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Magnetic Ordering in Materials with Singlet Crystal-Field Ground State. II.
Behavior in the Ordered State or in an Applied Field
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The theory of magnetic ordering and of collective excitation behavior in materials with a singlet crystal-
Geld ground state has been extended to finite temperature and to the regime where the system has a magnetic
moment due to ordering or an applied Geld. For simplicity, we still consider a system where the only excited
state in the absence of exchange is also a singlet at an energy 6 (in units of 'K) above the ground state. We
show that in the random-phase approximation (RPA), the self-consistent molecular-Geld eigenstates serve
as a good basis for determining the collective excitation energies; while in the two-site correlation approxi-
mation (TSCA), a modification of the molecular-Geld states is required in the ordered phase. The energies
of the collective excitations are calculated with and without an external magnetic Geld in both
the paramagnetic and magnetically ordered phases. At Gnite temperatures, a Green s-function formalism
is employed to facilitate the calculation of thermodynamic quantities. For To/A)0. 1, we find in the RPA
a discontinuity in the magnetization at the critical point. The discontinuity is most prominent when T&
is comparable to the crystal-Geld splitting 6, and vanishes both as Tz/6 decreases toward 0.2 and at 6=0.
We show that in the TSCA the magnetic transition is also Grst order, and, in fact, for the TSCA the transition
is Grst order even at T=O. The specific heat and susceptibility are calculated in both the RPA and the
TSCA and compared with the molecular-field-theory results.

1. INTRODUCTEON

~~~OR rare-earth compounds with a singlet crystal-field
ground state for the rare-earth ion, the exchange

interaction must exceed a certain critical value relative
to the crystal field to have magnetic ordering even at
zero temperature. ' ' The magnetic moment which
occurs in such a case is essentially an induced moment
corresponding to the Van Vleck susceptibility, where
the exchange field takes the place of an applied external
magnetic field.

In a previous paper' (referred to as I hereafter), we
discussed the collective excitation behavior and the
magnetic ordering in systems with singlet crystal-field
ground state. In particular, we studied the energies of
collective excitations for the two-level system where
the first excited state is also a singlet. We showed that
a general and useful way to treat the collective excita-
tion behavior in induced moment systems is through
the introduction of a pseudospin formalism, where the
expectation value of S;„the pseudospin for the ith ion,
corresponds to the occupation of the molecular-field
states for that ion. (The expectation value of S;, for
the true ground state would be —

2 if the molecular-field
approximation were exact. ) Such a formulation lends

* Supported by U. S. Air Force OfIj.ce of Scientific Research.
t Present address.' G. T. Trammell, J. Appl. Phys. 31, 362S (1960).' G. T. Trammell, Phys. Rev. 131,932 (2963).
~ B.Bleaney, Proc. Roy. Soc. (London) 276A, 29 (2963).
4 B.R. Cooper, Phys. Rev. 163, -"~" (2967).
~ Y.-L. Wang and B. R. Cooper, Phys. Rev. 172, 539 (2968).

(Referred to as I throughout the present paper. )

itself to the use of techniques developed for conventional
spin systems in order to obtain a succession of approxi-
mations treating correlation eBects more correctly.

In I, we found the collective excitation behavior for
the two-singlet-state system in the paramagnetic regime
in the absence of applied magnetic field. While the
formal treatment was presented for general tempera-
ture, the self-consistent numerical calculations pre-
sented were restricted to zero temperature.

In the present paper, we have extended the treatment
of the collective excitation behavior to the regime,
where the system has a net magnetic moment either
through the presence of magnetic ordering or through
the presence of an applied magnetic field in the para-
magnetic regime. In general, doing this involves certain
formal difficulties connected with finding an appropriate
basis for treating collective excitations corresponding to
small perturbations from the states of the basis. In
Sec. 2, we examine these questions in some detail
before specializing to the random-phase approximation
(RPA) and the two-site correlation approximation
(TSCA).

For the RPA, it has been possible to carry out self-

consistent detailed numerical calculations of the collec-
tive excitation spectrum and of the corresponding mag-
netization in the ordered regime. Also, we have extended
the numerical calculations in the paramagnetic regime
to finite temperatures. This has allowed us to follow

the collective excitation and magnetization behavior
through the ordering temperature, and also to study
the change in the type of behavior found as the exchange
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increases so that the ratio of Curie temperature to
crystal-field splitting (T,/A) increases. (In this paper
we will use Boltzmann's constant as the unit of energy,
i.e., all energies are in 'K.) In the RPA, at T=0 the
magnetic transition is second order, and there is a lt =0
mode instability at the critical ratio of exchange
to crystal-Geld splitting for magnetic ordering. For
Tc/6) 0.1, the transition becomes first order, although
for values of Tz/A only slightly greater than 0.1, the
discontinuity in magnetization at Tz is small. The
discontinuity is most significant for values of To/A near
unity, where it is quite substantial. For Tc/A»1, while

a discontinuity in magnetization persists, the size of
discontinuity decreases, and the magnetization ap-
proaches the molecular-field behavior. ' (This approach
to molecular-field behavior, as discussed in Sec. 6
below, is associated with the fact that the collective
excitations we treat do not approach spin waves for
large exchange, but rather the excitation dispersion
disappears, and one approaches a molecular-Geld-type
excited state. )

For the TSCA, we have treated the detailed self-
consistent calculations only in the limit where the Curie
temperature is high compared to the crystal-field
splitting (To/A»1). However, we are able to use our
understanding of that limiting behavior to show that
the discontinuity of magnetic moment at the critical
point occurs for all finite To/A in the TSCA. In fact,
contrary to our assumption in I, we are able to show
for the TSCA that the transition is first order even
at T=O.

It has been possible to calculate the susceptibility for
the TSCA in the paramagnetic temperature regime, and
this differs significantly from the RPA susceptibility
values in the critical region.

We have also calculated the specific heat for the
molecular-Geld approximation, the RPA and the TSCA
in the paramagnetic regime, and for the molecular-Geld

approximation and the RPA (for small To/6) in the
ferromagnetic regime. Because of the presence of the
dispersion in collective excitations, the Schottky
anomaly in the paramagnetic regime is appreciably
broadened in the RPA and the TSCA. (In the molecular-
Geld approximation, the exchange has no effect on the
specific heat in the paramagnetic regime. )

In Sec. 2, we present the general formalism of the
pseudospin treatment for the two-singlet-level system
with a magnetic moment. This formalism is treated in
the RPA in Sec. 3, and formal expressions are obtained

' A paper by Pink treating this problem in an approximation
essentially equivalent to our RPA appeared while the present
manuscript was in preparation. LD. A. Pink, J. Phys. Cl, 1246
(1968).j Pink has found a similar discontinuity in magnetization
at T,. However, Pink makes the statement that the magnetization
is discontinuous at all 6nite T,. In contrast, we Qnd that there is
a discontinuity only for T,/A)0 1 For T,/n(0. 1, the tra. n.sition
is second order. Presumably, Pink's incorrect statement was
simply an erroneous assumption which was not investigated fully,
and his formal development and detailed calcglatjons as far as
they go appear to be correct,

for excitation energies, spontaneous magnetization, and
susceptibility. The formalism is treated in the TSCA in
Sec. 4 and the treatment is specialized to the limit of
small moment to obtain the paramagnetic susceptibility.
In Sec. 5, we calculate the specific heat. Finally, in Sec. 6
we present the results of the numerical calculations, and
discuss the physical effects giving rise to the behavior
found. We also mention the experimental situation most
likely to provide information related to the present
model behavior.

2. PSEUDOSPIN FORMALISM WHEN A TWO-
LEVEL SYSTEM HAS MAGNETIC MOMENT

We consider the Hamiltonian

X=K(I/c, gy—aJJA.) Q—g'JJ' J, . (2 1)

Here, V„- is the single-ion crystal-field potential, which
gives a singlet ground state and a singlet excited state
separated by an energy gap A. In (2.1), J, is the total
angular momentum of the rare-earth ion at the ith site,
and r(;, represents the effective exchange integral. LIn
real systems with large orbital contribution to the
moment, there may also be a substantial anisotropic
exchanger' of the form (J,"R;,)(J; R,,). Such a con-
tribution could also be treated by the present forma-
lism. j The sum in the exchange term is over all inter-
acting pairs of ions. We have included a Zeeman term
in the Hamiltonian, where g and p~ denote the g factor
and Bohr magneton. (As already stated, we use Boltz-
mann's constant as the unit of energy, so 6/T, rI/6,
and xiii H/T are pure numbers. In these units, for H in
oersteds, xiii ——0.6717 && 10 ' 'K/Oe. )

We can split the total Hamiltonian into two parts as

K=Kp+Xi, (2.2)

30t= —2 8'ii' ii (2.4)

Here we have defined

and
1'=—J'—(I)&

g(&)=p g;,e"" .

