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The dependence of the surface spin-wave eigenmodes on the ratio of the surface exchange to the bulk ex-
change ei, and on the surface anisotropy energy for i 100) surfaces of a bcc antiferromagnet is calculated. For
0~& ay~&1, we find two acoustic-type surface spin-wave branches associated with left-hand +E and right-
hand —E circular polarization, both of which are lower in energy than the corresponding bulk modes.
The +E mode exists for all values of the two-dimensional propagation vector parallel to the surface, k,
which belong to the first Brillouin zone. The —E acoustic surface-state branch is incomplete, being trun-
cated at small k, and has maximum excitation amplitude on the second layer of spins —in contrast to the
above mentioned +E branch, which has its maximum on the surface. The truncation of a surface branch
occurs whenever decay into the bulk continuum states is possible. In the range 1&&&&2, we also Qnd two
surface-wave branches: a complete +E acoustic branch which approaches the bulk curve as ~q ~ 2, and
also a —E optical-type branch which is cut o6 at small k. Finally, for ez) 2, there are three surface spin-
wave branches: +E acoustic branch which is truncated at large k, and complete +E and —E optical
branches. The eigenvectors for these modes are also derived.

I. INTRODUCTION

STUDY of the surface spin-wave spectrum of a

~ ~

~

~

"free" {100}surface of the body-centered cubic
(bcc) two-sublattice Heisenberg antiferromagnet was
recently reported by Mills and Saslow. ' They found a
single excitation branch whose states are characterized
by a propagation vector parallel to the surface k and by
an exponential decrease of the excitation amplitude with
increasing distance from the surface. The dispersion
curve for this surface spin-wave branch has a maximum
energy which is lower by a factor of 2 than that of the
bulk-antiferromagnetic state with the same k (but with
vanishing propagation vector normal to a f100) sur-
face). The surface-state energy at k=0, which was
found to be lower than the bulk-antiferromagnetic
resonance mode by a factor of V2 whenever the anisot-

ropy energy Ace& is small compared to the exchange
energy Ace., was also shown by a perturbation treatment
to be insensitive to small changes in the surface exchange
and anisotropy energies.

It is reasonable to suppose that the surface exchange
and anisotropy fields acting on spins at the surface of an

antiferromagnet can be different from those acting on

the interior spins. It is, therefore, important to deter-
mine what effect changes in these parameters have on

the surface spin-wave spectrum. In this article, we

report on a study of the nature of the surface spin-wave

spectrum of the (100) surface of the bcc two-sublattice
antiferromagnet for arbitrary changes in the nearest-
neighbor (nn) surface exchange parameter, as well as
arbitrary changes in the anisotropy field acting on the
surface spins. The results of this study show that for a
reduced surface exchange parameter, two acoustic-type

' D. L. Mills and W. M. Saslow, Phys. Rev. 171, 488 (1968).' R. E. De Wames and T. Wolfram, Phys. Rev. Letters 12, 137
(&969).
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surface spin-wave branches exist, both of which lie
below the bulk. The first branch, the +E branch (to
which we assign a left-hand circular polarization), has
its maximum excitation amplitude on the surface and
corresponds to a generalization of the branch discussed

by Mills and Saslow. The second branch, the —E
branch (right-hand circular polarization), has its maxi-
mum amplitude on the second layer of spins. This
branch extends to the end of the first Brillouin zone, but
is truncated at small k. In the case that the ratio of the
surface exchange to the bulk exchange t.& lies between
1 and 2, the +E acoustic branch exists over the entire
Brillouin zone. The —E acoustic branch does not exist,
but a new —E optical-type branch now appears which

is truncated at small k. In the case that ei exceeds 2,
there exist three surface spin-wave branches: a +E
acoustic branch which exists for k= 0, but is truncated
at larger k, a complete +E optical branch, and a com-

plete —E optical branch. The energies of the optical
and acoustical surface modes depend strongly upon the
surface exchange for finite k. The k= 0 energy, however,

is relatively insensitive to the value of e& and to changes
in the surface anisotropy, whenever the bulk anisotropy

energy is small compared to the bulk exchange energy.
In the case that the anisotropy energy is comparable

to the exchange energy, we find even for e&=-1, the case
considered by Mills and Saslow, that the +E acoustical
branch is truncated for small values of k when the anisot-

ropy energy at the surface exceeds its bulk value.

