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It is shown that doubts concerning the validity of previous proofs that anomalous averages cannot
occur in three-dimensional systems of finite cross section or thickness are unfounded. The absence of anoma-
1ous averages in Bose systems of finite cross section is explicity demonstrated to illustrate the point.

'WO years ago, Hohenberg' pointed out that a
rigorous inequality due to Bogoliubov could be

used to rule out the possibility of anomalous averages
(quasiaverages) or broken symmetry in one- and two-
dimensional superQuids and superconductors. Similar
proofs have since been presented for various kinds of
magnetic and crystalline ordering. '

Recently, however, some authors' have mistakenly
questioned the general validity of such conclusions for
systems which are not strictly one- or two-dimensional,
but have nonzero (but finite) cross section or thickness.
These doubts have arisen because the wave functions
of a system in a container of finite cross section must
vanish on the walls, and hence, even in the ground
state, the wave function must have some nonzero
curvature and cannot assume a uniform value (as is
presumed to correspond to "zero-momentum" k=0).
Now the proofs based on Bogoliubov's inequality rest
on the divergence of the integral

g = — t'stat (r)+It*/(r) jdr (2)

the problem or by any confining potentials, but can
assume a continuum of values, even when the actual
system is confined to a region 0 of volume V& of finite
dimensions (and arbitrary shape).

Once this is recognized, it is straightforward to
modify Hohenberg's original arguments to yield a
rigorous proof that anomalous averages (4'o) must
vanish in a system in real, three-dimensional space
which, owing to confining potentials or appropriate
boundary conditions, remains finite in one or two di-
mensions in the thermodynamic limit —i.e., in the
limit in which the remaining two or one dimensions
become infinite. We will consider only the case of a
Bose Quid. In the usual fashion, we introduce a sym-
metry-breaking term

into the Hamiltonian X to stabilize the anomalous
average

1

(3)

at the origin in one or two dimensions. An objection
is made, however, that such a divergence cannot
actually arise, owing to the cutoff imposed at low
momentum by the finite cross section (or by the corre-
sponding positive zero-point energy).

Such objections are based on a misunderstanding of
Hohenberg's original proof and its several extensions.
The essential point is that the wave vectors occurring
in the integral (1) can be thought of as auxiliary
mathematical variables that need rot have the physical
significance of labeling momentum states of a system
with periodic boundary conditions. The wave vectors
are in no way restricted by the boundary conditions of
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in a finite system. (Note that +s is an intensive
quantity. ) After taking the thermodynamic limit, we
will let the magnitude of the symmetry-breaking field

q approach zero.
If the system is strictly confined in the domain 0,

either by virtue of some wall potential which is infinite
outside 0, or by explicit boundary conditions, then
the appropriate field operators P(r) will vanish identi-
cally outside Q. Since in Bogoliubov's inequality'

—',(fA,At}))kiiT ) (LA,Cg) i'/(LCt, LXCj]), (4)

the operators A and C are arbitrary (provided the
relevant traces exist), we can use for A, the operator

a, = b'u-It' dr e"V(r),

4 We may suppose that nonadsorbing, impenetrable walls
surround the system. Super6uid helium will however cover all
experimentally realizable walls with a film, but this merely means
that we shall have several films in our container (one on each
wall, for example) separated by vapor. The thickness of these
films can be controlled by adjusting the over-all density, and the
argument goes through as before.
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C= dr e 'k'P" (r)P(r). (6)

On using [+a[)Re(e'We), it is straightforward to
derive the basic result

keT [we[' 1
nk (ak ak))

(h'pint)k'+2 [v [ [+o [

(7)

where p=X/Uo is the density. '
Now let us suppose that as the thermodynamic limit

is approached, it remains possible to enclose the domain
0 within a rectangular DXDXI. box I' (to be concrete
we consider the "one-dimensional" case), where L
grows without bound in the thermodynamic limit, but
D remains finite. (Note that no restriction is placed
on the shape of 0 other than that the box F can be
placed around it.) We may then choose a set of wave
numbers k appropriate to the box F, namely,

k= 2s (ti/D, 4/D) n/L),

where $1, l~, and e are positive or negative integers.
Next, divide through the inequality (7) by the volume
D'L; sum the right-hand side over all k of the form (8)
with ti ts ——0 and ——[n[(»L/2s for fixed»; and sum
the left-hand side over all k of the form (8). Since the
left-hand side of (7) is positive for all k, this last step
can only strengthen the inequality. Now whenever r
and r' are in the box I', we have