(2 &)

(2.6)

Then Kp is the molecular-field Hamiltonian. In (2.5),
e, denotes a unit vector in the s direction. The quantity
(J) is the statistical average of the angular momentum
per ion J;, and must be determined self-consistently. At
zero temperature and in the molecular-field approxima-

' R. J. Elliott and M. F. Thorpe, J. Appl. Phys. 39, 802 (1968).' P. M. Levy, Phys. Rev, 135, A155 (1964); 147, 311 (1966).

where

30p=r (I'-—
Lgl ~@+28(0)(J)jJ'.}+&8(0)(J)' (2 3)

t

and
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where
tan28= 2I 2$(0)(J)+gpiia/n/6,

n=(1.
I
J.

I
o.)

(2 g)

(2 9)

is the oR-diagnonal matrix element of the angular
momentum between the crystal-field-only states. As
already stated, 6 is the energy gap between the two
crystal-field-only singlets.

As discussed in I, the pseudospin representation for
the Hamiltonian of (2.1) is based on the fact that the
matrix elements for a two-level system can always be
written in terms of an eRective spin Hamiltonian with
spin equal to ~. We assign 5,= ——,

' to the molecular-field
ground state, and 5,=—,

' to the molecular-field excited
state. Then to project 3'. onto the pseudospin manifold
only involves recognizing the form of the four spin--,'
operators, which correspond to 2)&2 matrices with unity
as one element, and zero as the other three elements.
These operators are S;+, S, , 5, 5,+, and S;+5; .

In I, we made the specialization pertinent to the
paramagnetic regime in the absence of applied field,
namely, that (J)=0, 8=0. We now proceed to treat the
ease when the system has a magnetic moment, so 8/0.
From Eq. (3.1) of I we obtain

X=+ C,5,,+2+ C.S;,

+ P g, ,(C„S,,S;,+4C,.S;&,,+4C..S,,S,,), (2.10)
&i,j)

where, including the applied field, the energy splitting
between the molecular-field states is

Do=a cos28+2I 2g(0)(J)+gpiiFI)n sin28 (2.11)
and

C.= I oo —g(0) (nil nDD )j
= 6 cos28+2gpsHn sin28,

(nil noo) 4n' sin'28,

A]p = A eos 20)

C —= —A(0)nio(noo+nii) == 2J(0)n(J) cos28,

—= —nio(nii —noo) = 2n' sin28 cos28.

(2.12a)

(2.12b)

(2 12c)

(2.12d)

(2.12e)

tion, (J) is the expectation value of J;, over the
molecular-field ground state.

To obtain the molecular-field eigenstates, we diago-
nalize BCp. These molecular-field eigenstates are

I 0)= cos8
I
0,)+sin8I 1,), (2.7a)

I 1)= —sin8I 0,)+cos8I 1,). (2.7b)

Here, IO,) and I1,) are the crystal-field ground and
excited state, respectively, which can be obtained by
solving the crystal-field Hamiltonian V,. In our general
discussion we do not need the explicit form of the two
states which may diRer from material to material. We
only assume that they are magnetic singlets.

The rotation angle which diagonalizes Kp is given by

When rewritten in this form, the fundamental difFiculty
associated with the calculations is apparent.

If we consider the equations of motion of the pseudo-
spin operators 5; in order to find the excitation energies,
e.g. , at T=0, we are interested in small deviations from
the equilibrium direction in pseudospin space. For the
paramagnetic regime, the equilibrium direction in the
pseudospin space is the s axis. In general, when the
system has a moment (840) this is no longer true, and
a further transformation of the type S. =PS,+&5, is

required before one can calculate the elementary excita-
tions, which show small deviations from the ground
state with pseudospin pointing along the equilibrium
direction. (We recall that physically the s axis in

pseudospin space corresponds to the choice of the
molecular-field states as the basis for representing the
true states of the system. Transformation to an equilib-
rium direction in pseudospin space along a different
axis corresponds to a different choice of basis for
representing the true states of the system. Small
deviations from the equilibrium direction of pseudospin
correspond to small deviations of the true states of the
system from the basis states used to define the pseudo-
spin. ) This difficulty arises because of the presence of
the C and C„ terms in BC. This is easily seen by con-
sidering the case when the s axis is the pseudospin
equilibrium direction. Then so far as the ith pseudospin
is concerned, there are three kinds of terms: The C,
term and the C,. term (because 5,, has a nonvanishing
time average) act like effective static fields longitudinal
with respect to the assumed equilibrium direction. The
C term acts like a fluctuating field transverse with
respect to the assumed equilibrium direction, since the
time average of 5j vanishes. The C, term and the C,
(because S,, has a nonvanishing time average) act like
static fields transverse to the assumed equilibrium
direction. This means that unless the eRect of the C,
and C, terms vanish, the assumed equilibrium direction
is incorrect, and the equilibrium direction of the pseudo-
spin changes so that there is no effective static trans-
verse field.

Thus, in general we need a further coordinate trans-
formation in the pseudospin space (from the axes deter-
mined by the use of the molecular-field states as basis
for the pseudospin representation) before calculating
the elementary excitation energies. However, if it
happens that the C and C„ terms cancel each other,
we need no further coordinate transformation. In that
case the basis we are using, which consists of the molec-
ular-field-theory states, is a proper basis. (This is
analogous to choosing the Neel state and the states
having spin Qips from the Neel state as the basis for
studying spin waves in antiferromagnets. ) We may,
therefore, expect that in the RPA, which neglects the
correlation of pseudospin motion on different lattice
sites (so that for speciiied magnetization the eRective
field is the same as that in molecular-field theory), the
cancellation of C, and C„ terms occurs, and one does
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not have to make any pseudospin coordinate trans-
formation. LThis is in contrast to an improved approxi-
mation such as the TSCA, where the effective Geld and
the consequent mixing of the crystal-field states is not
simply given by the effects of magnetization plus applied
field as shown in (2.8). The transformation to a proper
basis for the TSCA takes account of the further mixing
of the crystal-field states due to the effective field
associated with correlation effects. ) If one does need a
transformation in a more exact treatment (such as the
TSCA), the transformed Hamiltonian takes the same
form as X in (2.10) with new coeKcients.

It is easy to show that in terms of the pseudospin
components J, is given as

In this equation, the terms multiplying Sf, which have
nonzero time averages correspond to static transverse
fields. Then the condition that the terms acting like a
transverse field sum to zero gives

0= (2LC,+2/(0)(5, )C„]
—8 2 Af C*.(5.)((Sf+5+)+(Sf"5 )))Sf., (2 19!

where we have made the approximations

Sf.L(1—2(5,))5;+5, —(1+2(5,))5, 5;+]=0, (2.20)

and

(5,++S, )Sg+Sg—, & ((5,+Sr+)+ (5, Sf+))—Sr, ~ (2 21a)"'"
(5, +5,-)5.,5~.- «5,"Sr )+(5;-5"»Sf.

If a rotation of coordinates is necessary in order to
eliminate the C and C, terms from the Hamiltonian,
let us call the angle of rotation, in the x-2' plane, of the
s' axis from the s axis, p. Then,

J.= —2n sin(28 —p)5, +2n cos(28 —rp)5, , (2.14)

so that the self-consistent condition for the thermal
average value of J, is

(J)= —2n(5, ) sin(28 —p) . (2.15)

Bearing this in mind, we now consider in more detail
the determination of the angle p. As already stated
above, this angle determines the transformation neces-
sary in order to eliminate the effect of the C, and C„
terms and thus transform the Hamiltonian into the
form appropriate for Gnding the elementary excitation
energies. To do this, we write S, in the form used by
Callen' in treating ordinary spin systems:

5,= (5.)+ ((-,' —(5,))S+5 —(-,'+ (5.))S S+]. (2.16)

At T=O, (S,) is the ground-state expectation value,
while at finite temperature, (S,) is the thermal average.
Expression (2.16) is exact, and the quantity in brackets
is small for all temperatures. Using (2.16), we rewrite
S;,S,, as

5,,5,,= (S,)5;.+S,,
&&L(-' —(5 ))5'5 —(-:+(5.))5' 5"] (2 17)

This allows us to combine the main part of the C, term
in K with the C, term. Substituting (2.17) into (2.10),
we then consider the equation of motion of Sf+:

LSf+,&]= —C*Sf++2LC.+28(0)(5*)C-]Sf.

