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(corresponding to an infinite "off-diagonal" suscepti-

bility), as has been suggested as a possibility in the

analogous case of a two-dimensional Heisenberg ferro-

magnet. "

Xofe added sos Proof. A discussion of the asymptotic
behavior of the single-particle density matrix in re-
stricted dimensionality has recently been presented by
D. Jashow and M. E. Fisher, Phys. Rev. Letters 23,
286 (1969).

"See H. E. Stanley and T. A. Kaplan, Phys. Rev. Letters 17, and P. J. Wood, Proc. Phys. Soc. (London) A68, 1161 (1955);
913 (1966);J. Appl. Phys. 38, 975 (1967);also G. S. Rushbrooke Mol. Phys. 1, 257 (1958).
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The surface spin-wave spectra of a simple cubic two-sublattice antiferromagnet is derived for a (100) sur-
face as a function of the ratio e of the surface exchange to the bulk exchange. The effects of changes in the
surface anisotropy are also included. In general, a doubly-degenerate acoustical- or optical-type surface
branch is found, depending upon the value of ~. For —0.112&.&&1.107, an acoustic branch exists over the
entire two-dimensional Srillouin zone. If 1.107& m&1.207, then the branch is truncated at small values of
the propagation vector k parallel to the surface. In the range 1.207 & a&1.25, no surface states exist for the
nearest-neighbor-exchange model. When 1.25 & &&1.854, a truncated optical-type branch exists. A complete
optical branch exists for s) 1.854. The k =0 surface-antiferromagnetic-resonance (SAFMR) mode lies very
near the bulk AFMR mode for a wide range of surface perturbation parameters. The SAFMR mode is found
to be of very long range when the anisotropy energy is small compared to the exchange energy. For simple
cubic RbMnF3, the SAFMR mode is estimated to have a range on the order of 200 p.

I. INTRODUCTION

A NUMBER of studies of surface spin waves in mag-
netic systems have been reported recently. ' ' The

6rst study of the surface states of an antiferromagnet
was reported by Mills and Saslow, 4 who investigated
the surface magnon spectrum of a free (unperturbed)

i 100) surface of a body-centered-cubic (bcc) two-
sublattice Heisenberg antiferromagnet. They also esti-
mated the eRect of small perturbations in the surface
parameters. A more recent study by De Names and
Wolfram~ treats in detail the eRects of arbitrary changes
in the surface exchange and surface anisotropy 6elds.
In the latter study it was shown that both optical and
acoustical spin-wave branches exist.

In this paper we report on a study of the surface
spin-wave spectrum of the (100) surface of a two-sub-
lattice simple cubic (sc) antiferromagnet as a function
of the "in-plane" surface exchange and the surface
anisotropy fields. There are many qualitative diRer-

' J. R. Eshbach and R. W. Damon, J. Phys. Chem. Solids 19,
308 (1961).'B. N. Filippov, Fiz. Tverd. Tela 9, 1339 (1967) LEnglish
transl. Soviet Phys. —Solid State 9, 1048 (1967)j.

3 R. F. Wallis, A. A. Maradudin, I. P. Ipatova, and A. A.
Klochikhin, Solid State Commun. 5, 89 (1966).

4 D. L. Mills and W. M. Saslow, Phys. Rev. 171, 488 (1968).
~ C. F. Osborne, Phys. Letters 28A, 364 (1968).

D. L. Mills, in Localized Excitationsin Solids, edited by R. F.
Wallis (Plenum Press, Inc. , New York, 1968), p. 426.

' R. E. De Wames s,nd T. Wolfram (to be published).

