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Then we have

i =0, e=ep, and 1 p
——t pis zWe note that 6 here is the surface term in Eq. (11) yields'

solution of the surface-nucleation problen& in the GL
region which is known to be4 OsLDs(r) =-SI.T(III)+zxp, i(z)

~= —D-; t,~i) (—v2| p~)
ct'D; („ i) (—&2' p~)

ct epcti psr

APPENDIX B: EFFECTIVE-BOUNDARY-CONDI-
TION PARAMETER TO THIRD ORDER

which is an intrinsic property of these parabolic cylinder
functions. It is this expression which has been evaluated
by Schultens. ""

where SLT(III) is defined in Eqs. (13) and (17) while
the various X's are defined by Eqs. (18). Now using
Eqs. (19) a,nd (22) and in our special gauge, the above
is expanded in a Taylor series around x=0 and the
term proportional to e separated out to give

fi"'(z) = —2xi(z)k- '

f,«()=Lx„' ()+-;x,(.)
+[-',z'X, , 'i (z) —zX, , t'~ (z) —zX, ,,&'&(z)j( —'.

To find cr "& we must first evaluate 0 6 to fourth
order. A, tedious but straightforward expansion of the

These may be substituted in Eq. (37) and the integra, —

tions performed to finally give Eq. (43).
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Alfven-Wave Propagation in Solid-State Plasmas. III. Quantum
Oscillations of the Fermi Surface of Bismuth*f

R. T. ISAACSONt AND G. A. WrLLIAMS

Department of Physzcs, The University of Utah, Salt Lake City, Utah 8411Z
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We have measured the quantum oscillations of Alfven-wave mass densities in pure bismuth. To fit the
experimental results, we use a four-energy-band model, corresponding to three equivalent nonparabolic ellip-
soidal electron Fermi surfaces and one nonparabolic ellipsoidal hole Fermi surface. This enables us to evaluate
the number of carriers, the carrier masses, the two energy gaps, the Fermi energy, and the overlap energy.
These experiments yield a value for the energy gap E&2 of 250~50 meV. The value of the overlap energy is
increased over the previously reported value of 36.0 meV. We find a value of 38.2+0.15 meV necessary. The
other numerical parameters used are taken from previous values with some refinement. They are n= (2.92
~0.05) &&10"cm ', mi ——0.00651, m2 ——1.362, ma=0. 0297, m4 ——~0.1635, &1=0.0644, 3II3=0.696, kg= 26.6
~0.18 meV, and Egad=15.0 meV. In addition, estimates are made for the lattice dielectric constant for
several orientations.

I. INTRODUCTION

HE phase velocity of Alfven waves in solids is
determined by two quantities, the strength of

the magnetic field and the mass density of the charge
carriers. In a classical description the mass density is
unaffected by a magnetic field. The quantization of elec-
tron energy into Landau levels brought about by a mag-

*This work was supported by the U. S. Air force OAice of Sci-
entific Research under Grant No. AFOSR 901-65.

f Based in part on a thesis submitted by R. T. Isaacson to the
University of Utah in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

f NASA Predoctoral Fellow, 1964—1966. Present address:
Physics Department, University of Ottawa, Ottawa 2, Ontario,
Canada.

netic held causes the Fermi energy to oscillate in value
as a function of the magnetic 6eld. ' ' This oscillation
causes the number of carriers and, hence, the mass den-
sity also to oscillate with the magnetic field. The devia-
tion of the mass density from its classical value is the
subject of this paper.

Buchsbaum and Gait' pointed out that Alfven waves
could propagate in certain solid-state plasmas. Since
then, Alfven-wave propagation in bismuth has been

' G. A. Williams and G. E. Smith, IBM J. Res. Develop. 8, 276
(1964).' G. E. Smith, G. A. Baraff, and J. M. Rowell, Phys. Rev. 135,
A1118 (1964).