+2 2 8fJC.*{5/.L(1 2(5.))52'Sr—

-(1+2(5.»5,-5;.]+(5,.+5;-)

&& L(1—2(S,))Sf+Sf,—(1+2(S,))SfzSf+])

+2 AfiL —2C.:Sf+51.+4C.*Sf.(5~++5~ )] (2 18)

' H. B. Callen, Phys. Rev. 130, 890 (1963).

considering only nearest-neighbor exchange interaction.
We can write (2.19) using the quantity e defined in

Eq. (4.10) of I

)+(5 +5—+))

1
=—2 ya((So+Su )+(51, 5-~ )), (2.22)

with

~.= a(~)/a(0) (2.23)

so that (2.19) becomes

C,+2C .$(0)(5,)(1—2e) = 0. (2 24)

It should also be pointed out that the particular form
of the equation determining p depends on the way in
which we write S,. We have chosen to write S, in
Callen's form, so that the approximations made always
involve small quantities.

Thus, to satisfy Eq. (2.24), we have to transform to
the x', y', and s' coordinates such that

5,'= S, cosy+5, sing,

S.'= —5, sing jS.cosy,

Sy'= Sy.

(2.2Sa)

(2.25b)

(2.25c)

C...= —4u' sin'(28 —y),

C...= n' cos'(28 —q), —
(2.26b)

(2.26c)

C,. = —',d sin(28 —p) ggnnH cos(28 —y), (—2.26d)

Cz~ -, ~ = Q siil (28—rP) . (2.26e)

Then substitution of (2.26d) and (2.26e) into (2.24)
Lwith x —& x', s ~ s' in (2.24)] gives the equation deter-

After the rotation, the Hamiltonian takes the same form
as in (2.10), but with different coefficients:

C,'= 6 cos(28 —p)+2giinaH sin(28 —p), (2.26a)
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In the absence of external magnetic field, H=O, and
we have either y = 28 or

cos(28 —y) =6/ —8(5,)g(0)n'(1 —2e) . (2.28)

LActually, p= 28 is the solution of C,=o, C„=0, and
is independent of the approximations used in Eqs. (2.20)
and (2.21). What this solution does is to undo the
transformation given in (2.7) and (2.8) and bring us
back to the crystal-field-only eigenstate basis, which is,
of course, far from. the proper basis for which we are
looking. However, putting aside the demand of choosing
the proper basis for the perturbation considerations,
any complete set of wave functions is eligible for a basis.
In the special representation using the crystal-field-only
eigenstates as basis the Hamiltonian takes the simplest
form

ae=P ~5,.—4 P g;;n'S, Z;. ,
&' ~)

(2.29)

which is, in fact, Eq. (3.8) of I. However, here in the
ordered phase (S,)=0. As we have pointed out in I,
Eq. (2.34) is identical to that for an Ising spin system
with a transverse magnetic field, and may serve as a
good starting point for an exact calculation. ]

For the purpose of calculating the elementary excita-
tion energies in the ordered regime, we use Eq. (2.28)
to determine the value of p eliminating the effective
transverse field.

In the RPA as discussed in I, we take (5,+Sr+)
=(5;—5&+)=0, so that e=o. Then in the RPA, the
condition for the vanishing of transverse field effects in
the equations of motion becomes

RPA, C,+2/(0)C„(5,)=0. (2.30)

In agreement with our earlier remarks concerning the
absence of any rotation of pseudospin coordinates in
the RPA, we see that this condition is automatically
satisfied with y=0, if we remember that both C and
C„are functions of (J), which should be evaluated
self-consistently. From (2.15),

if q = 0, (J)= -2n($, ) sin28,

and from (2.12d) and (2.12e)

(2.31)

mining p. Namely,

s'6 sin(28 —q)+4/(0)n'(5, )(1—2e) sin(28 —p)
Xcos(28—p) —gy~nH cos(28 —q) =0. (2.27)

A. Behavior at T=O

The Fourier transformed equations of motion for the
pseudospin in the RPA are

i8,+= Ls,+,x)= —C,s,+—2C,.(5.)8(0)5,+

+4C..(5.)g(&)(5k++5 a )
= —Psa++» s,

i8 &
———55 &

—,BC)=C,S &
—+2C„(5,)8(0)5 &-

—4C„(5,)g(k) (SI,++5 k
—

)
=%' ~ —»I,+,

where condition (2.30) has been used, and

(3.1b)

5+ Q 5+s—ik rg

N g

(3 2)

& =C.+2C*.(S*)a(0)—4C**(5*)a(&), (3 3)

~ =4C„(S,)g(S) .

Thus, the normal mode energies are given by

(3.4)

& '=P' ~'= LC.+2C*.(5.)a(0))
x[c.+2C,.(s.)g(0) —8c.,(s,)g(&)). (3.5)

We now consider separately the cases of the ordered
phase with H = 0, the paramagnetic phase with finite H,
and the ordered phase with finite H.

a. H=O, Ordered Phase

To evaluate the coefficients in (3.5), we use (2.8)
with H= 0 and (2.31) to get

with
cos28= —1/(2(S, )A),

A =4$(0)n'/6 (3.7)

defined as in I. Then,

3. RPA THEORY FOR A TWO-LEVEL SYSTEM
WITH NET MAGNETIC MOMENT

We now treat the two-singlet-level system in the
RPA, when each ion has a net moment. This applies
either when the system is magnetically ordered, or when
there is an applied magnetic field present in the para-
magnetic regime. We first consider the situation at T= 0
using the equations of motion for the pseudospin
operators. The results are then extended to finite
temperature by studying the equations of motion for
the retarded time Green's functions.

C +2/(0)C„(S,)
= 2n ri(0) cos28((J')+2n sin28(S, )) . (2.32) where

EI,/6 = (1/a) (1—a'yI, ) '~',

a= —1/(2(5, )A) .

(3.8)

(3.9)
So that, indeed, (2.30) is satisfied for p=o.

In Sec. 3, using the basic simplification that q =-0,
we consider the collective excitation and magnetization
behavior in the RPA. In Sec. 4, we treat the more
complicated case of the TSCA, where TWO,

The spectrum of (3.8) differs from the boson spectrum
obtained in the Bogoliubov-type approximation" by
having replaced —~~by (S,) as expected.

"B.Grover, Phys. Rev. 140, A1944 (1965).
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b. H@0, I'aramugnetic I'hase

H —+ 0, (J)= —2&S,)(A(J)+2n2g/2I/H/6) (3.10)
ol

(J)= (2n'g/ie/6) f—2&5,&H/(1+2&5, )A)j. (3.11)

So that the susceptibility is

T= 0, X= (2 n2g2/ie2h///6)L —2(S,)/(1+2(S,)A)j. (3.12)

Here (5.&
denotes the expectation value for the true

ground state.
We next obtain the excitation spectrum in the para-

magnetic regime in an applied field at T= 0, and show
the connection with the Bogoliubov-type spectrum
obtained by Cooper, 4 including terms up to second order
in kI. Defining

(3.13)8= 2n'g/2e/5

and evaluating the coefficients to second order in H, we
obtain the energy spectrum

E —
p 8'H'—= 1—+— —11+—

n'(1 —1/o) 2 ~

with a as defined in (3.9). This would coincide with
Cooper's result if —2(5,)= 1.

c. Spec/rum for Ordered Phase with HNO

We define

First, we consider the limit of small H, since that is
the pertinent limit for calculating the susceptibility. As
H -+ 0, &J)—+ 0, and therefore 8 ~ 0. Then in the limit
of small H, we can replace sin28 in (2.31) by the ex-
pression for tan28 in (2.8) and obtain.

we define two types of Green's functions:

G (,1)= —&LS. (1) Si'(0) j&8(1)

=«5. (1) 52+(0)» (318)

G+(g, f) = —&LS,+(1),5,+(0)~&8(1)
= (&S.'(1) 52'(0))) (3 19)

Here, 8(1) is the usual unit step function, and the
canonical thermal average is indicated by the single
angular brackets. The equations of motion of the
Green's functions in the energy Fourier space are

1
(g, f) = &5—.)8. +L~.+2C-&5 )a(0)jG (g 1)

(f 1)+G +(f 1)3
f

2LG—-+2G*.&5.)8(0)7G '(g, i) (3 20)

EG..(g, i) =-ic.+2C..&5.)~(0))G- (g,f)

+4C..&5,) 2 ar, LG.-(f,i)+G~'(f, i)3
f

+2Ã.+2G**&5*&8(0)PG~'(g1) (3 21)

To obtain these equations we have used the following
decoupling approximations in the RPA:

&(5,+Sr, .S;))~ (S,)((5,+ 5,—)) (3 22a)

«S.*Sf*,S~ )) &5.)((5" 5/ )) (3 22b)

85,+5 +; S )), ((5,+S;S )) 0. (3.22c)

In Eqs. (3.20) and (3.21) a new quantity

h = 2ngpeH/A. (3.15) (3.23)
For small h, i.e. , h((1/u2 —1,

E2= (~/o) [1-~'v2
+2h(1//22 1)

—i/2(1+ 1g2~ ))1/2 (3 1{))

This is the behavior for exchange well above the critical
value for the k= 0 mode instability.

