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Theory of Surface Spin Waves in the Heisenberg Ferromagnet

R. E. DK WAMKs AND T. WoLPR~

(Received 27 March 1969)

The eigenvalue matrix for a number of semi-in6nite cubic system of spins coupled by nearest neighbors
is derived for the Heisenberg ferromagnet. The mathematical formulation used allows solutions for an
arbitrary variation in the surface exchange constants. Surface spin-wave modes for the simple cubic structure
are calculated for the {1001and 1110}surfaces. By allowing the exchange parameters to deviate from the
bulk values, the full richness of the surface spin-wave spectra is displayed. Surface spin-wave modes are
found to exist above and below the bulk spectrum. The dispersion curves can be truncated, i.e., they exist
only over a limited region of k&& space, where k» is the two-dimensional propagation vector parallel to the
crystal surface. The eigenvectors of the surface spin-wave modes are also discussed.

I. INTRODUCTION

NUMBER of recent papers have dealt with the
problem of calculating surface spin-wave dis-

persion curves for a ferromagnet. ' The problem is
generally approached by selecting out of the total spin
Hamiltonian those interactions which dominate in a
chosen domain of kll space, where kil is the two-di-
mensional vector of the surface spin wave. The dipole-
dominated region, small k, i, has been discussed by
Eschbach and Damon' and more recently by Benson
and Mills and by Sparks. ' The exchange-dominated
region has been studied by Wallis et u/. ,

' who considered
the (100) and (110) "free" surfaces of a simple cubic
(sc) ferromagnet. (The term "free" surface is used to
characterize a surface for which the exchange param-
eters are identical to those of the bulk. ) They showed

that a surface spin-wave branch for a free surface
exists only when non-normal exchange bonds are
missing at the surface. Thus for a nearest-neighbor
exchange model the (100) sc surface does not possess a
surface spin-wave branch, while the (110) surface does.
A surface spin-wave branch is found for the (100)
surface only when second or more distant exchange
interactions are included. In contrast to this result,
it was shown by Fillipov' that a surface spin-wave
branch would exist for the (100) surface of a sc in the
nearest-neighbor exchange model if the exchange-
parameter coupling spins on the surface were different
from the bulk. exchange. Some errors made by Fillipov
have been corrected in a recent paper, ' where it is
shown that if the surface-exchange parameter is larger
than that of the bulk, then optical-type surface spin-
wave branches lying above the bulk. spectrum occur.
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Wallis (Plenum Press, Inc., New York, 1968), p. 426.

4 C. F. Osborne, Phys. Letters 28A, 364 (1968}.
5R. E. De Wames and T. Wolfram, Phys. Letters (to be

published).
6 J. Eschbach and R. Damon, Phys. Rev. 118, 1208 (1060);

J. Phys. Chem. Solids 19, 308 (1961).
7 H. Benson and D. L. Mills (unpublished).
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The dispersion curve for this new type of mode, de6ned
as the optical branch, may be truncated —i.e., it exists
only in a given domain of kf~ space.

In the present paper we investigate the properties
of surface spin waves for a Heisenberg ferromagnet,
using a |reen's-function method and keeping only
nearest-neighbor interactions. The exchange constants
coupling spins parallel and normal to the crystal
surface are allowed to differ from their bulk value.
The problem reduces to determining the roots of a
cubic equation, from which the surface spin-wave
energies and eigenvectors are easily obtained.

It is found that when one allows the exchange
constants to diBer from the bulk values, new physical
solutions appear. Consider the model discussed above,
in which both the erst and second layers of spins are
perturbed. Because the exchange constants coupling
them differ from the bulk values, there exists a mode

having its maximum amplitude on the second layer of

spins, in contrast to the mode discussed earlier, in

which the amplitude is a maximum on the erst layer.
It is also found that the dispersion curves may be
truncated, and may lie below or above the bulk spec-
trum depending on the values of the exchange bonds

at the surface.
In Sec. II, the theory is presented and a cubic

equation whose roots determine the surface eigenmodes

is also derived. In Sec. III the eigenvalues and eigen-

vectors for the {100}and {110)surfaces are discussed

for a number of values of the exchange parameters.
Conclusions are given in Sec. IV.