3 S. J. Buchsbaum and J. K. Gait, Phys. Fluids 4, 1514 (1961).
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studied in several laboratories. ' ' " Buchsbaum' and
Bowers'~ have discussed the theoretical and experimeri-
tal properties of electromagnetic wave propagation in
solid-state plasmas and reviewed the previous litera-
ture. It was first pointed out by Williams and Smith'
that the Alfven-wave phase velocity was sensitive to
the variation in carrier mass density and in the Fermi
level. The present work continues the work of Williams
and Smith for all orientations of the bismuth crystal.
Useful information concerning the lattice dielectric con-
stant, the energy gaps between bands, and the mass den-
sities is obtained.

In Sec. II, the theory of Alfven-wave propagation in
a simple isotropic plasma is presented. The experi-
mental details are discussed in"Sec. III. The results and
discussion are presented in Sec. IV.

Il. THEORY

A. Alfven-Wave Propagation

Allis, Buchsbaum, and Bers" have discussed the de-
tailed theory of the propagation of electromagnetic
waves in anisotropic plasmas. We will present a simpler
theory, '~ based on an isotropic simple plasma and indi-
cate the changes needed for the anisotropic case.

The equation of motion for n carriers of charge e and
effective mass m* in a magnetic field I is

rte~*dv/dt =ne'[K+ (v)& I)/c] nem*v/r—, (1)

where v is the scattering time. Letting the current be
J=nev, we can convert Eq. (1) into an expression in-
volving H, J, and K. Assuming H is along the s axis and
that both J and E are harmonic with frequency &e, we
can solve for J in terms of E and H. Since J= o E, we

' J. Kirsch, Phys. Rev. 133, A1390 (1964).
~ M. S. Khaikin, V. S.Edel'man, and R. T. Mina, Zh. Eksperim.

i Teor. Fiz. 44, 2190 (1963) LEnglish transl. : Soviet Phys. —JETP
17, 1470 (1963)g.

'M. S. Khaikin, La Pal'kduskii, V. S. Edel'man, and R. T.
Mina, Zh. Eksperim. i Teor. Fiz. 45, 1839 (1963) LEnglish transl. :
Soviet Phys. —JETP 18, 1167 (1964)g.' G. A. Williams, Phys. Rev. 139, A771 (1965).' D. S. McLachlan, Phys. Rev. 147, 368 (1966).' B. W. I'aughnan, J. Phys. Soc. Japan 20, 574 (1965).' D. S. Bartelink and W. A. Nordland, Phys. Rev. 152, 556
(1966).

"W. L. Lupatkin and C. A. Nanney, Phys. Rev. Letters 20,
212 (1968)."D.L. Carter and J. C. Picard, Solid State Commun. 5, 719
(1967}.

"H. Kawamura, S. Nagata, T. Kanama, and S. Takano, Phys.
Letters 15, 111 (1965).

'4 M. S. Khaikin and V. S. Edel'man, Zh. Eskperim. i Teor. Piz.
49, 1965 (1965) t English transl. : Soviet Phys. —JETP 22, 1159
(1966)3."S.Nagata and H. Kawamura, J. Phys. Soc. Japan 24, 480
(1968)."R. T. Isaacson and G. A. Williams, Phys. Rev. 177, 738
(1969)."S. J. Buchsbaum, in Symposium on Plasma L&'pecks in Solids,
Paris 1964 (Academic Press Inc. , New York, 1965)."R.Bowers, in Symposium on Plasma @fects in Solids, Paris
1964 (Academic Press Inc. , New York, 1965).