On the other hand, for 1))h))(1/a2 —1), we have

Es DL1 —y2+-2'(2h)'"(1+——2ys) j'", (3.17)

so that the energy gap is still finite at a=1.

B. Behavior at Finite Temyerature

The calculations are extended to finite temperature
by using the retarded time Green's-function formalism. "
Here, we briefly summarize the procedure, since the
calculation parallels that already done in Sec. 3 A for
T= 0. Following the procedure of I (used there for the
paramagnetic regime in the absence of applied Geld),

~' D. N. Zuharev, Usp. Fiz. Nauk 71, 71 (1960) /English
transl. : Sov. Phys —Usp. 3, 320 (1960)g.

Ga+(h) = —(S,)X/2r (E—E/, )(E+Es) . (3.25)

Here P and X are given by (3.3) and (3.4), where for the
finite-T behavior, (S,) now denotes the thermal average,
and E2 for the ordered phase is the same as in (3.8), so
that the excitation spectrum at finite T is obtained from
that at T=O in the RPA by letting (5,) denote the
thermal average rather than the ground-state expecta-
tion value.

To obtain the value of (S,), which self-consistently
determines the excitation spectrum, we calculate the
correlation function &52+52 ) from the Green's func-

appears. This shows the effect of an effective transverse
static field on the system. However, Eq. (2.29), giving
the RPA condition for the vanishing of such a transverse
field, just causes the coeKcient of this term to vanish.

Then taking the spatial Fourier transform of (3.30)
and (3.31), one solves for the Green's functions. We
obtain

Ge (h) = (S.&(E+p)/rr(E E2) (—E+E/,), (3.24)—
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By exactly the same argument used for small H and,
hence, for small 8 at T= 0, we obtain at all T:

(5~+Su )= (—(5*)/I'~)P(~'-i+0)/(~"""" 1—)
+(p p) /( ( Qp / r) 1 )$ (3 26) RPA, )(= (2n'g'p/i'kg/A) L

—2(5.)/(1 +2(5,)4 )]. (3.34)

tions. We obtain

The TSCA includes correlation eRects bete een ex-
citations on different sites. The use of this approxima-
tion in determining the excitation spectrum in the
paramagnetic regime in the absence of applied field has
been discussed in I. In the first part of this section, we
complete the exposition of the way in which the TSCA

(3 28) is used at finite temperature for the paramagnetic
regime in the absence of applied field. This completes
the steps necessary for putting the results of I in a form
suitable for self-consistent numerical calculations.

In the second part of this section, we apply the TSCA
to a two-singlet-level system possessing a Inagnetic
moment. Ke obtain the dispersion relation for the

(3.30) excitation waves in the ordered phase. The paramag-
netic susceptibility is also calculated in the TSCA, and
compared to that obtained in the RPA.

(S,) = ——',+—P (Si+5/,-).
a

This procedure gives

Q(1—a'7/, ) '" coth(e/, /2),
2E ~

1
Q (1—a'y/, ) '/' coth(e/, /g),

2Ã ~

where for the ordered phase

) js determined self consjstently by substjtut 4 TWO SITE CORRELATION APPROXIMATION

ing this into the expression

b/,
——Ei/T = (1—a'y/, ) '/'/t (3.31)

A. TSCA at Finite Temperature in Paramagnetic
Regime in Absence of App1ied Field

t= Ta/d, . (3.32)

Also, we obtain the corresponding self-consistent
magnetization

(J)/~= —2(5*)(1—a')'" (3.33)

Equations (3.8), (3.9), (3.19), (3.29), (3.31), and
(3.33) serve to self-consistently determine the excitation
spectrum and the corresponding magnetization. The
procedure is as follows: One fixes t/a. This is equivalent
to fixing T/A, the ratio of the temperature to the crystal-
field splitting. One then calculates p, and 4', for a
series of values of u by performing the lattice sums of
(3.29) and (3.30). (This has been done for the simple
cubic crystal by dividing the Brillouin zone into 4096
small cubes and taking the sums over the values of k
at the center of the cubes. Using the symmetry pro-
perties of the simple cubic crystal, 165 distinct points,
appropriately weighted, and occurring in 1/48 of the
Brillouin zone are sufficient to do this. ) Evaluation of
these lattice sums is the main computational problem
in the self-consistent determination of the magnetiza-
tion and excitation spectrum. Then from (3.28) and
(3.9), one finds (5,) and 2 for each a. Thus, we calculate
a curve of A versus a for fixed T. Hence, for a specified
A, this curve gives us the value of a for the fixed T, and
we also have the value of (5,) for that a. Then, using
(3.8) and (3.33), this allows us to fulfill our objective of
self-consistently finding the excitation spectrum and
the magnetization as a function of T for fixed A.

Ke also give here the generalization to finite tempera-
ture of (3.15), the RPA expression for the susceptibility.

The present calculation continues from Eqs. (A39),
(A40), (A42), and (A43) of I:

Ei/3, = L1+2(5,)A (yi —2e) j'/',

&= AA(5, )(y/, —2~),

(4.1)

(4.2)

(5 '5 )= —((5.)/E )L(~+A+t)/(~'""' —1)

+ (g~ —A $)/(s( —&i/&) 1)j (4 3)

where e, as defined in (2.22), gives the effect of correla-
tion between excitations on different lattice sites.

Define b by the relationship

(4.5)3= b'/ —2(5,)(1—2b'e),
so that

/ /A= (1—Py )»2/(I —2b2$) i/~ (4.6)

Then, using this expression in (4.3), from (3.27), we
obtain (5.) as

t= (T/A)A(„

Ai, = (1—2b'e)'/'.

(4.9)

(4.10)

Equation (4.7) gives one relationship between (5,) and
e. To determine (5,) and e requires a second such
relationship. This is provided by the definition of e

in (2.22).

(S,)= ,'(A/, p/, +—4—//A/) '. (4.7)

Here, p/, and 4'(, are given by (3.29) and (3.30), and

h/, ——E/,/T = (1—b' y/, ) '/'/t, (4.8)
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Consider first the

1—p~(5+5 +)
g

term in (2.22). From (4.3), using Eq. (4.2) for $, and the
definitions (4.8)—(4.10), one obtains

1—P yl, (5~+5 a+)
lV

(Ai, /1= —(S.) ~
(yQ 4b)

~

4 g (4.11)
(2A,

pseudospin from its equilibrium position, we must first
perform a rotation of the pseudospin coordinate axes by
a small angle p to eliminate the presence of any effective
field transverse to the equilibrium axis. As already
discussed, in the RPA such transverse field effects
vanish automatically. However, in any improved
treatment such as the TSCA, the rotation by p must be
performed. The rotation angle p is determined from
(2.27).

To calculate the paramagnetic susceptibility for small
magnetic field we need only to consider the small 8 and p
limit. It will be shown below that, to the first order in e,

with
1

4'g ———Q yi(1 b'yI, )'"—coth(-', ei) .

Similarly,

1—g yi(Si+Si—)

(4.12)

p= —8A(5, )e8. (4.17)

In the following, we shall first calculate the elemen-

tary excitation spectrum in the ordered phase. Then we
consider the case when there is an applied magnetic
field present in the paramagnetic regime, and we find
the paramagnetic susceptibility in the TSCA.

so that To calculate the energy spectrum in the ordered phase

(4 14) at T= 0, we consider the Fourier transformed equations
of motion:

~= —( 5)( A/b')(~~ —+~).

1)
(5,) ~(&,—@,)+ ~@, (4.13) a. E/ernentary Excitations in the Ordered Phase at T=O

2b'J 2Agl

Equations (4.7) and (4.14) are then the basic equations
self-consistently determining (5,) and e for the TSCA in

the paramagnetic regime in the absence of applied field.
In fact, using Eq. (4.7) one can eliminate (S,), and using
(4.10) one can eliminate e from (4.14).Thus, one arrives
at a quadratic equation for Aq' which has the solution

A~'= +i/yi.