ences between this study and the study of the (100)
surface of the bcc crystal because the latter surface
contains spins of only one of the sublattices, while the
sc (100) surface contains spins of both sublattices. This
difference in the sublattice configurations leads to quite
different results in the two cases for the energies of the
surface antiferrornagnetic resonance (SAFMR) cor-
responding to the propagation vector parallel to the
surface, k, being zero (k=0). In the bcc case the
SAFMR lies lower than the bulk AFMR mode4 ' by a
factor of approximately V2 whenever the anisotropy
energy is much less than the exchange energy. This
result is relatively insensitive to small perturbations
in the surface exchange and anisotropy. The lowering
of the SAFMR energy by the factor of v2 relative to the
bulk mode is characteristic of a surface of a cubic two-
sublattice antiferromagnet which has no exchange bonds
parallel to the surface (in the nearest-neighbor-exchange
approximation). In the case of the sc (100) surface, it
is shown that SAFMR mode lies approximately at the
sc bulk antiferromagnetic resonance energy under the
same conditions as those described for the bcc case.
This result is characteristic of surfaces of the cubic two-

sublattice antiferromagnet in which the surface con-
tains nearest-neighbor spins of both sublattices. For
the sc antiferromagnet both opt. ical and acoustical
surface spin waves are found to exist. If the ratio e of
the surface exchange to the bulk exchange is less than
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X= g J(i, i+A)S;& ) S,+g&b)

—g Lg»tto+o)~(i))S. ..'
—Z La»tto ~~(j)3~,.'", (1)

where J(i, i+A) is the exchange integral between
nearest-neighbor spins located at R, and R;+q, respec-
tively. In this model, the nearest neighbors of a spin on
sublattice a are on sublattice b. The anisotropy field is
co&. The quantity JIO is the external magnetic field,
assumed to be directed along the s axis; p~ is the Bohr
magneton; g has its usual meaning; and Sr&» is the
angular-momentum operator of the spin at Rr on the
pth sublattice, whose o. Cartesian component is SE, '».
The sum over 6 is over the nearest-neighbor vectors.
The sum over i is over the spins of the a sublattice,
while the sum over j is over the b sublattice. Vectors
R; and R;+q belong to the b sublattice, while R; and
I;+~ belong to the a sublattice. The coordinate system
for the spin vectors is independent of the crystal co-
ordinates. The external field here is referred to the spin
coordinate system and is assumed to be along the direc-
tion of the sublattice magnetization.

We define the operators J., and I.; by

L,=S;,&~)+iS;„& ), ,

(b)+gS, (b)
(2)

1.107, a doubly degenerate acoustic surface spin-wave
branch lower in energy than the corresponding bulk
mode is found to exist for all values of k in the Brillouin
zone. For &&1.107, the acoustic branch exists for large
k but is truncated at small k. As e —+ 1.207, the acoustic
branch degenerates to a single mode at the end of the
Brillouin zone. For 1.207(~(1.25, no surface wave
solutions exist for the nearest-neighbor-exchange model.
When e& 1.25, optical modes above the bulk spin-wave
band appear. These optical branches are truncated at
small k if &&1.854, but are complete for e& 1.854.

In Sec. II, the surface spin-wave eigenvalue equation
is derived using the random-phase approximation. A
general solution is found for arbitrary changes in the
surface anisotropy and exchange fields. In Sec. III, the
general properties of the surface modes are discussed,
and in Sec. IV some special results are derived. The
surface spin-wave spectra are discussed in Sec. V. The
two-sublattice Green's function is derived in Appen-
dix A. The restrictions imposed on the surface mode
solutions due to the boundary conditions on the Green's
function are discussed in Appendices B and C. A brief
discussion of the eigenvectors is presented in
Appendix D.

II. THEORY

The Hamiltonian for the Heisenberg two-sublattice
antiferromagnet with nearest-neighbor-exchange inter-
action is

The equations of motion for these operators are deter-
mined by

i—L((t)=tL&(t),X(t)j, l=i, j
where $ j indicates the commutator. In the random-
phase approximation, Eq. (3) yields

orL;(or) = —P J (i, i+A)(S;+g, ,~b))L;(or)

+(S;,~')) P J (i, i+A)L;~rr, (or)

+t + ()7L'( ) (4)

The brackets ( ) indicate the thermal expectation
value of the enclosed operator. The equation for L; (or)

may be obtained from Eq. (4) by substituting j in
place of i, interchanging a and b, and changing the sign
of cog.