II. THEORY

We consider in this paper only the exchange part of

the spin Hamiltonian. Therefore, we have

H, = —',P J(J, j+a)S,"5, „J)0
where J is the exchange parameter and 5, is the spin

angular momentum operator on the jth atom. The
sum on 6 is over nearest neighbors only. We define
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the operators

L~ =S*,~+iS~,~

J,~ =S,,;—iSy, ,-.
(2)

Equation (1) can then be written in the form

H, = —-', Q J(j,j+6)LS,,;5„;+g

i I.; =[—r.;,II,],
dt

+~ (L,L;+gt+LP L,pg)]. (3)

The equation of motion for the operator I.; is given by

neighbors is taken to be J. For this model we can write

~up ——5{LZ„J„(1—yg„' )+Z,J~]u~
zl Jl'rk(( +2} y

(uu2= 5{LZ))J(1—
yp~, o~)+Zg Jg+ZgJ]u2
—Z,J,&„„&'&,—Z,J~„,*&'&,}, (9)

coQ„=5{LZ [ tJ(1—r p [,"' )+2 Z&J]I
—Z~JLvl „*"'~.+1+v~„"'N.-i]}.

In the above equation we have labeled the layers by
the index m in the y direction. Z&~ is the number of
nearest neighbors in the layer, and Z& is the number of
nearest neighbors in one of the adjacent layers. Also,

where [.. ]means the commutator.

Now, using the commutator relations for the operators
I,, L,~, and S... and rn.aking use of the random-phase
approximation (RPA), we obtain for zero temperature

aIld

exp$ik „a„(1)]

1
expLik „a„(2)].

2Z, x„&»

(10)

~L (~) =SLY J(j i+~)]L (~)

—5 2 J(j,i+~)L,+~(~), (5)

where (5,,)=5 (the total spin of the ion), and where
we have introduced the Fourier transform of L;(t)
defined by (D~+AD) Ux 0, ——(12)

The sum in yI, „&"is over the position vector components
of the nearest-neighbor spins in the xs plane for any
one layer, while the sum in yA, „"'is over the position
vector components in the xs plane coupling neighbors
on adjacent layers. For surfaces having yl, „" real,
Eq. (9) can be written in the matrix form

where
(6e '"'L;(&v)Cku.I;(t)=

0
—1

2 cosg

—1
2 coso
—1

2 cos0
—1

p (13)
~ ~ ~ )

Since the system is invariant under translations parallel
to the crystal surface defined by the sx plane, we define
the position coordinate of the jth atom by R, = (p, ,y;),
where p, is a, two-dimensional position vector in the
sx plane, and y; is the position coordinate normal to
the surface. We introduce the two-dimensional Fourier
transform

with

—(2 cos8)yl. „~'&Z,=co/JS —Z„(1—y, „o~)—2Z, , (14)

and where

(15)

L;(cu) = —Q exp(ik„y)u .(k„co)
PT )'~' i

where E, is the number of surface atoms. After sub-
stituting Eq. (7) into Eq. (5) we obtain

(um„, (k„,(o) =5. {pJ(j, j+6)}N„,(k„,co)

wit

dye ——$—Z), (1—y&„&'&)(1—~&~)

—z (2—.,)]/z,~„,' ',
du= (1 &&) ~

d&2= (~& 1)/'Y&ii

c, i
——Jii/J, ~i= A/J.