From (4.9), using (4.5), one obtains

tlb= L
—1/(2(5.)A)3'"(T/~) (4.16)

B. TSCA When the System Has A Magnetic Moment

As discussed in Sec. 2, in order to calculate the normal
niode energies corresponding to small deviations of the

For fixed t/b, as b varies, T/6 varies only slowly. We
make use of this fact in setting up our self-consistent
numerical procedure. A fixed value is chosen for t/b and
b is varied. Then for each value of b, one determines A.~

from (4.15), and, using (4.7) and (4.10), one then
determines (S,) and e. Finally, from (4.5) one finds A,
and from (4.16) one finds T/A. Consequently for
specified A, one finds for each b the corresponding
T/6, (S,), and c.

i81.+= LSi+,&]= —C,S ++i+ g(q)

X[ 2C„Sa q+S—q, +4CxxSa q, (5,++5 q )J, (4.18)

where

51.+=——Q St+e+'"'I, 51„—= Q St,e '"'& (4.19)
QS t QiV t

Ke recall that our treatment involves writing S, in
the form given in (2.19), which is exact. All approxima-
tions then involve the quantity in square brackets in

(2.19), which is always small. To proceed, we first
consider the Fourier transform of (2.18)

1
= (5 )b o+ (-—(5.)) —Z 5 +5

E»
1—(k+(5.)) —2 5-.+.1 Si+ . (4 20)
E &I

Then we make approximations on the products of S~+
and the operators in the square brackets. Thus, in the
first term on the right-hand side in (4.17),

1
2 8( )5 -'5.*=(5 )8(0)5"+(l—&5.)) —2 8( )5 -'S.+ '5

A e, &i

1—(l+(5 )) —2 A(C)5 -'5- 5.-' (4.21)
1V C, &1
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1
= &5,&g(0)si++(-', —(S.)) —Q g(0)st+(Si„+Si,—)+—Q g(k —ki)si+&Si„+Si„)+—Q g(q)(SI,+5, i+)5 i

A S
1—(-'+(5*)) —2 8(0)5~+(S~ S~ )+—& 8(k+ki)(5—i+Si+)5—i +—r, 8(v) &i-9+5—Q+~ &5~+ (4 22)N» Ã» g»

For nearest-neighbor exchange interaction, it can be
shown that

2 A(V)5~—.+5"=(5)8(0)5+

Then, (4.32) gives the elementary excitation spectrum
in the ferromagnetic ordered phase. The magnetic
moment, given by (2.15), can be expressed as

where

bi'= —P yi&si+Si, ), (4.24a)

—2(sg)g(k) bi'Si+ —2&sg)g(k) 4'5 i, , (4.23)
(J&= —2n(5, )(1—a') 't'.

b Gree.n's Functi-on Formalism for Ordered
Phase at Finite Temperature

(4.34)

1
b, '=—p& (s+s +). (4.24b)

Similarly,

Z 8(q)5 —.5'=&5*)8(k)5 '—2(5.)8(0)b '5 '
—2&5,)g(0)82'5 I, . (4.25)

Then the equation of motion becomes

zSi+= —p' 5+i+V Sg, (4.26)
((s;s,.; s;&) &s,)((s;;s,+»with

To study the finite-temperature behavior in the
ferromagnetic regime, we use the Green's-function
formalism. The procedure is completely in parallel to
that of Sec. 3 8 for the RPA. The two types of Green's
function are defined as in (3.18) and (3.19).If we adopt
the approximations shown in Eqs. (2.20)—(2.21b), the
coeKcient of the new Green's function ((5;,(t);5 (0)))s
vanishes according to the condition (2.24) for vanishing
effective Geld discussed in Sec. 2. We recall that the
coeKcients C„C„C„,etc. , have been given in (2.26).

Usin Callen's decou lin instead of the RPA,

p'= c,y zc„(s,)g(0) —4c..(s,)g(k) s,'
—4C**&5*)8(k)+8C**(5.&8(0)~ (4 27a)

Y=4C„g(k) S,'/4C. .&5.&g(k) —8C..(5.)g(0) e. (4.27b)

-2(5.)(5;5,')((5,—;5 ))

-2(5.)(5;5,-&((5, ; 5+)&, (435)

Similarly,
iS i =p'5 i, li'-SI+—

~

and completing the spatial Fourier transformation as

(4 28) in the RPA, we obtain

If we define

a=—6/ —8(S,)g (0)n'(1 —2e),

the coefFicients given in (2.29) can be written as

C,=ha, (4.31a)

(4.31b)

(4.31c)

C.,= 4n'(1 a')— —

C = —na.2 2

Inserting these into (4.29), we obtain

Ek= —8&5.)a(0)~'(L1—2 a' —2e(1 —a') Vn
Xt1—(a'+(1—a') )&~3)'" (432)

where we have deGned another quantity

So the excitation spectrum is

E = (LC.+2C-(5.)8(0)—4c-&5.)8(k) (b
' —~ ')j

XIc.+2C.,&5,&g(0) —4C„&S,)eJ(k)
—8C**&5.&8(k)+ 16C*.(5.)8(0)ej) '". (4 29)

GJ;
—

(k) = —(&5,&/x-) (E+p')/(E —Ei) (E+Ei,), (4.36)

G~+(k) = —((5 &/~)L~'/(E —E~)(E+E~)j (4 37)

with P' and V defined in Eqs. (4.25a) and (4.25b), and
Ei, given in (4.32)

The corresponding correlation functions obtained
from the Green's functions are

(S~+Si )= —(5,)L—1+(P'/Ei) coth(Ei/2T) j, (4.38)

(Si,+5 i,+)= —(S.)(X/Ei) coth(Ei, /2T) . (4 39)

These then enable us to find (5,), as in the RPA, and
hi', h&' (or consequently e and e) self-consistently. The
calculational procedure is much more complicated than
that in the RPA because of the more complicated
dispersion relationship and the appearance of e. How-
ever, we shall analyze the high-temperature behavior in
Sec. 6 to examine the phase transition.

c. Paramagnetic Susceptibility in TSCA

From (2.15)

(4.33)
&J&= —2u&5, .& sin(20 —&p), (4.40)
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where 8 is given by (2.8), and p is given by (2.27). We
use s' to denote the rotated coordinate axis, where there
is no transverse effective field.

In the paramagnetic phase (J), and hence 8, tend to 0
as II —& O. Then for an infinitesimal magnetic field,
retaining only first-order terms, in 8, from (2.27) we
have

A. Paramagnetic Regime

The internal energy is

U=(X),
where

K=+ 65,,—Q g;n'(2S, +S; +S,+5,++5; 5; ).

(5.1)

From (4.40) and (2.8), we have

(28—~)L1+8(5")8(0)n'(1 —2~)/~ (5.2)
2gpii—nH 0, =0. 4.41

Then Fourier transforming and taking the thermal
average gives

(~)= —2(5")n(28—~)

28= 4g(0)n(J)/d+2gpiinH/A.

(4.42) U=»(5 )+2 '8(0)»~((5 '5 )+(5 '5-")),

(4.43) (5.3)

&= —8A(5, ).8/(1 —4A(5. ).). (4.45)

Substituting this relationship into Eq. (4.42) and using
(4.43), we solve for (J):

(J)=(20~ '/n~)( 2(5"—))Hl(1 1/&)— (446)

where we recall from (4.30) that

Combining Eqs. (4.42) and (4.43),

28= t 8(—5 )$(0-.)n'/A](28 p)+—2gpii H/h. (4.44)

We can then eliminate the H term from Eqs. (4.41) and
(4.44) and solve for p. We obtain

or, per mole (recalling that our unit of energy is Boltz-
mann's constant)

U/RZ= (5,)+ (-,'A) .. (5 4)

One has the RPA and TSCA depending on whether one
sets the e term equal to zero or not in determining the
collective excitation spectrum. The specific heat

C„=dU/dT (5.5)

is obtained by calculating U, and finding the derivative
with respect to temperature numerically.

For comparison, the corresponding expressions in
molecular-field theory are .

n= ~/ —8(5. )g(0)n'(1 —2~).

The susceptibility is obtained as

(4.47)
molecular-field theory, U/RA= —-', tanh(A/2T), (5.6)

molecular-field theory, C,/R = (6/2T)' sech'(6/2T) .
(5.7)

X=- (2g'p~'n /~)( —2(5"))/(1—1/n) (44g) B. Ferromagnetic Regime

There is a slight difference between (5, ) and (S,). &=P C.S,.+P 2(C~—g(0)C„)5,~
However,

where
(S, )= (S,) cosrp —(5,) sing, (4 49) +2 2 AvC*.(5'++5' )SJ+5 + E 8"

(' 2) *&)

(5,)= (S, ) sing+(S, ) cosy= (S. ) sing, (4.50)

since (S, )=0.