In Eq. (4) we have written or~(i) =gpt)Hb, and also
have introduced the Fourier component Lr(or) defined

by

Lr(t) = do) e '"'L&(o)), l=i, j.
We consider a semi-infinite crystal extending from

@=0 to x= . Because of translational invariance in
the y and s coordinates, the states of the system will be
characterized by a two-dimensional propagation vector
in the ys plane, k. In addition, the quantities J(i, i+err. ),
org(i), and (St,,r ) will depend only upon the crystal
x component of their arguments. In this paper we con-
sider a model in which we retain only the surface per-
turbations. We take J(i, i+A) to be Ji between spins
on the surface and otherwise equal to the bulk value J.
Similarly, we take or~(i) to be co~i on the surface and
co~ otherwise. We further restrict our considerations to
zero temperature so that the thermal expectation value
of the spin is uniform on each sublattice. We take
(S;,.' ')= —(S, ,"))=(S)at T=O.

We now consider the (100) surface of the sc structure
and reduce our equation (4) to a one-dimensional
matrix problem by introducing the functions I„t»(or)
defined by

where p, =a for l =i and b for l jan=d R, I = (y&,rbd). The
integral is over all two-dimensional k belonging to the
Brillouin zone of the sublattice whose spacing is d.

The p=a component u„~ )(k,or) describes the g de-
pendence of the spins of the a sublattice on the eth
layer parallel to the (100) surface for a spin mode with
propagation vector k and energy co The tb =b c. omponent
describes in a similar way the behavior of the b sub-

Lr(o)) = (2rrd) ' dk e'"'r )N. &»(k or)

l=i, j, n=1, 2, 3, , ~ (6)
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lattice spins. We obtain the supermatrix equation

(D+AD) V=0, (7)

Do
D1
0

D= 0

D1 0 0 0
DP D1 0 0
D1 DP D1 0
0 D1 DP D1

~ ~ e 0
~ ~ s 0
~ ~ 0 0

where D is the nearest-neighbor supermatrix of 2/2
matrices, and U is a column vector whose elements are
two-component vectors

of 6 is described in Appendix A. We find that

{~)-" {&)-"
{G)--" {&)-"

1 p)p+E '~'

{&)-"=- - Cf-(H~) —f-(Hp)]
2 G)0 —E

{&)-"=
p Lf.-(H~)+f-(H~)]

{g).-"=— {6)-",
~p+&

(14)

(15)

&y" (k,p))

n, &b) (k,p)).
[up" (k,p))

U= .up&P) (k,co).

The matrices have elements defined by

{G)..."=—{6),".
The functions f (Hp) are given by

f (H )
—(2i sjnH ) 1 (gi (n+m)pp ei~ n—m~ pt)) (16)

(9) and
—2 cosHp ——p)q~ (p) '—g')'" (17)

In Eq. (17) the plus sign goes with P=1, while the minus
sign goes with P=2. After some straightforward but
tedious algebra, we obtain from Eqs. (13)—(17) the
surface spin-wave spectrum:

E—cop —ppg )
p)p Z+p)p/

Ep =ppp —p)P/g —4/(1 —x ) (18)

The perturbation supermatrix AD has the first diagonal
~DO as its only nonvanishing element: Caution must be exercised when using Eqs. (18) and

(19).The variable x is defined as

(10) where x is a root of the cubic equation

»pcopx —P1 —(»y) p)y+ (»p) —(»p) ]x
—$(»p) p)p+ (»g, )' —(»p)' —1]x

—(») )ppp =0. (19)

x= —i cot-,'(H~+Hp). (20)

The parameters occurring in Eqs. (10) and (11) are

E= (p) —p)rr)/C,

cpp
——6+p)g/C )

p)), ——2 (cos 'pk„d+cos-', k,d),
C=J(S),

»p =1+4(1—p) —»g,
~+A A1 +A )

p= Jr/J,
»p =

ppp (1—p) .

(12)

If we define the Green's function by G=D ', then the
surface eigenstates are determined by the vanishing of
the determinant of the matrix:

det(I+GAD) =0, (13)

where I is the unit supermatrix. Because of the simple
form of AD, Eq. (13) reduces to the determinant of the
upper 2X2 elements. The construction of the elements

We see from the form of the Green's function, Eq. (15),
that both 01 and 02 must have positive imaginary parts.
Consequently, only those values of x which correspond
to both 01 and 02 lying in the upper-half complex plane
are physically acceptable solutions of the surface-mode
problem. The values of x derived from Eq. (19) which
do not satisfy this criterion are not acceptable solutions.
This point is discussed in detail in Appendix B.