(16)

We can rewrite Eq. (12) in the form—S P J(j,j +6) exp(ik„A„)u„+q, (k„,co), (8)
(Ix+GxAD) Ux= 0, (17)

where Ai& is the component of the position vector of
the nearest neighbor parallel to the surface, while A~

is the component normal to the surface. In what follows
we take the exchange coupling nearest neighbors both
on the first layer to be Jli, and the exchange coupling
nearest neighbors on the first and on the second layer
to be J~. The exchange between all other nearest

where GN ——D~ '. The elements of G~ can be con-
structed easily by a variety of mathematical tech-
niques and are given by

G (2i sing)
—l(~~(n+m)8 ~i]n—na(8)

SeLected Papers on Noise and Stochastic Processes, edited by
N. Wax (Dover Publications, Inc. , New York, 1954), p. 301.
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If the imaginary part of 8 is greater than zero, then
Im8&0. The surface eigenvalue equation is obtained
by requiring the determinant of Eq. (17) to vanish:

( I~+G~DD
~

—0. (19)

Since AD is a 2&&2 matrix, we find

1+Giidii+Gig(2di, +diid2p —di2')+G2gd2g ——0. (20)

Setting 8=if and x=e& we obtain, according to Eqs.
(18) and (20), a cubic in x given by

x'+x'(dii+d22)+x(2d„+diid22 —di2')+d22 ——0. (21)

The roots of the above cubic which correspond to
physical solutions must have ~x~ &~1, since Im8)0.
Equation (21) is valid for any cubic crystal surface.
In the following sections we consider two special crystal
geometries of the sc ferromagnet and investigate the
properties of their surface states.

III. sc STRUCTURE

A. (100) Surface

The crystal structure for the (100) surface is illus-
trated in Fig. 1 with the coordinate system discussed
earlier. The xs plane is taken for all subsequent cases
to lie in the surface layer, while the y axis is taken
normal to this surface.

We write Eq. (21) in the form

Solving Eqs. (24) and (26) simultaneously we obtain

M~= 2AqL1+4AgE~t(1 f~,)5/[1+4A, (l —Eti)5 . (27)

Equation (26) is identical to Eq. (19) of Ref. 2. As
pointed out in an earlier paper, ' some caution must be
used when employing Eq. (27), since it contains energy
solutions for &&1&1 which are unphysical in the sense
that, according to Eq. (26), they correspond to spin-
wave amplitudes which grow with the distance y into
the crystal. Since we require ~x~ &&1, it follows from
Eq. (26) that no solutions are allowed for 1&ed~&5/4
for 0~&A, &~2. For 0~& e~&&~1, Eq. (26) can always be
satisfied with ~x~ &~1, and the corresponding eigen-
values follow from Eq. (27). For the value e» ——1
(which corresponds to the case discussed by Wallis
et al.),' Eq. (27) gives the bulk energies, and it is neces-
sary to include second neighbors in order to obtain a

2.4

2.0

t.6

l. 2
Cl

3
4J

x'+ bx'+cx+ d =0.
For the (100) surface it is easily shown that

b = —(3—2e,)—4A.,(1—e„),
c= (1 & )t 3+4Ae(1 & )5

(22)

(23)

0.8

0.4

0.4 08 I.2

Aq —{I )~q )

l.6 2.0

Also, we see that

cosh/= 2Aq+1 —a)~=-,'(x+1/x),
with

(24)

FIG. 2. Dispersion curves for the (100) surface of
the sc structure; ~q ——1.

G)~= (M/2JS) &
Ag= 1

'rq= g (cosggll+cosggc) .
(25)

le 6g 1) 0~~ 'E[J ~~

Since for this case c=d=0, Eq. (22) reduces to

x=4A, (1—e&()+1. (26)

FIG. 1. Sketch of the sc
structure and the coordinate
sysf em.

y &

We erst consider the case discussed by Fillipov, ' for
which 6g= j..