"W. P. Allis, S. J. Buchsbaum, and A. Bers, 5'a@csin Aniso-
tropic Plasmas (The M. I. T. Press, Cambridge, 1963).

can obtain the electrical conductivity o and, thus, the
effective dielectric constant.

eorr = ei —(47I L/te') rr, (2)

where z.~ is the lattice-dielectric-constant tensor. This
contains all contributions to the dielectric constant ex-
cept that of the charge carriers under discussion. After
obtaining rr from Eq. (1), and with te.= cH/m*c, Eq.
(2) becomes

4~inc'r/m*rd
&e(f = &L

1+i ((v tv,)r— (3)

eeff =el+
to (te Go) te (Q —to)

(4)

Here Q„and Q, are the plasma and cyclotron frequencies,
respectively, for the holes.

In these experiments, at attainable magnetic fields, it
is always true that ~„)co, and Q„&Q,. If we chose a
microwave frequency co such that ~,)cv and Q, &co for
the magnetic fields used, then electromagnetic waves
can propagate in the medium, because the total dielec-
tric constant is real and positive. For magnetic fields in
which these conditions are satisfied, the denominator of
the terms in Eq. (4) can be expanded to yield

to~ / te

t+
~

1+—+ +—1+—+ . .) (5)
Goto' E to~ MQ Q

When the expressions fo a „,co„Q,, and Q„are substi-
tuted into Eq. (5), we o, .tain

4+et, 4xc'
off el+ (p rr)+

MII
(nm, +pcs)-+, (6)

II2

where p and rt are the number of holes and electrons,
respectively. The second term in Eq. (6) is the helicon
term, which vanishes for a compensated material like
pure bismuth where p=n. We have alloyed bismuth
with several parts per million of acceptor impurities,
lead and tin, but have not yet seen the effect of the
helicon term, The third term is the Alfven-wave term.
For an anisotropic material material such as bismuth
the expression nm, *+pms* must be replaced by a more
complex term f(rtm, *+pns*) that depends on the direc-
tion of the magnetic field with respect to the crystal
axes. Despite the complications introduced by anisot-
ropy, the Alfven-wave effective dielectric constant still

For
~

(ce —te,)r ~))1 and the plasma frequency ce, given
by ce~'=4z.ne'/m", this expression becomes

eeff = el+My /re(roc te)

for a single group of carriers. The effective dielectric
constant is written here and in Eq. (3) as a scalar be-
cause we have specialized to the case of isotropic effec-
tive masses. If there are two kinds of carriers, electrons
and holes,
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enough to band 2 to cause nonparabolicity in the hole
energy band. ""Experimental evidence indicates that
any nonellipsoidal shape of the electron Fermi surface
is slight. """Alfven-wave mass densities depend only
on the ellipsoidal character of the Fermi surface and the
effective-mass components at the Fermi surface. There-
fore, measurements of Alfven-wave velocities alone are
not sufficient to distinguish between parabolic and non-
parabolic bands.

For one electron ellipsoid in bismuth in the absence of
a magnetic field, we have the following nonparabolic
relationship between energy and momentum, taking
into account the presence of an adjacent band with an
energy gap E&.

E(1+x/Zg) = I u p/2m„

FIG. 1. Model of the bismuth band structure. where 0. is the inverse effective-mass tensor. In bismuth.
one inverse electron-mass tensor is of the form

depends linearly on 1/H' and is independent of fre-
quency, as in the isotropic case.

B. Quantum Oscillations

The theory given thus far is sufficient to explain the
gross features of Alfven-wave propagation. But to ac-
count for the details discussed in this paper we must take
into account the quantization of electron energy into
Landau levels. This quantization leads to oscillatory
effects in the Inass density due to the Landau levels
crossing the Fermi surface. ' The de Haas —Shubnikov
and de Haas —van Alphen effects are other examples of
this type of effect. For magnetic fields in which there are
a large number of Landau levels below the Fermi en-

ergy, the oscillations are periodic in 1/H. As the mag-
netic Geld is increased the Fermi energy may no longer
be considered constant, since it undergoes oscillations.
This oscillation of the Fermi level destroys the periodic-
ity of the oscillatory effect. In order to account for
these effects, we follow the calculations of Smith, Baraff,
and Rowell. 2

The model of the bismuth Fermi surface used con-
sists of three equivalent electron ellipsoids and a single-
hole ellipsoid. The corresponding band structure is
shown in Fig. 1. Sand 3 is well known and gives rise to
the nonparabolicity of the adjacent electron conduction
band which was included in the calculations in Ref. 2.
Band 4 is added, since its existence has been verified by
adding impurity atoms to bismuth to raise the Fermi
energy. "" There is some indication that it is close

&o g. M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor. Fiz.
29, 730 (1955) LEnglish transi. :Sov. Phys. —JETP 2, 636 (1956)j.