Optical modes are also found in this case.
In Sec. II, we outline the theory and derive eigen-

value equations for the spin-wave surface states. Nu-

merical results for the various surface spin-wave

branches are given in Sec. III, and in Sec. IV the corre-

sponding eigenvectors are examined. Discussion of the
results and some conclusions are presented in Sec. V.
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—ZI () JI+ ()]5'*"
+Z I:~~(i)—gU)~~& ]5,*'", (1)

where J(i, i+6) is the exchange integral, taken to be
positive, between a spin at the lattice site R; and a nn
at R;+&. The anisotropy energy is co&, and we have as-
sumed that a spin on sublattice a has its nn on sublattice
b. The quantity II, is the external magnetic field, p& is
the Bohr magneton, g has the usual meaning, and S, is
the spin angular momentum operator on the jth atom.
The sum over 6 is over nn only.

In order to determine the dispersion law and normal
modes of the surface spin waves, we employ the equa-
tions of motion

with

'—L, (~) =LL, (~),~.(~)],
dt

' (2)

L (&) = 5;,.(&)+ 5',.(~) (8)

In the random-phase approximation (RPA), we can
write

where we have set
+L~~(i)+~~(i)]L " (4)

Q)II= gPgg@~. (5)

The symbol ( ) refers to the expectation value of the
operator. (To obtain the commutator

I
L;&~&,H,], we

replace the superscript (a) by (f&) and change the sign
of co~.) We now introduce the Fourier transform of

L,(t):

L.o &(~) = L (~&(E')~ ~&'&dE'.

and further write

II. THEORY

A. Equations of Motion

The Hamiltonian for a two-sublattice Heisenberg
antiferromagnet can be written in the form

H, =Q J(i, i+A)S, ~ & S,~g&"
+coii(R,')+~g(R, ~ &)]N., '&(k,E')

+(5,& &(R, & &))P e' '~u(R, &.&; R, & &+~)

yu, ,+~.&'&(k,E') . (8)

Here, All and 4, are the components of the position
vectors of the nn parallel to the surface and normal to
the surface. LTo obtain the equations for I,. &"(k,E'),
we replace (a) by (b) and change the sign of a&z.] For
the {100) geometry a surface spin has first neighbors
within the crystal but not on the surface. The crystal
spin structure consists of sheets parallel to the {100)
surface with all spins on a sheet up or down. We assume

the first layer (surface layer) to have spin up, and label
the spin-up (odd) layers by ui, u&, .

, I&. The second

layer has spins down, and we label the spin-down (even)
layers, starting from the second layer, by v1, v2, vs,

v&. Symbolically, we have

I&——N. .(.)
~~=I, '". (9)

In what follows, we take the exchange between the sur-

face spins and their interior nn to be J~, and all other
exchange parameters to be J. We assume or~(R, &) to be

or~(1) for the surface and co~ elsewhere. We assume that
(5,')= —(5.~)=(5,) for all spins except the surface

spins which we shall denote by (5,'(1)) and (5,'(1))
L= —(5,'(1))].Finally, we assume that the g factor is

g(1) for the surface and g elsewhere.
In the model described above, the expectation value

of the s component of the surface spin is allowed to devi-

ate from bulk value when T)0. However, in this paper
only the T= 0 dispersion curves are calculated.