A. =1/2(e„—1). (28)

The solid dot in the figure corresponds to a~i=5/4, for
which A, =2. As elf ~ ~, A ~ 0, and in the limit the
optical branch is defined for all values of A, . An
acoustical branch below the bulk spectrum is also
shown in Fig. 2 for Ell= —,'. The word "optical" is
introduced for. the modes above the bulk spectrum
because an investigation of their eigenvectors shows
that the spins on adjacent layers are 18Q' out of phase,
in contrast to the acoustical surface branch, where all

surface-state spin-wave branch. In Fig. 2 we illustrate
the energy spectrum for two cases, ~11=2 and t[t= g.
The shaded area in the figure represents bulk states
according to Eq. (24) with % =i8, 0~&8~&n.. Here
0=k,a, where k„ is the y component of the three-
dimensional propagation vector k. The cutoff value
A., of A, is given, according to Eq. (26), by
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spins are in phase. The eigenvectors will be discussed
in detail in a later section.

2.4

2.2

Z. ail=1) 0(eg&~ ~

For this case the cubic equation can be factored,
since one of its roots is x= 1, which gives a bulk solu-
tion. The remaining quadratic is

2.0

l.6

x' —2(1—e,)x+1—e, =0.
The two roots are

(29) 1.4

I.2

We note immediately that for 0&&&(1, x is complex
and its magnitude is (1, so that it does not correspond
to a physical solution. In fact, for 0&ej(—, no ad-
missible solutions exist. For e&

———„where x= —1, we

I.O
3
3

0.8

0.6

0.4

2,0
0.2

I.8—

l,6—

1.4

1.2

tloo] s.c. 0.2 0.4 0.6 0.8 I.O 1.2 1.4 1.6 1.8 2.0
A

Fzo. 4. Dispersion curves for the (100) surface of
the sc structure; eq)2.

The roots are given by

1.0

0,8
3

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fro. 3. Dispersion curves for the (100) surface of
the sc structure; eq&2.

We find that for the two-dimensional layer the fre-
quency is given by

M~= 24~61 I. (33)

4. Arbitrary e& and e&l

In this subsection we determine the cutoffs, when
they exist, of the optical surface branch for arbitrary
value of e& and el&. These are determined by setting
x= —1 in the cubic equation (22). We obtain

A.,=A),= (6e,—8)/4(1 —e„)(2—e,) . (34)

have a bulk mode corresponding to the case 8=x in
Fig. 2. Since for the case &11=1 x is found to be inde-
pendent of A.~, it follows that the optical surface branch
for e&) 3 lies parallel to and above the bulk branch for
8=x.

3. e, =0, 0~& ei I ~& ~
When e&=0, the erst 1ayer is completely decoupled

from the crystal, and we expect a bulk mode for the
case e» ——1 having unit-spin amplitude on all layers
except the erst, and also a mode characteristic of a
two-dimensional geometry propagating on the erst
layer. For this case, since x=- ) is a solution, the cubic
can again be factored, giving

x'—2$1+2As(1 — )jx+1=0. (31)

For 0~& e&( —', and 0& all(1, there is no optical branch,
but only an acoustical branch which approaches the
bulk branch (8=0) as e~~ and e~ increase toward 1 and
—;, respectively. Now for -', ~&6g(2 and 0&oil&1, we
have an acoustical branch and an optical branch.
According to Eq. (34) the optical mode cuts off at
large values of A.~ as ~j ~ 2. For 0(~&(43 and 1(~1&
& ~, we have an optical branch which cuts off for
small values of A~ depending on the values of ~& and
all. We have, however, no a,coustical branch for this
range of parameters. When e&& —„the above optical
mode becomes allowed for all values of A, We illus-
trate in Fig. 3 the dispersion curves for special values
of all and ej in the range just. discussed. The next
interesting region is for 2(e&(~. When 0«&I(1,
according to Eq. (34) there is no cutoff, and, as illus-
trated in Fig. 4, the optical mode lies above the bulk
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curve 0=x. The curve below the 0=0 line is the
acoustical mode, which exists for all values of Aq. On
the other hand, for 1«ll( ~ there exists an optical
mode which cuts off for small values of A.q depending
on the values of 6J and 6lt. For this case we also have
another optical branch which lies above the bulk
branch 0=~. The nature of these modes for the special
ranges of parameters is discussed in the next section.