» G. A. AntcliGe and R, T. Bate, Phys. Rev. 160, 531 (1967).
R. T. Bate and N. G. Einspruch, Phys. Rev. 153, 796 (1967).

» J. M. Noothoven van Goor, Phys. Letters 25A, 442 (1967).
24 Takeshi Morimoto, J. Phys. Soc. Japan 21, 1008 (1966).
» L. Esaki and P. J. Stiles, Phys. Rev. Letters 14, 902 (1965).
&6 L. Esaki, L.L. Chang, P. J. Stiles, D. F.O'Kane, and Nathan

Wiser, Phys. Rev. 167, 637 (1968).
~'L. A. Fal'kovskii and G. S. Razina, Zh. Eksperim, j Teor.

I o.g 0 0
0 n2 e4
0 N4 tXS~

where I, 2, and 3 refer to the binary, bisectrix, and trig-
onal axes, respectively. The other two electron ellip-
soids are obtained by &120' rotations about the trigonal

- axis.
For the holes, the energy-momentum relation is taken

to be the same as the one for the electrons with an in-
verse mass tensor of the form

'Pt 0 0
0 Pr 0
.0 0 Ps,

(9)

The hole Fermi energy is E&=Eo—Ep, where Eo is the
overlap energy of bands 1 and 2 and E~ is the electron
Fermi energy. If in Eq. (7) we let Eo Eor, the energy-—
gap between bands 2 and 3, then Eq. (7) describes the
electron Fermi-surface ellipsoids. If we set Eg= E~~, the
gap between bands 1 and 4, and use the mass tensor (9)
for the holes, then Eq. (7) will describe the hole Fermi
surface. If Eg2 becomes very large compared to the
other energies, then the energy-momentum expression
for the holes reduces to its usual parabolic form:

Eo—L~'r = (1/2mo) f(P ts+ Pzz)Pt+ Ps'Pr 1 (10)

The carrier density in each ellipsoid is determined by
the Fermi level and is proportional to the volume of
momentum space bounded by the Fermi energy surface.

Fiz. 49, 265 (1965) LEnglish transl. :Soviet Phys. —JETP 22, 187
(1966)g.

2S R. N. Bhargava, Phys. Rev. 156, 785 (1967)."N. B.Brandt, T. F. Dolgolenko, and N. N. Stupuchenko, Zh.
Ehsperim. i Teor. Fiz. 45, 1319 (1963) L'English transl. : Soviet
Phys. —JETP 18, 908 (1964)g.

'0 V. S. Edel'man and M. S. Khaikin, Zh. Eksperim. i Teor. Fiz.
49, 107 (1965) LEnghsh transl. : Soviet Phys. —JETP 22, 77
(1966)g.

"A. P. Korolyuk, Zh. Eksperim. i Teor. Fiz. 49, 1009 (1965)
LEnglish Transl. : Soviet Phys. —JETP 22, 701 (1966)j.
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The Fermi energy is found by requiring that the num-
ber of holes and electrons be equal.