We now have the supermatrix equation'

-D~+ aD~, 0~ V~
=0 (

br —-Ux-

where 0& is the nul matrix, I& the identity matrix, and

0,2 cosO) ~ ~ ~

tain a set of algebraic equations for the variables
u,, &»(k,E'). For the {100)bcc surface geometry,

E'I,, & &(k,E')

=L—P J(R, ~ & R ~ &+a)(5,&'&(R, & &+&))

L.(~&(E') = P ~'& ~'&"&~,(~&(k E')
(jP,, ) '&~

(7) 0,

0, 2 coso, —i,
—1, 2 cose, —i,

The number of atoms on the surface whose normal is
chosen parallel to the x axis is iV„ the vector y, is the
projection of the position vector R; onto the surface,
and x; is the position along the normal to the surface.
The superscript &i(&i= a, b) indicates the sublattice. In
Eq. (7), it is understood that x, refers to a surface pos-
sessing spins belonging to the p sublattice, and k is a
two-dimensional propagation vector parallel to the
crystal surface. Using Eqs. (2), (4), (6), and (7), we ob-

0, 0, —1, 2 COSOi ', (11)

3 The supermatrix Eq. (10) is constructed by sob ing for u& in
terms of v1.
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dye (d y

)
~0+dll

0,

)E—
CVp

0,

0,

0,

0,

~4+Gx"'&DN~ =0.
For the model we are considering, Eq. 20 yields

t —G„(o)~d=0,
with

(20)

eigenfrequencies are obtained by requiring the deter-
minant of the coefIicients to vanish:

0,

0,

0) )
E—(g p E—cop

0,
p +—p

Q (p) —pi 8 (21)

We note that in the RPA for T)0, the determination of
the dispersion curves is a self-consistent problem, be-
cause of the functions (S,) and (S,(1)).

III. DISPERSION CURVES AT T=O

idp=&8+Mg, CO~=SJ(S&)~ E=E —COIr,

(~e
Xi, =~ Z e'"'~~~,

(2

with

~0 (~1+d21) (~1 d21)
— d22+

GOy ~0+dll E—
COp

(14)

d22= (2~.)(""'—1), d»= (2~.)~~("—1)

dii= (2~a) (2 —ei)+ 1-i~a+ ~~a
&

~~a= ~a —~z(1), ~~II= ~Jr —~e(1), ei= A/J.
We define the supermatrix G,

—Mp—2 cos8=- —+2, d12 ——(21~,)X2(1—e, ~'i),
CO]

~ (S*(1))
(1)

J(S.:)
For the model discussed earlier, the AD~ matrix has
only one element —Ad defined by

(22)
E—Mg —ei/2+8 E—1—MgP

since ei("= ei at T= 0. Here, 6 equals bcvg+ha&rr. Using
the expression for —2 cosg, Eq. (13),we can also derive
an expression for e& given by

with

e&= Aa(32 —1)'"

2L(1+~„)2 —E')

(23)

The bulk solutions for zero propagation vector in the x
direction are given by setting /=0 in Eq. (23); thus,
A= 1. Equations (22) and (23) may be solved simul-
taneously to give a polynomial in K However, because
of the high degree of the resulting polynomial, except
for e&= 1 or 0, the above expressions are most conven-
iently solved numerically by finding the intersections
of Eq. (22) and (23) as a function of E for a given choice
of parameters. We describe the modes for ranges of the
parameters e&, ~~, and 8 in the following subsections.

Using Eqs. (13), (14), (15), (19), and (21) and setting
8=if, we find in units of ~, that

e& = (E—1—cog)

/2(ei 1) 1
xi -+

oN

br- —&iiD~ ', 4- (16)
A. Dispersion Curves for ~~ ——6=0

eg= l

(p) (~i ()t+m) tt ~ij )1,—m( g)j )
2i sin8

(19)

where 8 is defined by Eq. (13) with the convention that
the imaginary part of 8 is positive. The surface-state

Now, using Eq. (16) and (10), it follows that

(4+Gx"'&De)~+= o, (»)
(—~i~ Gx"'&Di~)~x+Ux= o, (18)

where Gz&oi=Disci '. The element. s of Gii &'i can easily
be constructed4 with the result that