III. GENERAL PROPERTIES OF
SURFACE MODES

In this section we describe the general features of the
surface spin-wave spectrum as a function of the various
parameters. First we consider the spectrum of the bulk.
In Fig. 1 we indicate by the shaded area the bulk con-
tinuum of spin-wave states as a function of the propa-
gation vector parallel to the surface. The spectrum is
given by

8 = (6+p)~) —(2 cos~~k~d+ppp) ['.".' (21)

For a fixed value of or~ the range of E' is obtained by
varying ~pk„d in Eq. (21) between zero and m.. We shall
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80 branch from the root
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Pro. 3. Optical-type surface spin-wave branches as a function
of e for cog=bcog=o. Curves for a&1.854 are truncated at the
point at which they intersect the top of the bulk continuum.

Then, from Eq. (18), we 6nd that

+(p=p) =12&A+0 ((piA/ppp) ) ~

Since the bulk AFMR mode has E'= j2~~, we conclude
that the SAFMR mode energy lies near that of the bulk
AFMR for reasonable surface perturbations. This con-
trasts with the result in the bcc, in which the SAFMR
mode lies lower than the bulk AFMR mode by a factor
of V2.

The above analysis applies only to those spin-wave
acoustic branches which exist for small k. %hen ~& et,
and co~&0, the surface acoustic branch does not exist
at k=0. The value of e&=1.107 is obtained by studying
the behavior of the —gPproot for small k; this is de-
scribed in Appendix C.

Next we consider the last root of Eq. (22), xp. For
p, (p(0 (ferromagnetic surface exchange), xp corre-
sponds to a latent instability of the system. As e de-
creases to p= —(4+p —p) =p„ it can be seen that
xp -+—QPp. For values of (ppthe spin arrangement.
is unstable at and near the surface. For e)0, x3 cor-
responds to a latent optical mode. As ~ increases
towards (Pp+ piV2) =p„ the cutoff Qoc of„the optical mode
02 approaches k=0 (or pip=4), and, finally for p) p.,
the 01 nontruncated optical branches exist.

with the spectrum

E =ppp —2pip —cpp ppp/(pip —2), p=1, Qcog=0. (25)

The other two roots for &=1 do not correspond to
physical solutions.

C. 8= Ftl Ol Eg-

We encounter another special case when p=5/4 = p p

since, in this case, the increase in the surface exchange
is just equal to the loss due to the missing neighbors.
For cog=hcu~=0, the coefficient of the cubic term of
Eq. (19) vanishes. Exarnina, tion of the two roots of the
quadratic equations shows that neither is an acceptable
root, except at the isolated point E=O and ~~=4. This
mode is an undamped bulk mode and does not properly
belong to the surface wave spectrum. If co~&0, then
there are no solutions for p—=5/4. If, however, p —+ 5/4
from above for co~=0, then we obtain an isolated solu-
tion at 8'=+0 with z —+—ao. This mode corresponds
to the first appearance of an optical mode of the 03
type. In this case the 03 branch has degenerated into
an isolated point.

When p ~ pi (1+F2)= p, = 1.207, the coefFicient of the
linear term in Eq. (19) vanishes. A similar analysis
shows that if coI,=0 and e —+ &, from below, then an iso-
lated mode at E'=oro' —4 exists for g —+ 0 from below.
This mode is an A2 acoustical branch which has de-
generated into a single point.

No solutions are obtained when p-+ 5/4 from below
or p —+ p (1+v2) from above.