Since q =4Ae8, (S, ) differs from (5,) by a quantity

of order (4Ae8)', and we can replace (5, ) by (5,).
Therefore, in the TSCA formula for the susceptibility,
(4.48), (5, ) is replaced by (5,), and (5,) and e are the
quantities calculated in the paramagnetic phase without
field as in Sec. 4 A.

S. SPECIFIC HEAT

In this section we give the expressions for the RPA
specific heat in the ferromagnetic and paramagnetic
regimes, and for the TSCA specific heat in the para-
magnetic regime. The results can be compared to the
molecular-field-theory behavior, and this is discussed
in Sec. 6.

Then,

XPC,.S;,5;,+C„(5,++5, )(5;++5,—)g. (5.g)

U=(K) =1VC,(5.)+ P g;,C„(5;,5;,)

+ ~ a.,C..((5, +5;-)(5, +5,-)). (5.9)

Using the explicit expressions for C, and C., in the RPA
and the approximation that (S;,S,,)= (S,)', one obtains

RPA, U/RA= —(1/4A) —A(S,)' —e/8(5, )'A (5 10)

and the specific heat is found by taking the derivative
with respect to temperature.

For comparison, for the ferromagnetic regime in
molecular-field theory

U/R= —(6/2 cos28) tanh(A/2T cos28), (5.11)
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A =- = I.0499
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Fro. 1. Inverse susceptibility versus temperature of the two-
singlet-level system for simple cubic lattice with nearest-neighbor
ferromagnetic exchange. The value of A =—4g(0)a'/n is such that
T,/n =0.269 in the molecular-field approximation, T,/n =0.10 in
the RPA, and the system never orders magnetically in the TSCA.
(See Ref. 12.)

values of 1/X in the TSCA and in the molecular-field
approximation are shown for the same A. The TSCA
curve" lies substantially above the RPA curve for low
T, and approaches the RPA and molecular-field curves
at high T. Thus in the paramagnetic regime, the TSCA
curve of 1/X versus T is "Ratter" than the RPA curve.
This "flattening,

" caused by correlation effects, has
been noted by Cooper4 for a constant-coupling calcula-
tion. There is no downward dip at low T in the curve of
1/X versus T as was observed experimentally4" in
TmN. The present results combined with the earlier
results for the constant-coupling calculation lead us to
believe that the downward dip found experimentally in
TmX can probably be attributed to the chemical
quality of the sample, rather than to any fundamental
mechanism associated with exchange effects.

In Fig. 2, we show the variation of the collective
excitation spectrum with temperature in the RPA for
the same value of A. In the ferromagnetic regime, as
T/6 increases from zero, the k=0 mode energy drops

where 0 is determined by solving the equation

1/A cos28= tanh(A/2T cos28) . (5.12)

O. I5—
I I I I

To explicitly demonstrate the contribution to the
specific heat due to the e term in (5.4), we neglect this
term in the RPA calculations discussed in Sec. 6 below,
while the e is included in the TSCA calculation.

6. RESULTS OF NUMERICAL CALCULATIONS
AND DISCUSSION

A. Susceptibility and Magnetization

A

V

O.I2—

0,09—

0.06—

0.03—

The critical value of A in the RPA for ferromagnetic
ordering with infinitesimal moment at T=O is 1.0406.
In Fig. 1, we show the behavior of the inverse sus-
ceptibility in the paramagnetic regime for a value of 3
only slightly greater than this RPA critical value. (For
simplicity, the calculations shown in this and all
subsequent figures were performed for the simple cubic
lattice with nearest-neighbor ferromagnetic exchange. )
In particular, T,/6 in the RPA for this A is 0.1. The

1.0—

0.8

0 I

0 0.02 0.04
I

0.06

T/A

0,08 O. IO

FIG. 3. Thermal variation of magnetization in the RPA for
two-singlet-level system with T,/6 =0.10.

toward zero. The rate of decrease is, however, slow until
T is close to the Curie temperature, whereupon the
k= 0 mode frequency drops to zero precipitously. For T
greater than the Curie temperature, the mode frequency
increases again. For high temperatures, the collective
excitation energies approach 6 (the crystal-field-only
splitting between the two-singlet levels), and the disper-
sion tends to disappear.

0.4

T/h
0.2— ~0.08

0.10

0 0.25

—= O. IO
Tc

0.50
ka/Tf

RPA

I

0.75 l.00

FIG. 2. Variation with temperature of the dispersion curve of
elementary excitations in the RPA for exchange such that
T,/S =0.10.

12 TLhe fact, discussed below, that the magnetic transition atT=0 is first order in the TSCA (i.e. , in a plot of (J)/o. versus A,
there is a discontinuity when (1) becomes nonzero), makes it
dificult to 6x the critical value of A for which magnetic orderin
first occurs at T=0. The critical value, A = I.1852, found in I for
ordering with infinitesimal magnetic moment at T=O only pro-
vides an upper limit to A„;» for a erst-order transition. Thus, it is
possible that for the value A = 1.0406, used in Fig. 1, in the TSCA
there is a 6rst-order magnetic transition at sufficiently low T (and
the curve for 1/x would be inapplicable below that T). However,
the A used in Fig. 1 is probably sufficiently small so that one never
has magnetic ordering in the TSCA."B.R. Cooper, I. S. Jacobs, R. C. Fedder, J. S. Kouvel, and
D. P. Schumacher, J. Appl. Phys. 31, I384 (1966).
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FIG. P. Comparison of magnetization in RPA and molecular-field
approximation for A —=4g (0}n'/6 = 10.185.

why we attach physical significance to the upper of the
two branches of the magnetization curve in that tem-
perature range (i.e., why the free energy is lower for
the upper branch).

We recall from the discussion of Sec. 3, that we find
the self-consistent ferromagnetic behavior in the RPA
by performing the calculations for a succession of fixed
values of T. For each fixed T, we vary a, calculate
(S,), and find A as a function of a from the relationship

RPA ferromagnet, a= —1/(2(S, )A) . (6.1)

at which the fractional population of the molecular-field
ground state, p=-,' —(5,) decreases at fixed T as a
increases from zero to unity. This rate is more rapid than
in the molecular-field theory because not only the
splitting of the two molecular-field levels (between
which excitations arise) decreases as a increases, but
also the gap in the excitation spectrum at k=0 de-
creases. We therefore expect p to decrease faster than
the rate given by molecular-field theory. LFrom (6.1),
we see that A can go through a minimum for increasing
a, if the rate of decrease of

~
(5,) ~

becomes sufficiently
rapid. Thus, we see how a nonmonotonic variation of
A with a can occur in our calculations. j

In fact, if we consider the case of T/h&)1, we can see
the picture immediately. At this limit, in molecular-Geld
theory,

molecular Geld,
—2(5,)= tanh(h/2aT) =6/2aT (for aAO) (6.5)

and
A = 1/( —2(5,)a) = 2T/d, . (6.6)

Therefore A is essentially independent of a, and a
horizontal straight line is expected in the A-versus-a
plot. (Such behavior occurs in Fig. 9 with T/6= 10 for
the higher values of a.) On the other hand, in the RPA,
admitting the collective excitations, we have, from Eqs.
(3.28)—(3.32), in the limit of hi«1, (T/6)&1)

When we do this, we find (as shown in Fig. 9) that
for some range of a, a is a double-valued function of A.
Since the magnetization is given by (3.33) as

with
RPA, —2(S,)= 6/2aTQ (6 7)

(J)/-= —(5.)(1-")" (62)

this in turn means that for Gxed T, for some range of A

(as illustrated in Fig. 10), (J) is a double-valued
function of A. When translated to a plot of (J) versus
T, this gives the double-branched behavior of the mag-
netization for a range of T below T,.

This is in distinction to the molecular-field behavior, '
where (J) is also given by (6.2) and (6.1), but where for
specified a at fixed T, (S,) differs from the RPA value.
In Bleaney's' notation

(6.8)

and
A = (2T/6)Q. (6.9)

I0.4—
T/6= 0

I
~ T ~ T

Q is an increa. sing function of a and is always greater
than unity for 1&u)0(Q=1 at a=0; Q=1.207 at
at a= 1 for the simple cubic lattice). Consequently at
high T/6, A becomes a monotonically increasing

&~/~= (1/~)(1 ~'v.)'" (6.4)

molecular field, —2(5,)—=2p —1= tanh(W/2T), (6.3)

where tt/' is the molecular-field energy splitting and is
equal to 6/a. For the molecular-field treatment, A
decreases rnonotonically with increasing u at fixed T.