The case e&= 1, as mentioned earlier, was discussed by
Mills and Saslow. Since in this case it is possible to write
a quadratic expression in 8 for arbitrary values of co&

and 5, we proceed to do so even though in this subsection
we restrict our discussion to co~= 8=0. We can write,
for cg= 1)

(1+2&)E2+2L(1+2&)2—), 2)E

+2 (1+~~)L)22 —1—2(1+28)(us+482) = 0. (25)

Equation (25) reduces to Eq. (15) of Ref. 1 for X&
——1.

Now from Eq. (22), we also have that

' N. Wax, Noise and Stochastic I'rocesses (Dover Publications,
Inc. , ¹vrYork, 1959), p. 301. 1+2(co~—5 —E)

(26)
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Equation (26) is equivalent to Eq. (10) of Ref. 1 for
the values of E equal to the eigenvalues of the surface
spin, waves. For b=e&=0, we note immediately, from
Eq. (26), that a negative-frequency branch cannot be
allowed when ei ——1, since this would require that f(0.
A plot of the solutions of Eq. (25) for 8= ~dz = 0 is shown
in Figs. 1 and 2 (curves labeled ei-—-1). The slope
at Xq=1 is 1/K2 of its bulk value. From Eq. (26), we
further note that for small values of E the amplitude of
the surface mode decreases with depth approximately as
e—'"~ (n=1, 2, ), where n refers to the number of
layers. On the other hand, at the end of the zone, E ap-
proaches —,

' and P~~ so that this mode (for which
Xz ~ 0) is localized entirely at the surface.

Z. 0& ej.&1

As we mentioned in the Introduction, when e~ is al-
lowed to deviate from unity, a negative-frequency
surface spin-wave branch appears. Negative frequencies

.28

.24

.I6

E /rue

.I2

.08

.04

I i I ) I

.02,04 .06
I
—X

2
K

I
' .08 .10

FIG. 2. Acoustical surface branch for +E as a function of k for
cog=0. The curve labeled 8=0 is the bulk curve for the zero
propagation vector in the x direction.
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0.6

0.4
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I i I i I

0.2 0.4 0.6
I

0.8 I.C

indicate right-hand circular polarization, while positive
frequencies indicate left-hand circular polarization. In
order to get physical insight into the origin of the —E
branch, we set e&= 0. This decouples the erst layer from
the crystal, and consequently should give a surface state
now having a maximum on the second layer with the
same characteristics as in the case of e~= 1, except for
a change in its sense of precession. As in the case of ej.= 1,
we can write a quadratic in E:

g' —-'(1.—gg')g —-', (1+~&)(1+2(uz —&&') = 0 (27)

and also,

0.2—

0.4

e = —[(2/Xg')(E —1—(u~)+1).

For X1,=1, we find that

(28)

0.6

0.8

I.O

l.2

I.4

Since
I EI~) id& according to Eq. (29), in contrast to

the case e&= 1, only the negative frequency gives P) 0.
Now, as Xi, ~ 0, at the end of the zone, we find on set-
ting a&~=0 that E~ —2, and/ —+~. The eigenvectors
for this case show that the excitation amplitude is con-
fined to the second layer of spins. Equation (27) is
equivalent to Eq. (25) for negative E when 8= 0. The
above discussion gives a qualitative understanding of
the origin of the negative-frequency branch which is
illustrated in Fig. 1 for 0&~~&1. We note for e~ greater
than zero, the dispersion curve cuts off at

l.6

I.S

where
Xg' = 2a —1/u'—=Xk, g2, (30)