In the presence of a magnetic field, the carrier energies
are given by

E(1+E/Eg) = (n+~)fi(u, +p, '/2mp+2gppH,
n=0, 1, 2, , (11)

where cu, =eH/m, c, and where the longitudinal and
cyclotron masses m, and m, are

m, = H m H/H' and m, = f(detm*)/m, j'i'. (12)

I.60-
XIOI7

I.55

~ 1.50

E
l.45

E
C

140

—THEORY - I' TILT
0 EXPERIMENT

6l = IIO

LOWEST FRINGE =26

Bi 6 8ISECTRIX
T = l.2 K d=8.60mm
FREQ: I7.658 GHI
H II SURFACE

The eRective-mass tensor m is given by m*= e '. The
eRective g factor is defined in terms of a spin-mass ten-
sor' m, by

(13)g'=4m '8 m, H/H2 detm, .

The spin and orbital effective masses used are those at
the bottom of the band. The masses on the Fermi sur-
face are related to the bottom-of-the-band masses by

m*(Ep) = (1+2Ep/Eg)my*. (14)

The carrier density per ellipsoid filled to energy E is
given by

23 2'
1V(E)= (mg)'" P LE* E(n s)j'"— (l5)

h~g n, s

where

and

E*=E(1+E/Eg), (16)

E(n, s) = (n+-,')Ace, + ', PsgOH. -(17)
The sum is over values of n and s =—&1 such that the
radicand is positive. The density of states at the Fermi
surface is given by

I I I

.5 .6 .7 .8 .9 I.O I. I I .2 l.5
I/H (GAUSS ') X10 4

FrG. 2. Plot of experimental and theoretical mass-density versus
inverse magnetic field for the magnetic field along the binary axis
and the microwave electric field along the trigonal axis.

dence of the mass density, both through changes in the
number of carriers n and p and changes in Ep

III. EXPERIMENTAL

The experimental details have been described else-
where. ""The magnetic field in these experiments was
always parallel to the sample surface and perpendicular
to the direction of microwave propagation. The fre-
quency range used was from 12 to I8 6Hz. The sample
thicknesses ranged from 1 to 9 mm. The transmitted
Alfven-wave intensity exhibited a series of maxima and
minima, a fringe pattern, as shown in Ref. 16. In these
experiments all fringe patterns were of the leakage
type 7 16

The intensity maxima are given by

iI(Ep) = LdE(E)/dE]~ ~p. (18) N=de"'/Xo= dkc/Xo(o, (21)
Charge neutrality requires that

Q LV,'(Ep) =iV"(Ep),
i=1

(19)

where d is the sample thickness, Xo is the free-space
wavelength of the microwave radiation and S is the
fringe index. Using Eq. (6) with p —n=0 in Eq. (21),
we obtain

which states that the total number of electrons equals
the total number of holes. We use Eq. (19) to determine
the Fermi energy. First the value of the Fermi energy is
guessed and Eqs. (15)—(17) are used to determine the
number of holes and electrons. The value of E~ is then
changed until the equality given by Eq. (19) holds.

Once the Fermi energy is obtained, Eqs. (15) and
(18) give the number of carriers per ellipsoid and the
density of states. The Alfven-wave measurements give
the mass density. The Alfven-wave mass density
f(nm, *+pm', *), as defined in Sec. II, can be written in
terms of the same expression evaluated using the bot-
tom-of-the-band Inasses:

f(nm, *+pm', *)= (1+2Ep/Eg) f(nm. *+pmi„*) t, (20).
Equation (20) shows explicitly the oscillatory depen-

&= (d/&o)[a(+4~mac f(nm, ++pm„*)/H&pi&~ (22)

f(nm, *+pm', *) represents the mass-density function
for the anisotropic case. Except for very high fields, e&

is small compared to the Alfven-wave term. If we plot
E versus 1/H we will expect a straight line whose slope
is proportional to the mass density, f(nm, *+pmi, *).
For evaluating the Alfven-wave mass density, we are
interested only in this slope. The absolute value of i7
is not required. Any value can be assigned to the highest
Q.eld maximum. The remaining maxima are numbered in
increasing sequence, corresponding to the fact that each
fringe or maximum represents an additional full wave-
length thickness for the sample.