For e,))1, according to Eqs. (40) and (41), we have

u2~ —uxf1+1/(2e, )]. (42)

From Eq. (36) we can solve for u2 in terms of u~. We
obtain

—f—2 (1+cosh/) +eg(1+2 cosh/))ug
(41)

e'&+ (1—e~) (1+2 cosh/)

E&genvectors for (1pp) Surface of the sc Lattice Now, inserting Eq. (42) into Eq. (36), we get for e,))1

From Eq. (17) we have u( ——(—1)'+'ui/(2e, ) '—'
) (43)

which gives

V~ ———G~ABU~, (35)

ul f (Glldll+Gl2d12)ul+d12(Gll Gl2)u2] ~ (36)

Let us consider some special cases.

1. 6J =1

According to Eq. (16), we have

Nl ~l1~11N1)

since d~~
———d~q

——0. Equation (37) can be written as
follows:

~i(l—1)0~17

so that in the limit of large values of 6J, the amplitudes
on the first and second layer are equal. For values of
l&2 the amplitudes fall rapidly with depth into the
crystal.

3. 6J=O

In this case we have a two-dimensional layer of spins
decoupled from the crystal. The root x=1 gives n1=0
and unit amplitude for all the other amplitudes. This,
of course, is the same mode as discussed previously for
6J

——1 and 611——1. On the other hand, it can be shown
that if x is taken to be the physical root of Eq. (32),
then the amplitude on the first layer is N1 while all the
others are zero.

or

ui ——ui/ f1+46,(1—e„)]'—'. (39)
C. (11P) Surface

For this case the cubic equation (21) has the form
According to Eqs. (2), (6), and (7), at 3=0 and p~=0
the magnitude of the Nl's represents the radius of the
precessional circle of the spin, and the sign gives the
phase angle of the spin. The index l numbers the
layers in the crystal. From Eq. (39), when 0~& e„&~1
the phase angle for all layers is zero, but the radius of
the precession cone decreases with increasing /, i.e.,
with increasing depth y into the crystal. As discussed
previously, in the region 1&e[[(5/4 there exists no
surface branch. However, when 5/4~& e~~&~ cc we have
a mode (see Fig. 2) above the bulk branch 0=~ which
cuts o6 for values of Aq&A+ This mode, which is
defined as the surface optical branch, has the individual
spins rotated 180' between adjacent layers, and their
radius of precession decreases with increasing depth y
into the crystal.

Z. 6ll = 1

with
x'+ex'+ fx+g =0,

e= —f (3—2e,)+A, (1—e„)]y.—',
j=1—e,'+ fh. , (1—e„)+(2—e,)](1—e,)y. ', (45)

g=(e, —1)y, ',

where
A, =1—y, ,

y, =cos(q.a),
y.,=cos(q.u/V2).

(46)

The energy is given by

+~ =A.,+2—y, (x+1/x) . (47)

We now discuss the solutions of Eq. (47) for various
ranges of the parameters.

e'= ("—1)+f"("—1))'". (40)

As discussed in Ref. 1, for this case we always have
a bulk mode (0=0) because of the special geometry of
the (100) surface of sc crystals. For this mode all of
the Nl's are equal to N1. As discussed in Sec. III, for
values such that 0«J&4, there is no surface branch.
However, when —3&6J(~ there is an optical surface
mode above the bulk mode 0=+. For this optical
surface mode we have 9=~+if, with

1. 6J = 1~ 0~~ 6)f ~+ ~

For this case the cubic equation (44) reduces to

y,x =1+6,(1—e„).
Inserting Eq. (48) into Eq. (4'7), we obtain

1—y, '+&,f1+she„(1—e„))
1+3.,(1—e„)