This in turn means that (J) decreases monotonically
with A at fixed T, and the magnetic transition is second
order as shown in Figs. 9 and 10.

Mathematically, the double-valued behavior of a for
some range of A in the RPA can be understood by con-
sidering the behavior of the excitation spectrum given
by (3.8)

l0.0—
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as a increased from zero to unity. In particular, the
double-valued character arises because of the rapid rate

Fzo. 8. Thermal variation of excitation spectrum
in RPA for A =—4g(0}n'/6=10. 185.
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function of u. Combining this with the fact that at
T=O A'is a monotonically decreasing function of u, we
expect, for intermediate values of T/6, to find a mini-
mum on the A-versus-a curve such as we actually
obtained in Fig. 9.

While the self-consistent calculational procedure

b
gives a nonmonotonic variation of A with a h ll, p ysica y

y the following reasoning we may expect A to be a
monotonically decreasing function of a. If the system
is ordered, further increasing the exchange constant ri

s ri goes to ~, we expect every ion to be in its ground
state, and p= 1. Now it is also clear (from th b h
of the ener

e e avior
o t e energy spectrum) that p is a monotonically
decreasing function of a. We therefore conclude that A is
expected to be a montonically decreasing function of a.

As already stated, in contrast to this h sicall
ex ected
t

p ehavior for our calculational procedurere in
he RPA there is a value of a (at 6nite T) such that

beyond that value, A becomes an increasing function of
a. We claim that this behavior is unphysical, and that
this branch of the (a,A) curve is to be discarded.

In fact, if we did the calculation in another way,
w ich is more complicated, by setting a value of ri or A
and solving the equation

2 —u'yk h(1 —u'yi, )"'
2~ ~ (1—iirq )'tz

coth (6.10)
2TG

2 l.5—

—2.8

o 2I 0
II

cl
I—

20.5—

n

—2.6 +

/
r?

/
O

/
/I —2.4

20.0—

LD

2.2

I
0.2

I

0.4 0.6 0.8
0

Fin. 9. Variation of A —=4ri(0)n'/n with a for iixed T/n in
RPA and molecular-Geld approximation.

I.O

for a, we would obtain two values of a correspondin to
two possible states. The state with higher a value (much
ower magnetic moment) evidently has higher free

energy. This picture is even clearer for T/b&)1 or
6~0. The unphysical branch then is exactly the
vanishing moment solution which is familiar in the
molecular-field theory of ordinary ferromagnets. (The
p ysical branch is given by a =0, and the theory reduces
to the molecular-field theory as discussed previously. )
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Fro. 10. Variation of magnetization with /f for fixed T/n in
RPA and molecular-field approximation.

(~)= —2 (~.)(1—')'", (6.11)

The first-order transition occurs because the self-
consistent behavior gives a minimum

'
th Am in e -versus-a

curve at some a(1. We have seen th t h
'

lla p ysica y this
behavior arises because ~(5,)~ falls ofl' more rapidly
with increasing a than in a molecular-Geld theory. This
in turn occurs because the excitatio, f

'
n waves, or a given

magnetization give states of lower energy than the
molecular-field excited state to serve hserve as c anne s of
depopulation of the ground state.

fled T is 6
ur criterion that the magnetic tra 't' transi ion at a speci-

e is first order (that there is a ininimum in the A
versus a curve for that T at some b t
allows us to find the value of T,/d, above, which the
magnetic transition is first order. We do this by evaluat-
ing dA/da~ i. If this derivative is positive, this indi-
cates the presence of a minimum in th A-in e -versus-a curve.
We find that dA/da~ ~~ is negative for T/A(0. 1, and
changes sign at T/6 =0.1 to becom 't'ecome positive or
T/6) 0.1. This indicates that for T,/6 0(.1 the ma-
netic transition in the RPA is second dsecon or er, w e, or
T,/6) 0.1 the transition is first order.

In the T&&~SCA, a similar discontinuity of magnetization
~ ~ ~

occurs. Although we did not carry tcarry out a gener self-

T
consistent calculation in this theor f h' hry, or ig values of

fo
, 6 we can argue in a similar way t th t

or the RPA by exploring the T/A))1 behavior of the

~ ~

system. As discussed in Sec. 4 the t'e magnetic moment
is given as
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equations become

6/( —2(S,)T(1—2e)cr) = 1/(1 —2ea')+ (1+iILQs), (6.16)

~e/( —(S )T(1—2E)ET)= 2Q~, (6.17)

where

0.4— A.= IT'+ (1—a')2G (6.18)

0.2—
I

I 0499
d

VR

JI/ R 1—AyA/
(6.19)
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FIG. 11.Thermal variation of specific heat for two-singlet-level
system for A —=4$(0)cP/ran=1. 0499. For the molecular-field calcu-
lation, in the paramagnetic regime C, is independent of A, and we
show the complete curve giving the Schottky anomaly if there
were no magnetic transition.

where we recall

a= —1/2(S, )A(1—2e) . (6.12)

e=—Q 7A((SR+SR )—(SR+5 R+))

If the self-consistent calculation gives a maximum
physical value of a less than unity for fixed T/6 and
varying rI (i.e., the minimum in the curve of A versus
a comes at 0(a,(1), we then have the discontinuous
drop of magnetization at rI„;A (for fixed T/6) or at
T,(for fixed rI/6).

To see this, we examine the case of T/A»1. We first
observe that e =0.To show this we replace coth(ER/2T)
by (2T/ER) in Eqs. (4.38) and (4.39) and get,

For fixed T/6»1, we can solve for (S,) and e as junc
tions of u, and therefore find A = 1/( —2(S,)(1—2e)g) as
a function of c7. Ke find that A is a monotonically
increasing function of c7 for 1&a)0 in this high-tem-
perature limit. As we have discussed, physical considera-
tions require A to be a monotonically decreasing func-
tion of a. Therefore, for high Curie temperatures the
only allowed value of c7 is a= 0, and the theory reduces
to molecular-held theory in this case. For intermediate
values of T/6 we then expect a minimum in the A-
versus-a curve at some value of c7 with 0&a;„&1. The
physical regime of behavior then corresponds to values
of c7 between 0 and a;„.Since a cannot go to one, the
magnetization cannot go continuously to zero. We
therefore conclude that in the TSCA we obtain a
first-order phase transition.

In fact, for the TSCA we can show that the magnetic
transition is first order even at T=O. That is, at T=O
as one increases A from zero, the magnetization is zero
until A reaches some critical value at which the mag-
netization jumps discontinuously to some finite value.

Since it has not been possible to do the detailed
calculation of the A-versus-a curve at T=O in the
TSCA, we determine the nature of the magnetic transi-

T 1 +II,

4rI(0)n'X R 1—2ea' —2e(1 —a')yR
(6.13)

0.08—

e= 0 is obviously a solution of the above equation, since

P yA ——0.
k 0.06—

8=-
2 +&Sz&
I

One can seel~ other solutions for e by expanding the
denominator in the summation and retaining only the
low-order terms in e and e (since e and e are expected to
be small). On doing this we see no acceptable solution
for e except e= 0. We next calculate (S,) and e. This is
done similarly to the calculation in the RPA. In the.
limit of T/A»1 (or more exactly aT/A»1), we have

0.04—

0,02—
2

= I 0499

1 1 f' 1 1—2(S,)=——P ~
+, (6.14)

T X R LP' —V P'+)L'

Pk
e = —2(S.)T —Q

X A P' —)L'
(6.15)

Inserting IFI' and )L' from (4.30) a,nd (4.34), these

I I I I I

0 0, I 0.2 0.3 0.4 0.5 0.6
T/d

j.'zo. 12. Thermal variation of the correlation functions
and b=—&+(S,) which determine the susceptibility and speci-
fic heat behavior in the TSCA. Calculations shown are for
A =—4$(0)a'/6 = 1.0499.
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Cion at T= 0 as A increases by examining the behavior
of the derivative dA/da at a= 1. If dA/dc7~ -, i is posi-
tive, this indicates that the A-versus-a curve has gone
through a minimum at some intermediate value of a,
and the transition is first order. On the other hand, if
dA/da~; i is negative, there is no intermediate mini-

mum, and the transition is second order. From (6.12)

1 d(S.)1 dA 2 dc
——+-. (6.20)

A du (S.) da (1—2e) du a

Sy directly evaluating the derivatives on the right-hand
side of (6.20) for @=1 at T=O in the TSCA for the
simple cubic lattice with nearest-neighbor exchange,
and using the numerical values at a,=1 and T=O,

e = 0.061,
TSCA for a=1, T=O, e= —0.046,

(S.)= —0.4805,

(6.21)

B. Specific Heat

As shown in Fig. 11, we have calculated the specific
heat in the RPA, TSCA, and molecular-field approxi-
mation for A=1.0499. As already stated above, this
value of A gives T,/6=0. 1 for the RPA, while the
system does not order even at T=O in the TSCA.