When the data are plotted versus 1/H and a least. -

squares straight line is fitted, there appears a periodic
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FIG. 3. Plot of experimental and theoretical mass-density versus
inverse magnetic field for the magnetic field along the binary axis
and the microwave electric field along the bisectrix axis. The three
theoretical curves represent three values of Eg~ as discussed in
the text.

This results in a larger fringe index value. If two inten-
sity maxima at different frequencies occur at the same
magnetic field, then the fringe indices must be in the
same ratio as the frequencies. ' This limits the choice for
S, but does not give a unique value.

There is another way to obtain 1V. Using Eq. (23) we
pick various values for E and compute the resulting
f(nm, *+pm'*) versus 1/EI. For the proper choice of
S the low-field portion of the curve will be Rat. If E is
too small, the curve will slope down. If S is too large,
the curve will slope up. If the value of E chosen is very
far from the correct value, the curves will appear nearly
smooth because the periodic variation is wiped out. The
above procedure gives the correct fringe index to ap-
proximately plus or minus one fringe index. The final
determination is made in terms of the best fit to the
theoretical curves. A check of this best fit can be made
in the following manner: The maxima in the intensity
fringes occur very nearly at cos(~d/V) =+1, where V is
the Alfven-wave phase velocity, and

deviation from the straight-line behavior predicted by
Kq. (22). This deviation is due to the Fermi energy
oscillation as reported by Williams and Smith' and
williams. In order to facilitate comparison with theory,
it is convenient to change Eq. (22) to

f(nm, *+pm&„*) = (XpE'/d' e))H'/47rm—oc'. (23)

V= H I 47rmonf(m*)$'"

This gives the condition

~d B~m,f(nm. *+pm'*) )'&'
,'LT—j I

2'JI
(24)

If eg= 100, then at 20 kG the neglect of e~ would intro-
duce an error of about 5% in the value obtained for

f(nm, *+pmI, *).
In order to use Eq. (23) the absolute value of X must

be known. If experimental data at several frequencies
on the same sample is available, it is possible to make
some estimate for what this value should be. If a maxi-
mum occurs at some magnetic field value at a specific
frequency, then there is an integral number of wave-
lengths in the sample. If the frequency is increased,
more wavelengths may be accommodated in the sample.

The experimental data are plotted according to Eq.
(23). The theoretical values for f(nm, *+pm'*) are ob-
tained by finding the number of carriers and Fermi en-
ergy at a certain magnetic field from Eqs. (15)—(19) and
substituting these values into Kq. (20). LBottom-oi-
the-band masses are found using the zero-field top-of-
the-band masses chosen and the values of EI: and Eg
chosen in Eq. (20).jWe use the values of Smith, Baraff,
and Rowell' for the g-spin effective-mass tensor. This
means that in the theoretical expression we use as vari-
ables: the number of carriers n and p; the top-of-the-

Effective masses (m0 as unit}

Bottom of band

mg

m3

1124

MI
313

0.00139
0.291
0.0071

~0.0359
0.059
0.634

Top of band

0.00651
1.362
0,0297

~0.1635
0.0644
0.696

TABLE I. Summary of parameters used to fit the experimental
Alf ven-wave mass-density oscillations.
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FIG. 4. Plot of experimental and theoretical mass-density versus
inverse magnetic field for the magnetic field along the trigonal axis
and the microwave electric field along the binary axis.
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band masses for the electrons and holes mi, m~, m3, m4,

M&, and M3', the energy gaps Ez& and A&2', and the
overlap energy Eo. The values of n and the masses are
taken from the range of values given by the Alfven-
wave mass-density results. "We chose the gap energy
Eg~ to be j.5 meV."The value of the overlap has been
reported to be between 36"and 38.5 meV. ' Therefore,
we attempted to fit the experimental data so that the
overlap energy falls in this range. The value of the
second energy gap X&2 is less well known. Estima, tes
have varied from 100""to about 700 meV. '~ As a erst
approximation, we attempted to fit the experimental
data with a very large value ot Ez& (6000 meV), a large
value of 8&2 indicating that band 4 has very little in-
fluence on band 2. We then va, ried Eg2 to smaller values
to improve the fit.