V. RESULTS AND DISCUSSION

The surface spin-wave spectra for various values of e

with erg =~or~ ——0 are shown in Figs. 2 and 3. The acous-
tical branches are shown in Fig. 2 and the optical
branches in Fig. 3. The dependence of the SAFMR
mode on e is illustrated in Fig. 4 for several values of
~z. The SAFMR mode lies very near the bulk AFMR
mode and, for small co~, is very insensitive to the value

Ioo

50—

jo—

—,2 0 + 2 1.0

B. a=I
If e= i, then Acyl, =0 and the roots of the cubic are

independent of coI,.For dc'~ =0 we obtain an A1 acoustic

FxG. 4. Dependence of the SAFMR mode on ~ for various values
of mg. The parameter AE is the difference in energy between the
SAFMR mode and the bulk AFMR energy Eb &z. The ordinate is
the square of the ratio AB to Eb~&p (in '$0}.
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of the surface exchange energy until it approaches zero.
For negative e (ferromagnetic exchange) the mode
approaches zero frequency corresponding to the in-
stability of the ground state to spin rearrangement. In
Fig. 5 we show the dependence of the surface mode
energy on e for small k.

It is evident from Figs. 2 and 3 that the nature of the
spin-wave surface state depends strongly upon the
surface exchange and anisotropy. At present, these
parameters are not known; nor have they been esti-
mated in any reliable fashion. It is believed that the
absence of neighboring spins and/or small distortions
at the crystal surface can result in relatively large
changes in the superexchange interaction. Low-energy
electron-diffraction measurements by Palmberg et al.'
suggest that the surface exchange in NiO may be con-
siderably smaller than the bulk value. '

The theory developed in this paper should be directly
applicable to the antiferromagnet RbMnF3. In this
material' " the Mn+ ions are arranged in a sc two-
sublattice antiferromagnetic configuration at tempera-
tures below 82.6'K, the Neel temperature, with lattice

.8

spacing 4.24 A. The ratio of the tlearest-neighbor-
exchange energy to the anisotropy energy"" is of the
order of 10 ', co~=3.3X10 '. Second and more distant
neighbor-exchange interactions are negligible. ""

We have assumed that the external magnetic 6eld
lies along the sublattice magnetization, so that our de-
scription of the SAFMR mode is only valid" below the
spin-flop field (12&v~)'~'. Direct observation of the
SAFMR mode for the (100) surface in RbMnFs by
microwave AFMR does not appear too promising since
this mode probably cannot be resolved from the bulk
AFMR. On the other hand, since this mode lies so close
to the bulk frequency, the excitation amplitude is very
weakly damped with depth into the crystal. This implies
that a large number of spins participate in the mode.
For example, RbMnF3 has cog j.0 5, and it is shown in
Appendix D that the SAFMR mode has a range on the
order of 200 p. The (111) surface of the simple cube is
similar to the (100) surface of the bcc structure in that
spins of only one sublattice occurs on the surface. The
SAFMR mode for the (111)surface will therefore differ
from the bulk mode by a factor of V2. The mode is
therefore easily resolved from the bulk mode in this
case. However, now the surface mode is attenuated
rapidly vrith increasing depth into the crystal, so that
the intensity of absorption associated with this surface
mode is very small.

APPENDIX A: GREEN'8 FUNCTIOÃ

Fio. 5. Dependence of the
acoustic surface spin-wave
branch on e for cog= 10 2 in
the long-wave region. The
parameter Eb~g, is the bulk
AFMR energy.

.6

.4

In order to construct 0, the inverse of the matrix D
defined by Eq. (8), we write

{(r)„=I exp[i0(rs+m}] —exp[i91e—m1]1(,', (A1)

where C and 0 are 2&2 matrices.
We substitute this form into the matrix equation

(A2)

and And that
.3 —2 cose =Dy Dp—. (A3)

.2
The matrix D~ ' Dp may be diagonalized by the simi-
larity transformation, so that

~~-10
E

Bulk
-.12

I I I I

0 .Ol .02 .03 .04 .05
( 4-tu„)

P. W. Palmberg, R. E. De Wames, L. A. Vredevoe, and
T. Wolfram, J. Appl. Phys. 40, 1158 (1969).

9 R. E. De Wames and T. Wolfram, Phys. Rev. Letters 22, 137
(1969).

rosC. G. Windsor and R.re. H.ttStevenson, Proc. Phys. Soc.
(London) 87, 501 (1966).

n C. G. Windsor, Proc./Phys. Soc. (London) 89, 825 (1966).