(However, see Ref. 12.)

In the paramagnetic region, the molecular-field
specific heat is independent of exchange. Thus, as is well

known, the curve of C„/R versus T/6 for the Schottky
anomaly is universal. In the paramagnetic regime, the
Schottky anomaly is considerably broadened in the
RPA and TSCA, as would be expected because of
the presence of excitation waves with considerable
dispersion.

It is interesting that for most of the temperature
regime where both the RPA and the TSCA give para-
magnetic behavior, the specific heat for the two ap-
proximations differ little. This is in contrast to the
behavior of the susceptibility for the same range of
temperature as that shown in Fig. 11.(See Fig. 1.) This
can be understood by considering the behavior of the
correlation functions e and 8=-,'+ (S,) shown in Fig. 12.
The difference in susceptibility between the TSCA and
RPA depends on e being appreciable compared to b.
This is true throughout the temperature regime shown.
On the other hand, the difference between the specific
heats depends on de/dT being appreciable compared to
da/d T. This is true only for a narrow range of tempera, -

ture at the lower-temperature part of Fig. 12. The fact
that the specific heat for T/6 just greater than 0.1 is

significantly greater for the RPA can be understood by
considering the excitation behavior shown in Fig. 13.

we find that dA/du= 0.38A at a= 1 and T=0. Since
dA/da~; r) 0, the magnetic ordering transition in the
TSCA is first order even at 7= 0.

I.O

0.8

o 06
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0.25 0.50
k a/1f

0.75 1.00

F&G. 13.Comparison of thermal variation of elementary excitation
spec', rum in RPA and TSCA for A=—4g(0)ns/6=1. 0499.

It is just in this temperature range that the RPA
excitation spectrum falls sharply.

It is a matter of considerable practical importance,
that while the Schottky anomaly is considerably
broadened for the RPA and TSCA, even in the case
where the exchange is quite substantial, the actual
location of the peak is not much shifted from that for
no exchange. Thus, even in the presence of large ex-
change, experimental location of the Schottky anomaly
should give the crystal-field splitting. (Of course, when

exchange is so large that the ordering temperature
is comparable to the temperature of the Schottky
anomaly, this simplicity vanishes. However, for rare-
earth compounds, dilution of the rare earth by yttrium4
may still allow use of the Schottky anomaly to find the
crystal-field split ting. )

The specific-heat anomaly at T,/6= 0.1 for the RPA
is extremely sharp. This reAects the fact that we are at
the threshold of the regime where the transition
becomes first order. The presence of the two specific-
heat peaks in the systems which order suggest some
intriguing experiments discussed below.

C. Experilnental Possibi1ities

While we cannot at present provide a compound that
shows the properties of our model system, we can make
some suggestions that may help in finding such a com-
pound. To obtain a situation where the lowest crystal-
field states of the rare earth are two singlets, we want
a rare earth with integral J (Pr'+, Tb'+, Ho'+, or Tm'+)
situated in a crystal field of rather low symmetry, say
hexagonal. For example, Pr'+ in PrF3 satisfies this
criterion, "'6 and the crystal-field splitting between the
two levels is of a reasonable size (about 80-85'K)."On
the other hand, to find substantial exchange effects of
the sort we have discussed in a reasonable temperature

"E. Y. Wong, O. M. Stafsudd, and D. R. Johnston, J. Chem.
Phys. 39, 786 (1963).

'6 S. Kern and P. M. Raccah, J. Phys. Chem. Solids 26, 1625
(&965).

'7 The lower of these numbers comes directly from the Quores-
cence measurements of Ref. 14, while the higher number comes
from analysis PB. R. Cooper, 1966 (unpublished)g of the suscepti-
bility data of Ref. 15.
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range requires a rather large exchange for a rare-earth
system. This suggests finding an intermetallic corn-
pound rather than an insulator.

Cubic intermetallic compounds with singlet ground
states, especially the rare-earth group V compounds,
are available. Indeed, the transition from Van Vleck
paramagnetism to antiferromagnetism with increasing
exchange (i.e., Tb content) has been observed" for
Tb Vi Sb. However, much of the behavior becomes
more complex (particularly the question of a first-order
magnetic transition) ,"when the excited state is a
triplet.

' B. R. Cooper and O. Vogt (unpublished). Some oi the re-
sults for Tb Y&,Sb are quoted in B. R. Cooper, J. Appl. Phys.
40, 1344 (1969).

It would be very interesting, whether in a singlet-
singlet or a singlet-triplet system, to study the specific
heat in a number of compounds where the ratio of
ordering temperature to crystal-field splitting varied.
This would change the relative location and integrated
area under the peaks, such as shown in Fig. 11. If
alloying did not broaden out the peak at the ordering
temperature too greatly, use of an alloy system such as
Tb Y1 Sb to study such sects could be quite
interesting.
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Antiferromagnetie Phase Diagram and Magnetic Band
Gap Shift of NacrS,
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The magnetization and differential susceptibility of the layer-structured compound NaCrS2 have been
measured parallel and perpendicular to the c axis in pulsed magnetic fields up to 200 kOe as a function of
temperature. Antiferromagnetic ordering was observed below 18'K. For fields applied parallel to the Cr
layers, a spin-flop-type transition was observed at 20 kOe and a transition to the paramagnetic phase ob-
served at higher fields. The temperature dependence of the latter transition is found to vary as the sub-
lattice magnetization computed from the parallel susceptibility. The in-plane and out-of-plane anisotropies
are due to intraplane dipolar interactions and are of comparable magnitude, 3 kOe. The optical absorption
spectrum has been measured in the range 1—2.4 eV where the charge-transfer band gap occurs. Measurements
as a function of temperature show that the d-d crystal-Geld transitions observed between 1.5 and 1.9 eV, are
only slightly aGected on passing through the Neel temperature, whereas the band gap shows an anomalously
large blue-shift. This is thought to be evidence against the recent theory that these magnetic shifts are due to
deformation potentials and magnetoelastic coupling. An alternative explanation is presented in which the
band gap shift is due to the diferent exchange interactions in the ground and excited states.

INTRODUCTION

~HE magnetic phase diagram of antiferromagnetic
materials has been the subject of careful study

recently, both theoretically' ' and experimentally. Most
of the experimental studies have been restricted to the
antiferromagnetic spin-Qop phase transition and only
for materials with low Neel temperatures, such as
MnC12 4 H~04 and GdA103, 5 has the complete phase
diagram been determined.

J. Feder and E. Pytte, Phys. Rev. 168, 640 (1968).' C. J. Gorter and T. van Peski-Tinbergen, Physica 22, 273
(1956};F. B. Anderson and H. B. Callen, Phys. Rev. 136, 1068
(1964);H. Rohrer and H. Thomas, J.Appl. Phys. 40, 1025 (1969).' J. H. Danicar and P. R. Elliston, Phys. Letters 25A., 720
(1967}.

4 J. E. Rives, Phys. Rev. 162, 491 (1967).' K. W. Blazey and H. Rohrer, Phys. Rev. 173, 574 (1968);
K. W. Blazey, H. Rohrer, and R. Webster, Conference on High
Magnetic Fields and Their Application, University of Nottingham,
England, 1969 (unpublished).

The temperature variation of the band gap of mag-
netic semiconductors has also been given considerable
attention. The two groups of materials which have
been most extensively studied are the europium chalco-
genides' and the chromium-containing spinels. ' On
cooling these different crystals below their ordering
temperatures, both red- and blue-shifts of the optical
band gap have been observed. This magnetic shift in
the europium chalcogenides has been ascribed to an
exchange splitting of the excited state' and has also
been related to the sample magnetization. ' More re-

' G. Busch, P. Junod, and P. Wachter, Phys. Letters 12, 822
(1965); B. E. Argyle, J. C. Suits, and M. J. Freiser, Phys. Rev.
Letters 15, 822 (1965}.

7 G. Harbeke and H. Pinch, Phys. Rev. Letters 17, 1090 (1966).
F. Rys, J. S. Helman, and W. Baltensperger, Physik Konden-

sierten Materie 6, 105 (1967).
9 G. Busch and P. Wachter, Physik Kondcnpiertpn Materie 5,

232 (1966).