IV. RESULTS AND DISCUSSION
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Fzo. 6. Plot of experimental and theoret'. 'cal mass-density versus
inverse magnetic Geld for the magnetic field along the bisectrix
axis and the microwave electric field along the trigonal axis.
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2. IO-

In order to fit the theoretical curves to the experi-
mental ones, as given in Figs. 2—6, we began with the
masses and number of carriers reported by Isaacson and
Williams. ' The masses and number of carriers shown
in Table I were arrived at by fitting theory to experi-
ment for the data in Figs. 2 and 3. The theory curves in
Figs. 4—6 were then calculated using these parameters
with no further adjustment. The values of the param-
eters given in Table I are within the range specified in
Ref. 16.This work can thus be viewed as a refinement of
the values of Ref. 16.

By adjusting the masses we were able to make the
peak of the theoretical curves occur at the same mag-
netic field as the peaks of the experimental data, Fig. 2.
When this was accomplished, the theoretical and ex-
perimental results still did not agree. The experimental
points were rotated with respect to the theoretical

curves. That is, high-field experimental points were too
high. Two things can cause this. The first is the use of
an incorrect value for the absolute fringe index. The
second is the neglect of e~. Neglecting e~ causes the high-
field experimental points to have too large an Alfven-
wave mass density. Incorrect values of the fringe index
causes the theoretical curve to deviate from the experi-
mental curve at all fields. To be assured that the correct
value of fringe index is used, the difference in the peak
values of the mass density of the theoretical curve, at
inverse magnetic fields of 0.62)&i0 4 and 1.32&10 4

G ', was required to be the same as the difference in the
experimental values at the same fields, Fig. 2. If the
chosen experimental fringe index value is not correct,
these differences do not agree. The procedure described
in Sec. III produces a value of fringe index within plus or
minus one of the true value. Once the correct value for
the fringe index is found, the remaining rotation of the
experimental and theoretical curves must be due to the
neglect of e~. In Fig. 2, we used a value of e~ equal to 110
in order to fit the experimental data.

The orientation shown in Fig. 2 is not sensitive to Eg~
values, but the orientation of Fig. 3 is sensitive to EG2.
This occurs because the mass density for Fig. 2 is domi-
nated by electron-mass components, and the mass den-
sity for the orientation in Fig. 3 is dominated by a hole
mass component. ' "The value of EG2 necessary to fit
the experimental points in Fig. 3 is between 200 and
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TABLE II. Values of lattice dielectric constant
needed to Gt the experimental data.

FIG. 5. Plot of experimental and theoretical mass density versus
inverse magnetic field for the magnetic field along the bisectrix
axis and the microwave electric field along the binary axis. The
triangles represent the results when the magnetic field was rotated
60' around the threefold axis. From the symmetry of the crystal,
the data represented by the circles and triangles should be iden-
tical. That they are not precisely identical is an indication of minor
sample misalignment.
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250 MeV. Values of gap energy larger than 250 IneV
used with the parameters from the Gt of Fig. 2 produce
theoretical mass densities that are too low. Values of

gap energy lower than 200 meV distort the shape of the
theoretical results too much to agree with the experi-
mental shape. Figures 4—6 show the comparison of
theory and experiment using the parameters of Table I
that are deduced from the theory-experiment fit shown
in Figs. 2 and 3.Our values for Eg2 are in agreement with
the tunneling results of Hauser and Testradi. " They
Gnd a conductance maximum at 200 meV with respect
to the Fermi level. This value corresponds to an Eg2
of 188 meV on our model.