I' IG. i. Dispersion curves for +E surface states as a function of
) g. The shaded areas correspond to bulk states for values of k be-
tween 0 and m for a given value of Xg. The abscissa is in units of co.. These cutoffs in the negative-surface branch occur at
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the point, where the eigenvalue for the surface mode
coincides with the bulk frequency. For values of X~

beyond that point no solution for real value of E exist.
The absence of a surface eigenstate beyond A.&,z2 can be
understood from Fig. 1.The shaded area indicates all of
the possible bulk states. The frequency range for a given
X& is obtained by allowing k„ the wave vector in the x
direction, to range over all of its values in the first
Brillouin zone. A surface mode occurring within the
shaded bulk continuum of state would decay into the
corresponding bulk mode and hence would have a finite
lifetime. The lifetime of such a mode would be approxi-
mately proportional to the density of continuum states
at that energy and X1,. From Eqs. (30) and (31),we note
that if e&= 0 the cuto6 is at X~,~2= 1, as discussed earlier.
As ~~ —+ 1 the cutoff approaches X~,g2=0.

On the other hand, the positive-frequency branch ap-
proaches zero frequency everywhere as e&

—+ 0 for aoz = 0.
The slope at k= 0 is 1/K2 of its bulk value independent
of eg.

IOOO

IOO =

IO=

O.I—

g =IO
-2

(«—1)(2+«)
4,ci'=

2
(32)

From Eq. (32) if «&2, Xx,c,&1.

.28

.24

.20

E/(ue

.I6

3. 1&eg&Z

The positive-frequency branch as indicated in Fig. 1
moves toward the bulk value as e~ increases and exists
for all values of X&. However, the negative-frequency
branch is now restricted to lie above the bulk band
(greater negative frequencies), and is cut off at

O.OI i I i I ~ I

1.4 (.2 I.O

~IO '

I

(-) (+)
(E)m, )

I~I i I s

I.O I.2

(+)
l.4

Fzc. 4. Surface eigenvalue at xi=1 as a function of eg for
cog=10 '. Note that the abscissa is a logarithmic scale and the
ordinate is divided into four regions. Regions I and IV describe the
optical mode lying above the bulk spectrum for —E and +E, re-
spectively, in units of co,. Regions II and III show the —E and
+E acoustical mode behavior.

4. e~& Z

We note immediately from Eqs. (30) and (31) that
for «= 2 the +E acoustic branch is cut off at X1,, 02

——0.
However, one now obtains a +E optical-frequency
branch existing for all values of A,~. This branch, for
e&) 2, lies above the bulk spin-wave band as illustrated
in Fig. 1. The eigenmode closely resembles the bulk
mode at k =~, but is rapidly attenuated with increas-
ing depth for values of t.& greater than 2. For &i~&2, the
negative-frequency branch discussed earlier now exists
for all values of 'A~. In Sec. IV, we will discuss the prop-
erties of these modes by investigating the form of their
eigenvectors. The dispersion curves for the positive-
frequency acoustical branch for X1, 1.0 (i.e., in the
region about the origin of k space) are illustrated in Fig.
2.

.I2

.08—

.04—

I s I 1 I 1 I

.02 .04 .06 .08
I-X2

K

.IO

FIG. 3. Dispersion curves in the long wavelength limit for the
+E acoustical surface states for cog =10 ~ and various values of ~~.
The abscissa is in units of co,.

B. Dispersion Curves in the Long-Wavelength
Limit for ~~NO

In Fig. 3, we have sketched the dispersion curves for
various values of «and &v~= 10 ' (in units of &u,). As
noted by Mills and Saslow, at k=0 the frequency for
the acoustical branch is relatively insensitive to changes
in e~ provided co~((co,. Their conclusions were based
upon a perturbation calculation valid for small changes
in ~~. We show in Figs. 4 and 5, the behavior of the fre-
quency at k= 0 for arbitrary changes in «. The graphs
are separated into four sections in order to indicate
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(gPA
= I/5

1.8—

1.4—

1.2

(E/a )
(2 A A).8—

4—

2
q = I+(16/9)A (A + 5/2)

I

.5 .6
I-&„

clearly the various points mentioned earlier i 2.0

e epen ence o the acoustical frequenccy on e&, w' i'e p, = - I.O

outermost sections illustrat th de e ependence of the
optical frequencies on e&. In Fi . 4 w h
=10 '

e~. n ig. we have taken co~

. We note first that for ~i,= 1 the ~r
1.6—

"y'
o = 0.1, as given by the quadratic

equation discussed earlier. Region III of Fi . 4
p dence of the positive-acoustical branch as ei.