(4g)

(49)
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h.,=2/(e() —1) . (50)

If y,&0, then there exists a surface branch even for
the case e~~ =1.0. For this case, according to Eq. (49),

(51)

For 8=0 the bulk mode eigenfrequency is

(52)

We note erst that when y, =1.0 (i.e., for a mode
propagating in the z direction) Eq. (49) is similar to
Eq. (27). For the free surface (e&~ ——1) there is no
surface mode, since in this case or&=A.„the energy of
the bulk mode. For values 0~«11(1 the surface branch
lies below the bulk. For 1(&ii&2, according to Eq.
(48), there exists no solution for real values of ~sj. For
2&&11~& ~ we have an optical branch which cuts off
for small values of A, . The cutoff value A, is

l.2

I.O

.8

.6
3

.2

=8JS
A, =O

Equation (51) was previously derived in Ref. 1 in order
to illustrate the fact that surface modes can exist for
nearest-neighbor interactions at a free surface if non-
normal bonds are cut in constructing the surface. In
Fig. 5 we represent the bulk modes by the shaded
portion of the figure. The curve labeled ~&

——1.0 is a
plot of Eq. (51) with A, =O. For values of A..WO and
6[1=1.0 the difference co~( ' —~~ is independent of A, .
For 0~«II&1, and for values of A.,/0, the surface
branch lies below the bulk branch for every value of
A . This feature is illustrated in Figs. 6 and 7 by the
curves labeled ~» ———,

' and ~& ——1. For 1~&~11(2 we have
cutoffs in the dispersion curves. The surface branch
touches the bulk at a value of A. . The surface branch
as a function of A, is either above the bulk spectrum
or below the bulk spectrum, depending on the value
of A, These cutoff's are obtained from Eq. (48) by
requiring x =+1.

For @=+1,

0.2 0.4 0.6
~x= ~l-Vx~

0.8 I.O

FIG. 5. Dispersion curves for the (110) surface of
the sc structure; A, =O.

For this case we can take A.,=O since the surface
modes and the bulk mode have the same functional
dependence on A, . For 0( ~j (1we have two acoustical
surface branches. These branches are illustrated in
Fig. 5 for e, =-', . The upper branch, labeled (2), cuts off
at A, =A~, where

~f =1—(1—")(2 —")/(2 —e.'), (55)

and corresponds to a surface mode which has its maxi-
mum amplitude on the second layer of spins. The lower
branch, labeled (1), exists for all values of A„and has

Ag =h.,(e„—1) .

According to Eq. (53), when e[~=1 the surface mode
and the bulk mode have a common point at A =0.
For values of ~11& 1, the cutoff value of A, approaches 1
as A., is increased to its maximum value of 2. The
surface branch collapses to a point at A, = 1, for a
given value of e„, when the value of A, is 1/(e~~ —1).
For values of A, )1/(e„—1) a new optical branch
appears above the top of the bulk spectrum and cutouts
occur on the curve labeled 0=x. These cutouts are
obtained by setting x = —1 in Eq. (53). This gives

I.2—

I.O

.8

.4

fsfe = 8JS
hz = I/2

A, =A, =2+3., (1—e(&) . (54)

In Fig. 6 we show the surface branch for ~1&=2, e, =1.0,
and A.,=—', . This branch cuts o6 at Aq ———,'. For this
choice of parameters, the branch collapses to a point
for A.,=1 and becomes an optical branch for values of
A,)1. In Fig. 7 we illustrate the optical branch for
e~&=2, e& ——1.0, and A.,=2. According to Eq. (54), the
surface branch touches the bulk curve 8=m at A.,=O.