(—2 coset
Cr '(Dt 'D,)v=1--

0

0
(A4)—2 cosesf

~ D. T. Teaney, M. J. Freiser, and R. W. H. Stevenson, Phys.
Rev. Letters 9, 212 (1962).

"M. J. Freiser, P. E. Seiden, and D. T. Teaney, Phys. Rev.
Letters 10, 293 (1963).

'4 For RbMnF3 it has been suggested that the magnetization
can undergo incoherent rotation at Gelds signiGcantly smaller
than the spin-Bop Geld; see P. H. Cole and W. J. Ince, Phys. Rev.
150, 377 (1966).The theory presented here for the SAFMR must
also be modiGed to include the hyperGne anisotropy Geld due to
the polarization of the Mn nuclei. This additional anisotropy Geld
and the eR'ects of nuclear-spin waves become important at liquid-
helium temperatures; see, for example, F. Ninio and F. Eever,
Phys. Rev. 165, 735 (1968).
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(a)
8 pLANE

Es)o/o' Eq. (A6) takes the form

—2 cos8;=to/, &z(E'—o/ ')"' (AS)

Typical contours for the Oi and 02 are sketched in Fig. 6
as a function of E' for or~&2 and or~&2.

iti

2

(b)

(ca&&, 2)
APPENDIX B: VARIABLE x

The determinantal equation for the surface spin-wave
spectrum, Eq. (13), is conveniently expressed in terms
of the variable x, defined by

x = —i cot-', (8t+8s) . (B1)

2 3 2
1F 7f
2

where

(((oe+E)'" (co +E)'"i
((o/s —E)'" —(coo —E)'"I

Fio. 6. Contours for the variables 8& and //2 defined by Eqs. (A6)
and (AS). The variable E' increases in the direction of the arrows.
The values of 8' corresponding to the labeled points are:
(1) E =0; (2) Ez=cog (2+cog)2 (bott—om of hulk continuum);
(3) E'=coo' (a&s—2—)' or ~0', whichever is larger (top of bulk con-
tinuum); (4) Ez=u&p (a)

Forceps&2;

(b) for ~s&2 x// = —tanhP (below bulk continuum),

xr/ =—cothif (above bulk continuum),

lt = Im-', (8i+8,),
(B2)

The physically acceptable solutions of the cubic equa-
tion therefore have x negative.

%e find that

In obtaining the cubic equation given by Eq. (19), the
boundary condition that 8~ and 8~ must have positive
imaginary parts is not imposed. In order that a given
value of x yield a surface mode, it must be compatible
with the definitions of 8i and 8z. Study of Eq. (A6)
reveals that Rets(8i+8,) is -', zr below the bulk continuum
and vanishes above the bulk continuum (surface states
cannot exist in the bulk continuum). We define x to be
x~ below the bulk continuum and stan above. Then we
have

—2 cos8'=o/s& (o/e E ) /
{P(E&+oi&)$2 1 }1/2+{Lr (Es ~ )$2 1}1/2

(A6) x/(E, ~,)=

In Eq. (A6) the plus sign goes with 8i and the minus
sign with 8&. The boundary condition requires that

C=(2z sin8) 'Di '

where

For x~ we find

E/ —
(o/

2 Es)1/2

(B3)

The elements of 6 are most conveniently obtained by
calculating them in the representation in which 0 is
diagonal, and then transforming back to the original
representation. In this way we obtain

UPU '{g}„„DtUjU'Di '={6}~~

= Ui
i
U—'D, (A7)

/'f-(8i)

O f..(8,)i
where f„ is defined by Eq. (16). When the matrix
multiplication indicated by Eq. (A7) is carried out, one
obtains the elements of the Green's function given by
Eq. (15).