S=-I/

deviates from unity. We note that for e&&1
B0 I 3

Spectrum p= -I/&

10 ~k cs

ills and Saslow, and approaches, in the limit e~ —+~
II

the bulk value of v2&&10 ' 0 h

(3/4 g
—I/4)

e& —+0, the frequency approaches 10 '. The uns
metrical dependence of the f
can be und

e requency on e& about unity
can e understood simply as follows: As th fs e sur ace

pproac es its bulk value, 0' decreases ther f
p=&/'5

y o spins participate in the eigenmode, so
that a perturbation at the surface becomes relativel less .2—

q en y e surface perturbation gives a l f
uenc shift

es a arger re-

f
q y s i until finally no surface mod tho e wi positive 0.0 .I

I I I I

requency exists at ej.=0. In
.2 .3 .4 .7 .8 .9 I 0

I I I

e avior of the negative-frequency branch which at FIG. p
1 t 10— Th b h h value of 8 in units of

' '
ure

a cutoB at k=0 depending th I
ecall that 'f

ing on e values of co and

e o in units of co.. As indicated in the figure

e~.

e O in unitS Of gure, cog=-, .

hat if co~ is zero, we have no ne ative-frhat f ', nega ive- requency o c se here co

an s ow the ositive-atk=0 1 =OR ' I dIV h p
' ' - coustical branch is relativel

e a e

cated inthefi urea
c ol 6 which as indi- deviations of e from unit

h I t}1 th
the discussion so far we have t ' t d7 res ric e our consideration th d

in e~. n wit the perturbation calculation f M'll d
emo eis ound also to

o i s an aslow
7

e insensitive to changes in 8.
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similar plot is given for co~= 10 ' in F'

I
~

I

the abov
in ig. . owever,

!

bove conclusions are drasticall d'fi d 'f'
a ymo i e i co&isof

Glg.

in B.
Sec. P~, we discuss this case f =1 dor e~= an changes

O.I—

O.OI—

~2 x IO

a)A-" IO

—~~2xIO 3

Co 8= 1 j Gag—6)g

In this ssu~section we discuss brieQy the case when

co~ is on the order of co,.This case is of h siaseis o p ysica interest,
since certain crystals are known to have such
teristics. The

o ave suc c arac-

To illustratrate the drastic dependence of the surface

6 we ave
branc es on the surface param t f h'

we ave plotted the surface eigenvalues as a function
of k for various values of 8= AoI~+ AoI~. Even for e~ ——1,
we note that the acoustical bran h h'bc ex i its cutoffsat

O.OOI =
XIx,g3 I 1+2OIZ(1+2h) —4P']'i' (33)

!IO IO

1.4 1.2 1.0
I I~ I I I x

~(-) o (+)~ I.O 1.2 1.4
( E/(3') (+)

FIG. 5. Surface eigenvalue at X&= 1 as a f
=10 4 The abscissa 1

have the same meaning as in F . 3
cissa is a ogarithmic scale and the

S in lg.

for negative values of B. (For negative 5 th e anisotropy
field at the surface is larger than its bulk value. The
maximum positive value th t 8 ha can ave is oI~ which

y on e rst layer. Forcorresponds to zero anisotrop th fi
8= —33 [see Eq. (25)], we have an optical branch which

has an energy equal to 1+oiz for all values of k. The
expression for p defined in F 6 d'ff fig. i ers rom that of
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Up

g2
A

Yp Using Eqs. (3), (6), and P), we define

S &'&(k E't)+iS, &'&(k E' t)=e'" &'e''e-'s &" ~"'

Si .&'(k E' t)+iSi „&'(k,E', t) = e' 'p'e * 'I '&
~ '.