.2

I

.2
I i I

.4 .6
~x= ~ I-rx~

I

.8 .I.O

Fzo. 6. Dispersion curves for the (110) surface of
the sc structure; h.,= ~.
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1.4

1.2

1,0

.8

.6

cue = 8JS for small values of A. ; the cutoff is given by Eq. (55).
The optical suH'ace branch exists for all values of A,
For ~1 ——2 the acoustical branch is truncated to a point,
at A, = 1, while the optical mode is shifted further from
the bulk curve 0=m.. This is illustrated in Fig. 5 by
the curve labeled ~&

——2.
For 2&&& ~ we have two optical modes. One

exists for all values of A„while the other is truncated
for small values of A, . The cutoff value of A, is deter-
mined by Eq. (58). We note that e, ~ ~, A, ~ 0. In
Figs. 8 and 9 we have plotted Eqs. (55) and (58),
respectively. The cutoffs discussed above are given by
the portion of the curve which lies in the allowed region
of A„0~&A.,~& 1. This region is indicated by the heavy
solid line. Af gives the cutoffs of the acoustical modes,
while A, gives the cutoffs of the optical modes.

.2—

3. Analysis ut y =0

The two physical roots of Eq. (44), for A, =O, are
given by

s I

.2
I i I

.4 .6
Aq= (I—y~) ~

I

.8 1.0

x(1)= (2 —e,)/y„
x(2) = (1—")/v*.

(59)

Fro. 7. Dispers:on curves for the (110) surface of
the sc structure; A.,=2.

its maximum on the first layer of spins. The presence
of two types of modes is physically understandable:
In the limit e&~ 0 a surface mode must exist on the
second layer, since the first layer is completely de-
coupled. Hence, as e~ —+ 0, the surface branch (2)
approaches the curve labeled ~&

——1. As e&~ 0 the
surface branch goes to ~/a&, ~0 for A, In the limit
of c&=0 this branch is characterized by A., alone and
corresponds to energies of a one-dimensional linear
chain of spins on the erst surface. For this case Eq.
(44) can be factored, since one of the roots is x= 1/y. .
This root gives a surface mode on the second layer
which has zero amplitude on the first layer. The other
physical solution is given by

y,x= 1+(A,/2) (1—e„)
+(L1+-',A, (1—e) ))j'—y,') '~'. (56)

The energy of the one-dimensional spin wave may be
written, using Eqs. (56) and (47), as

The energies of these modes follow from Eq. (47):

MÃ(1) =6J
&

(u~(2) =1+e,. (60)

x(1)= L2 —e,+A, (1—e„)]/y„
x(2) = (1—e,)/y, .

Their energies are

6)~ (1)=Eg+A~t t [ &

Q3~(2) = 1+fr+A

(61)

(62)

2.0

1.5

1.0

The labeling (1) and (2) corresponds to the branches
shown in Fig. 5. For A, &0 and ~II/1 the physical
roots are given by

N =~at-'l l . (57)

For 1~&~&(—, we have two surface branches. One
optical-type mode labeled (2) exists above the bulk
curve 8=x, but cuts oG at a small value of A.„given by

A. =Ag ——1+(1—e,) (2—e,)/(2 —eP) . (58)

0.5

0
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The other mode is a full acoustical branch lying below
the bulk curve 8=0. In Fig. 5 these two modes are
illustrated for ~&——1.3. %hen —', ~&a&~& —,', we have two
full surface branches, one lying above the bulk curve
0=x, and the other lying below the bulk curve 0=0.
For ~~«&&2, the acoustical surface branch is truncated

-0.5—

-1.0—

FIG. 8. CutoK values of A, as a function of cq for
surface spin waves below the bulk curve 8=0.
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According to Eq. (62), I.he mode on second layer,
labeled (2), is not affected by a change in e~[ at p =0,
while the mode at the first layer has a shift propor-
tional to &11 for A, /0.