(L,D') ' Q e'" i' "&=8(r—r')

where k is completely arbitrary and, in particular, is
in no way restricted by the sise or shape of Q. LThe point
here is that in constructing the second quantized oper-
ators lt(r) the complete set of single-particle wave
functions q„(r) must be taken to satisfy the boundary
conditions on the surface of Q. Once this is done any
operator of the form (2) or (5) is an acceptable
operator. ) We similarly set

we thus obtain finally

keT[@,[' dk,
pDs+ ) (11)

„(hp/~)k, +2[&[ [e,[

For small [rt[ the right-hand side diverges as kttT
X [+a[st'[rt[ '", which proves that in the thermo-
dynamic limit %e must vanish as [rt [

~ 0.
A completely analogous argument goes through for

real "two-dimensional" systems which can be enclosed
in DXLXL boxes with D fixed as the thermodynamic
limit is approached. ' Equally, one can show that %K
Ldefined from (5) in analogy to (3)) must vanish for
all K. Most of the other arguments now in the literature,
including Hamilton s exclusion of spin-density waves
in one and two dimensions, ' ' can be similarly
generalized.

VVe conclude with some comments on the physical
significance of our results. First, we remark that in the
case of a homogeneous (uniform) Bose system Hohen-
berg's results can be interpreted (accepting the physical
validity of the method of quasiaveraging) as stating
that there cannot be any Bose-Einstein condensation
in the zero-momentum state. For such a system, this
state is an eigenstate of the single-particle density
matrix o.i(ri, ri') = Q (ri)P(ri')). For the inhomo-
geneous systems with boundaries we are considering,
the states of the single-particle density matrix are
unknown and are presumably quite complicated in
shape. However, if we are willing to extend our belief
in quasiaveraging to assert that the thermodynamic
limits of [%0[' and Un ' jn dr, fo dr, ' oi(ri, ri') are
equal, then we can say that our result that [%'s [ must
vanish in this limit, as [rt [

—+ 0, implies that there is no
condensation into any eigenstate of oi(ri, ri') (with
bounded density). This result follows from a lemma due
to Penrose and Onsager" together with the remark that
o.i(ri, ri') is everywhere non-negative for a Bose system
(with real Hamiltonian). " Even this result, however,
does not exclude the possibility of some more subtle kind
of "weak long-range order" in which, in the thermo-
dynamic limit, oi(ri —ri') ~ 0 as [ri ri'[~~, —but

so that the left-hand side becomes simply
I (R

oi(r)dr k ~ aS E~ ~

«8'(r)k(r)) =&/U. =p. (10)

On the other hand, in the thermodynamic limit as
L~ ~ the sum over n on the right-hand side of (7)
approaches an integral Lwith, for fixed [rl [)0, an error
of relative order (»L) '). After a slight rearrangement,

~ To obtain this inequality we may assume that the single-
particle probability density n(r) tends continuously to zero or
the boundaries of Q. This follows from the fact that all the eigen-
functions of the Hamiltonian vanish continuously as any of their
arguments approach the boundary of Q.

' One sets ii =0 but sums on 4 and n subject to 4'+rt'&»L/2s. .
The corresponding limiting integral on k„and k, diverges, as
usual, as —ln[q [.