(b)

U(
Up

V

I-2~~,
A

I +2 ~QUA

Up Vo

FIG. 7. The amplitude of the first four layers of the eigenvectors.
Increasing depth is from left to right. (a) Bulk eigenvectors for
k, =%=0 and E= —(2cog)'~'. (b) Bulk eigenvectors for k, =k=0
and E=(2ayg)'". (c) Surface eigenvectors for k=0, E=Q&oz,
ei=1.0. (d) Surface eigenvectors for k=0, E= —geog, ei=0.0.

Mills and Saslow. The discrepancy is attributed to an
algebraic error in their paper.

Xgvi(e&+1)
Q~=- l&1

2I E—(1+roy)j
(34)

2LE—(I+re~)+dii j

IV. EIGENVECTORS FOR SPECIAL POINTS
IN THE BRILLOUIN ZONE

Here, we illustrate the behavior of the eigenvectors
along the x direction for X~= 1.Ke normalize the eigen-
vectors by taking st=1 and then, using Eqs. (17) and

(18), we obtain

Equations (35) can be illustrated graphically by draw-

'ng a ci«le of radiu»~ equal to

Ilail

«
I "il At t=0

and yr=0, the phase&i t——an '(Sr„/S, i,) is either 0 or ir.
The bulk states at k= 0 and k,= 0 for positive and
negative E are illustrated in Figs. 7(a) and 7(b). The
direction of the arrow on the circle indicates the direc-
tion of spin precession according to Eq. (35) for t/0
Mid p&=0. Ke note that the maximum amplitude for
negative E is on the (b) sublattice, while for positive E
the amplitude is a maximum on the (a) sublattice. This
property remains at finite k.

&n Figs. 7(c) and 7(d), we show the surface eigen-
vectors at k=0. Figure 7(c) is for the +E branch for
ei= 1 (no negative branch is allowed). The amplitude
falls off with increasing depth into the crystal and is
maximum on the first layer. To illustrate the negative
branch, we show the extreme case of ei ——0 in Fig. 7(d).
Here the amplitude is a maximum on the second layer
while the erst layer is completely decoupled. With
04 6g 4 1, both positive and negative branches can
occur. The amplitude decreases exponentially with dis-
tance into the crystal on each successive spin-up layer
but not on the spin-down layers. As discussed earlier
for e, ~&2 new states are allowed at k=0. For ei=2,
E= &1 are solutions of the eigenvalue surface equation.
The mode for E= 1 has an infinite amplitude on the (a)
sublattice because of our normalization of v~, this can be
seen from Eq. (34), for roz ——0. This mode actually was
obtained by setting e&——2+8& and allowing 8& —+ 0. For
8~= 0, these modes have the same characteristics as the
bulk mode for k =~. However, only for 8&= 0 are these
modes undamped with depth into the crystal. Since
the E=+1 mode has an amplitude increasing with de-

creasing b~, we have chosen, for this case, e~ to be pro-
portional to 8& so that I& is normalized to unity. In
Table I, we give the phase an amplitude of the optical
modes at Xl,= 1 and identify them with the bulk modes
for k,= m and A~= 1. The modes at the end of the zone

for which E=+-,'ei and E= —si(ei+1) are identified

TABLE I. A is the amplitude of the spin precessional circle. The radius of the circle is given by (S '+S„')'".The phase angle P is de-
fined as &=tan (S„/S ). The amplitude A(kg=1, k, =s, E=&1) refers to bulk states, and A(kg=1, ei=2, E= +1) are the surface-
state amplitudes. The same indexing applies to the phase p.