A value for E&2 in the energy region 200—250 meV
should cause the hole band to be slightly nonparabolic.
If Eg2 were less than 200 meV the hole band should be
markedly nonparabolic. Previous experimental evi-
dence" " indicates that the hole band is only slightly
nonparabolic.

A gap as small as 100 meV is not consistent with the
Alfven-wave results. AntcliQe and Sate" have reported
evidence, from Shubnikov —de Haas measurements, of
higher bands at 55 and 73 IneV. These results are ob-
tained with bismuth-tellurium alloys. Their results are
not necessarily at variance with those reported here. We
have assumed a particular form and location in k space
for band 4. This form may represent the e8ect of other
bands located elsewhere in k space. Bate and Einspruch"
reported a value of 66&25 meV for the gap contributing
to the hole-band nonparabolicity, using galvanomag-
netic data. This is definitely in disagreement with the
gap reported in this work.

It is apparent from Table II that eE depends on crystal
orientation. There are two contributions to the spread
of values for e~ reported here. There is a certain insensi-
tivity to the values of e& used especially in the low-field
region. The larger the Alfven-wave mass density the
less effect e& has. In any case the effect of ~& increases
with increasing field. In addition, in several orientations
one value of e~ Qts most of the data but a higher value of
e~ is needed to fit the high-field points. The change is
not large. This variation indicates there may be a mag-
netic Geld dependence to e~. High-Geld results for e~

will be reported at a later date. Boyle and Brailsford"
report a value of 100 for the lattice dielectric constant.
This is for the case of magnetic Geld parallel to the direc-
tion of propagation and parallel to the trigonal axis.
Our results are for magnetic Geld perpendicular to the
direction of propagation. The value of 100 could be con-
sidered as a mean value of our results.

The dielectric constant eg consists of a part due to the

"J.J. Hauser and L. R. Testradi, Phys. Rev. Letters 20, 12
(1968)."W. S. Boyle and A. D. Brailsford, Phys. Rev. 120, 1943 (1960).

background lattice and a part due to the zero-frequency
polarizability of the electron gas. It is this zero-fre-
quency polarizability that is important. There are con-
duction and valence bands in bismuth with very small

energy separation. These neighboring bands give rise to
virtual electron transitions in the far-infrared frequency
region. Wolff34 points out that a large value of e~ requires
both a small energy gap between conduction and valence
bands and highly anisotropic masses. Wolff presents an
expression for the qualitative behavior of e~ showing it
to be a tensor depending on the mass tensor. Hence, the
fact that e& depends on crystallographic direction is not
surprising. It should also not be surprising if e~ has some
dependence on magnetic field, since at large magnetic
fields the energy gap may beome field-dependent. ""

V. SUMMARY

In summary, we have measured the quantum oscil-
lations of the mass density along principal crystal direc-
tion in bismuth and compared these results to the theo-
retical model of the bismuth Fermi surface. In contrast
to Williams and Smith, ' we find a good fit between ex-
periment and theory for all orientations of the magnetic
and electric field with respect to the crystal axes.
Inspection of their Figs. 11 and 12 and comparison with
the data reported here lead to the conclusion that the
experimental data of Williams and Smith is mislabeled,
and the experimental points for Figs. 11 and 12 of their
paper should be interchanged. In their work, Figs. 11
and 12 represent consecutive experiments in which only
the plane of polarization of the microwaves was changed.
One of us (G. W.) concedes that an error probably oc-
curred in assigning the data to particular orientations.

A simple three-band model used by Smith, Baraff,
and Rowell' is suAicient to account for the general shape
of the experimental curves. The extra conduction band,
band 4 in Fig. 1, is needed to make a detailed fit of the
experimental curves. Within experimental error it has
not been necessary to postulate any nonellipsoidal char-
acter to the Fermi surfaces, but this cannot be ruled out
by these experiments.

The results of the fit of experiment and theory indi-
cate that e~ is anisotropic and is of the order of magni-
tude of 100.
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