For the semi-infinite crystal, 6 must be finite for
arbitrarily large positive integers m and m, so we must
require that both 8& and 8& have positive imaginary
parts. %e adopt the convention that 8~ lies in the first
quadrant of the upper-half complex plane and 82 in the
second quadrant of the upper-half complex plane. ~en

»(E,~~) = —({L-'. (E'+~.)g' —1}'"
-{L-'(E'- )7—1}'")(E')-' (»)

for o//, )~ 2 and with o/&' —(o/„—2)'(E (o/, .
If coI, ~&2 then the upper band edge of the continuum

occurs at ~0, and for E'&coo' we find

*r/(E,~t) = —{s A/, +sLA~'+4(~~/&)'$'"}'" (B6)

with

(~ /g)z+(2/h)z g —(Es ~ z)1/2 (B7)

The above equations for x~ and xU may be used to
determine whether or not a given root of the cubic
equation, Eq. (19), corresponds to a physically accept-
able solution. j

APPENDIX C: CALCULATION OF ag

In Sec. IV A it was pointed out that, for cog =D~g =0,
g= —ass, E=O is a solution of the cubic equation in-
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dependent of e when cvI, —=4. In order to determine the
value of e above which the acoustic surface branches
are truncated near 0=0, it is necessary to inspect the
behavior of the —Q—,

' root in the limit as k —+ 0 (or
o)o -+ 4) rather than at 0=0. If we take o)o =4 n—, then
the region below the bottom of the continuum extends
from E=O to E'=36—(6—n)'=E))'. Calculation of x
from Eq. (83) shows that, for small n, x varies from
—g-,' —',gn at E=O to —g-', +(g-', )(n/24) at E=E .
If we write as a solution of the cubic equation
x= —go+p, then we find by perturbation theory that

~E(V'o —o) (1—o)' —o (1—o)1

1+(4—6V'o) (1—o)

evaluated at the energy of the surface eigenmode. We
consider here the behavior of the k =0 surface mode for
&=1, which lies very near to the bulk AFMR energy.
According to Eq. (26), this surface state has energy

Eo =12o)g+op)g (D4)

Hg or+——if',
(D5)

The excitation amplitudes for this SAFMR mode are

I&&') =1

while the bulk energy is 12o)z+ooz'. Since the surface
mode lies below the bulk, 8~ and 82 have the form

For o& 1, p is positive and we find the critical value of o

by requiring that P be greater than the corresponding &b)

shift in the value of x as calculated from Eq. (83):
-{1—'I ( o+E.)/( —E.)3'" (-'+ ')}-

-', (—e &'+e &')

p& ( /24) (l)'". (C1)

APPENDIX D: EIGENVECTORS

When Eq. (Cl) holds, the value of x calculated from the
cubic equation does not correspond to a physical solu-
tion. Solution of Eq. (C1) (for o) 1) leads to the value
1.107 for eq.

u "=—-'I:(~+E)/(~ —E)3'"t (—1)"o "'—& "'j
—-'((—1)"e "&'+e "&')ug"), (D6)

(o) &

L ( 1)no—n)Op+ o
—neo)

—
o L(~o —Eo)/(~o+Ep)]'"

yL( —1)~o—~A o
—~)ooju, &o)

From the relation

(I+GAD) U =0 (D1)

where
coshPg ——2+-', (o)po —Ep')'",

coshjPo —~
(o) o Epo)&&o—2— (D7)

we obtain, for u~ ' normalized to unity, the amplitude
of excitation I„(&) for the surface eigenmodes. For the For larg e, terms in e " ' dominate and we And

u & ' ~—u„&o) —+ exp( —up)g/+24). (D8)

Ng&') =
—P1.+{6}„"Z~o—{G}„"Z~o$

{G}u"&~a —{G}~i"~~o
(D2)

and for e&1, we 6nd

u ' = —L{G}„],"Ao)p —{G}„]"Ao)/,$
DG}al Ao)o {G}~1 A&)ph 1

(D3)
u."'= —L{G}.P'A~o —{G}.P&~op

—L{G}„P'hood—{G}P'hoop)u)"'.

The Green's-function matrix elements are defined by
Eq. (15); in Eqs. (D2) and (D3) the matrix elements are

This surface mode is long-range for small co~. For
example, for or~ 10 ' the surface wave according to
Eq. (D8) decays to e ' of its surface value in about
5)(10' atomic layers or about 200 p, . For a 1-mrn-thick
sample the intensity of absorption of this mode would
be on the order of 40% of the bulk AFMR intensity.

The difference between the bulk and surface mode
energies is very small:

—',o)go/(12o)~)"'= 5)&10—'. (D9)

Thus it is doubtful that the two absorption lines could
be resolved.