APg=l, k =s., E=1)
APg=1, ei=2, E=1)
@(Xs=1,k, =7r, E=1)
g(Xs=1, &i=2, E=1)
A(La=1, k =7r, E=—1)
A(As=1, ei=2, E=—1)
y(X&=1, k.=~, E=—1)
g(Kg=1, ei=2, E=—1)

N4(') p4(&)

0
0
0
0

0
0
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with Xi, =0 and E=+1 of the bulk spectrum. These sur-
face modes are highly attenuated for e&42 or 1, and in
fact they exist only on the first layer for +E and on the
second layer for —Ji at X&=—0.

V. CONCLUSIONS AND DISCUSSION

In the preceding sections, we have examined the de-
pendence of the spin-wave spectrum and eigenvectors
on arbitrary changes in the exchange constant and
anisotropy energy at the surface. As discussed by Mills
and Saslow, when the exchange at the surface is taken
to be equal to its bulk value, one surface branch exists
having its maximum energy equal to -', of its bulk value
and its minimum value equal to 1/v2 of its bulk value
for small values of the bulk anisotropy. This mode at
k= 0 is found not to be sensitive to changes in e, and h,

provided cog is small. On the other hand, for co~ co, we
have shown in Fig. 6 that even when e&= 1, the acousti-
cal branch is cut off for small values of k if 8 is negative
(an increase in the anisotropy energy on the surface).
Furthermore, an optical branch above the bulk spec-
trum exists if b~& ——,'. For values of e~ differing from
unity and for arbitrary values of cv&, three surface
branches can exist. In the region 0~& &i ~& 1, a +E acous-
tical branch extends over the entire domain of k. This
branch is a generalization of the branch discussed by
Mills and Saslow for e~= 1.For this mode, the amplitude
is a maximum on the first layer and decreases with depth
into the crystal. In addition to this +E branch we find
a Ebranch —(for ei/1) which does not exist for all
values of k, except for ei ——0 and id~ ——0. If id~00 this
branch can exist over all values of k for values of e&

different from zero. In contrast to the +E mode, this
mode has its maximum excitation amplitude on the
second layer.

When 1(ej.(2 the surface acoustical branch with
+E still exists for all k and approaches the bulk branch
as e~ —+ 2. In addition, we find an optical —E branch
which cuts off for small values of k. The negative-
acoustical branch does not exist for this range of e~.

When ei~&2 we have three branches. The +E acous-
tical branch which truncates for large values of k and
two optical branches extending over all values of k.

The cutoffs in the surface branches can be physically
understood by noting that no surface mode for real E
can exist in the bulk continuum lying between k,=0
and k =x for a given value of X~. Since the one-dimen-
sional Green's function in that region has an imaginary
part, Eq. (22) cannot be satisfied for real E. However,
virtual states can exist in this region but since the one
dimensional density of states is very large except at
0 = 0 and k,=x these modes are rapidly attenuated in
time.

At the cutoff values of h., it can be shown that the
surface branch meets the bulk continuum tangentially.
If the branch is continued beyond A, the surface branch
continuously moves away from the bulk continuum.
These solutions, however, can be shown to be unphysical
in that they correspond to waves which grow with in-
creasing depth into the crystal. On the other hand, if
one adopts the point of view commonly used in con-
tinuum theory, i.e., to equate the real part of the eigen-
value equation to zero, then solutions of the surface
eigenvalue equation can be extended into the con-
tinuum. These solutions correspond to virtual states
with a lifetime determined by the imaginary part of the
Green's function. It is found that the surface branch
continuously extends into the bulk continuum but ex-
hibits a discontinuity in slope at the cutoff values of h,

As a final remark, we point out that the frequency of

the acoustical-surface branch at k= 0 is very sensitive

to geometry. Any other principal surface of the bcc con-

tains both spins of both sublattices. We find, in this

case, that for reasonable values of the exchange param-
eters and for small values of co~ the k=0 mode lies at
its bulk value. The basic equations given in a previous
publication' for the simple cube cut along the {100)sur-

face can be used to describe the {110)surface of the
bcc crystal provided the parameters of the cubic equa-

tion are redefined.
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