D. Eigenvectors for (110) Surface of the sc Crystal

The eigenvectors for arbitrary values of ~&1 and ~&

are calculable from Eq. (17). Simple analytical forms
are obtained for the ease &&=1. It can be shown that

u =u y. '—'/$1+A, (1—e„)]' ', (63)

since one of the factors of Eq. (44) is

x= $1+A.,(1—e)()]y, '. (64)

According to Eq. (63), the surface mode for y =0 is
solely on the erst layer of spins. For &,WO and 1+3.,
&&(1—e„))1, Eq. (63) gives the radius of the pre-
cessional circle for the acoustical branch as a function
of layer number /, counting into the crystal. When
1+A, (1—e„)(—1, the spins are 180' out of phase on
adjacent layers, and this mode has been defined as the
optical branch.

For the point y =0 and ~&=1, one root of the cubic
equation (44) depends on the limiting process. This
root, according to Eq. (61), is

~(2) = (1—")/7* (65)

If y,—=0 and e~-+ 0, then x(2) -+ &~, and we obtain
a physical solution. The energy of this state is de-
generate with the bulk for t.&

——1, but the excitation is

4. Arbitrary Values of e, and e~&

In Figs. 6 and 7 we have sketched dispersion curves
for a number of values of e, and e&[. The labels (1) and
(2) identify the mode for which the amplitude has a
maximum on the first and on the second layer of spins,
respectively. This identification is, of course, not correct
in the limit of c& and ~I I

—+ Oc, since the amplitudes must
then be equal on the two sheets. In the next section we
discuss the eigenveetors of these modes for special
cases.

completely localized on the second layer of spins. If
~& is infinitesimally greater than j., the degeneracy is
removed. The existence of this type of mode was
missed in Ref. 1 because the surface eigenvectors were
assumed to decrease monotonically with increasing
depth into the crystal.

IV. CONCLUSION

By allowing the exchange parameters to deviate from
the bulk values, the full richness of surface spin-wave
spectra has been displayed. In this paper we have
derived for the Heisenberg ferromagnet the eigenvalue
matrix for the semi-infinite system of spins coupled by
nearest-neighbor exchange. The mathematical for-
mulation used here allows us to obtain solutions for
arbitrary values of the surface exchange constants.
Surface spin-wave modes for the simple cubic structure
are calculated for the (100) and (110) surfaces.

For the (100) surface and only nearest-neighbor
interactions, as previously noted in Ref. 1, no surface
states exist when ~et= e=r1 (i.e., for a free surface).
However, if these parameters are allowed to vary,
surface spin waves below and above the bulk spectrum
exist. For a certain range of parameters these surface
branches intersect the bulk spectrum. Beyond the
point of intersection no surface mode exists for real
values of co. These cutoRs occur because an excitation
localized near the surface would decay into a bulk
mode of the same frequency and propagation vector.
When ~j./1, a new surface mode is found to exist,
which has its maximum on the second layer of spins.
As discussed above, this mode can exist either above
or below the bulk spectrum, depending upon the value
of 61.

The existence of this mode is physically obvious,
since in the limit of e&=0 the first layer of spins is
decoupled from the rest of the crystal, and one must
recover for the (100) surface a mode having nonzero
amplitude on the first layer with a dispersion curve
characteristic of a two-dimensional layer of spins. The
other mode which has zero amplitude on the first layer
corresponds to the free-surface case.

For the (110) surface and only nearest-neighbor
interactions, there is a surface mode characterized by
a propagation vector in the x direction (i.e., the L110]
direction). As discussed in Ref. 1, the main difference
between the (100) and (110) surfaces is that in the
latter case non-normal bonds are removed when the
surface is constructed. As in the (100) case, two types
of surface branches exist for ~j /1.

The effect of an external rnagnetie field simply raises
the dispersion curves, but does not affect the damping
of the surface spin-wave modes. However, as noted in
the Int:roduction, for small k~~ the dipolar interactions
must be included in the spin Hamiltonian. Some of the
physical properties of surfaces not having planar in-

version symmetry are discussed in Ref. 10.

I M. Sparks (unpublished).


