin-wave
energy.

VI. CONCLUSION

By canonically transforming the Hubbard Hamil-
tonian to a representation in terms of the one-electron
wave functions of the Slater alternant-molecular-
orbital model of antiferromagnetism, "we have calcu-
lated the longitudinal and transverse susceptibility

~~ D. Pines and P. Nozieres, The Theory of Quantum Liquids
(W. A. Benjamin, Inc. , Ne~ Yak, 1966), Vol. I, pp. 48, 319.
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where

=—Z LR» (q,p)+R»+i(q. p)]J (q)
E ~=~,3

Xt Rte, (q,k)+R(„;+i(q,k)], (A1)

J (q) = J(q)
=J(q+Q) if j=3,

and where J(q) is the interatomic exchange as defined
in Ref. 26.

An effect of adding this term is that now W(1,1; 2,2)
is no longer zero in the zero bandwidth limit; hence an
excitation in which an electron is taken from band 1 and
placed in band 2 is coupled to one in which an electron
is taken from band 2 and placed in band 1. This means
that even if band 2 were completely empty in the
Hartree-Fock ground state, in the real ground state it
would be occupied part of the time. Therefore, this
model now allows for ground-state spin fluctuations
even in the large-U limit because the two sublattices are
still coupled in this limit. Eq. (17) now becomes

LR~(p+q) —R.(p) —~]G» '(q, p)

=L2&+J(q)+J(q+Q)](~..—~+. )—Z G. (q,k)

1
+LJ(q)-J(q+Q)](-,.—...,»—Z G. , (.,k)

APPENDIX: INCLUSION OF INTERATOMIC
EXCHANGE IN THE NARROW-BAND LIMIT

In order to mak. e contact with the Heisenberg model,
let us include a q-dependent int|:ratomic exchange and
let the effective mass go to infinity. If we include an ex-
change interaction between Wannier functions on neigh-
boring sites, as was done by Englert and Antonoff"
in their treatment of ferromagnetic spin waves, we must
add to the expression for lV in Eq. (5) a term of the form

J(p+qo, kna', k+qPo, pro')

(2g~~)G» '(q)
=(~+-,LJ(q)+ J(q+Q)]) G..; (q)

+(lLJ(q) -J(q+Q)])mG. (q)
+mLR»i'+R» ~'+i] t (A3)

where

G~, '(q) =—2 G»'(q, p),
Q u

and m is the sublattice magnetization per lattice site.
We take the upper signs in Eq. (A2) when X= 2 and 1t= 1
and the lower signs when X= 1 and p= 2. Using Eq. (6),
the solution of the pair of equations expressed by Eq.
(A3) is found to be

X +(q, to)

J(Q) —J(Q+q)
=m2 , (A4)

-~' —m'L J(q) —J(Q)]P(q+Q) —J(Q)]-
if q is measured from a chemical reciprocal lattice point.
If q is measured from a magnetic reciprocal lattice point,
we make the substitution q —+q&Q in (A4), which
changes the numerator to J(Q) —J(q). Equation (A4)
has a pole at

~= m(LJ(Q) —J(q)]LJ(Q) —J(Q+q)])'" (A5)

which agrees with the Heisenberg-model results" as
the anisotropy energy goes to zero.

The residues of (A4) at the spin-wave pole are

+(qqtO)
~
chemciai point

m-J(Q) —J(q+Q)
(A6a)

2- J(Q) —J(q)—
(qttO) ( magnetic point

m — J(Q) —J(q)
(A6b)

2 -J(Q) —J(q+Q)-
We find, using Eq. (13), that for small q in (A6) the
total scattering cross section for the spin wave on chemi-
cal peaks becomes proportional, to

—,'mLk T/(J(Q) —J(0))],
—(,„—,, )LR „;.+R „; ] (A2) which for T«T. is very small. On magnetic peaks, it

becomes very large, being proportional to

for X4p. Again, the right-hand side is zero for X=p. We
take the limit as the paramagnetic effective mass goes to
inanity and sum over p to obtain

"F.Englert and M. M. Antonoff, Physics BO, 429 (1964).

l mL»/(J(Q) J(Q+q—))],
i.e., to 1/tt', as it should be. 'r Thus we have made con-
tact with the Heisenberg-model theory of antiferro-
magnetic spin waves.