One replaces p by pi,e'&' in (2) and replaces k by k—K in
(6). The right-hand side of (7) is then subject to the changes
+0-+O'I, rt —rvK, k ~ [k—K[. The dimensions Dq and Dk of
the box 1 are then chosen so that j &

=K D&/2x and j 2 ——K„D2/27'
are integers. Finally, in summing the left-hand side of (7), one
sets 4= j& and 4= j& and sums on I for [ (2»a/L) —Z, [ &».
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(corresponding to an infinite "off-diagonal" suscepti-

bility), as has been suggested as a possibility in the

analogous case of a two-dimensional Heisenberg ferro-

magnet. "

Xofe added sos Proof. A discussion of the asymptotic
behavior of the single-particle density matrix in re-
stricted dimensionality has recently been presented by
D. Jashow and M. E. Fisher, Phys. Rev. Letters 23,
286 (1969).
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The surface spin-wave spectra of a simple cubic two-sublattice antiferromagnet is derived for a (100) sur-
face as a function of the ratio e of the surface exchange to the bulk exchange. The effects of changes in the
surface anisotropy are also included. In general, a doubly-degenerate acoustical- or optical-type surface
branch is found, depending upon the value of ~. For —0.112&.&&1.107, an acoustic branch exists over the
entire two-dimensional Srillouin zone. If 1.107& m&1.207, then the branch is truncated at small values of
the propagation vector k parallel to the surface. In the range 1.207 & a&1.25, no surface states exist for the
nearest-neighbor-exchange model. When 1.25 & &&1.854, a truncated optical-type branch exists. A complete
optical branch exists for s) 1.854. The k =0 surface-antiferromagnetic-resonance (SAFMR) mode lies very
near the bulk AFMR mode for a wide range of surface perturbation parameters. The SAFMR mode is found
to be of very long range when the anisotropy energy is small compared to the exchange energy. For simple
cubic RbMnF3, the SAFMR mode is estimated to have a range on the order of 200 p.

I. INTRODUCTION

A NUMBER of studies of surface spin waves in mag-
netic systems have been reported recently. ' ' The

6rst study of the surface states of an antiferromagnet
was reported by Mills and Saslow, 4 who investigated
the surface magnon spectrum of a free (unperturbed)

i 100) surface of a body-centered-cubic (bcc) two-
sublattice Heisenberg antiferromagnet. They also esti-
mated the eRect of small perturbations in the surface
parameters. A more recent study by De Names and
Wolfram~ treats in detail the eRects of arbitrary changes
in the surface exchange and surface anisotropy 6elds.
In the latter study it was shown that both optical and
acoustical spin-wave branches exist.

In this paper we report on a study of the surface
spin-wave spectrum of the (100) surface of a two-sub-
lattice simple cubic (sc) antiferromagnet as a function
of the "in-plane" surface exchange and the surface
anisotropy fields. There are many qualitative diRer-
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3 R. F. Wallis, A. A. Maradudin, I. P. Ipatova, and A. A.
Klochikhin, Solid State Commun. 5, 89 (1966).

4 D. L. Mills and W. M. Saslow, Phys. Rev. 171, 488 (1968).
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D. L. Mills, in Localized Excitationsin Solids, edited by R. F.
Wallis (Plenum Press, Inc. , New York, 1968), p. 426.
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ences between this study and the study of the (100)
surface of the bcc crystal because the latter surface
contains spins of only one of the sublattices, while the
sc (100) surface contains spins of both sublattices. This
difference in the sublattice configurations leads to quite
different results in the two cases for the energies of the
surface antiferrornagnetic resonance (SAFMR) cor-
responding to the propagation vector parallel to the
surface, k, being zero (k=0). In the bcc case the
SAFMR lies lower than the bulk AFMR mode4 ' by a
factor of approximately V2 whenever the anisotropy
energy is much less than the exchange energy. This
result is relatively insensitive to small perturbations
in the surface exchange and anisotropy. The lowering
of the SAFMR energy by the factor of v2 relative to the
bulk mode is characteristic of a surface of a cubic two-
sublattice antiferromagnet which has no exchange bonds
parallel to the surface (in the nearest-neighbor-exchange
approximation). In the case of the sc (100) surface, it
is shown that SAFMR mode lies approximately at the
sc bulk antiferromagnetic resonance energy under the
same conditions as those described for the bcc case.
This result is characteristic of surfaces of the cubic two-

sublattice antiferromagnet in which the surface con-
tains nearest-neighbor spins of both sublattices. For
the sc antiferromagnet both opt. ical and acoustical
surface spin waves are found to exist. If the ratio e of
the surface exchange to the bulk exchange is less than


