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In Paper I we found the appropriate generalization of Gor'kov's linearized gap equation for a pure, semi-
inGnite weak-coupling superconductor in a magnetic Geld, separated from vacuum or an insulator by a
specularly reRecting surface. In that paper we used the gap equation to study the surface-nucleation critical
Geld H', 3 at T—O'K. Here we study the region T T, and find the first three nontrivial terms in an expan-
sion of the ratio II, (T3)/II, (T2) to be 1.695(1+0.614(1—t) —0.577(1—t)'"j, where s= T/T, T—he term.

linear in 1—7 has been found previously, but the last term is new. For T close enough to T, we show that
the system is accurately described by the linearized Ginzburg-Landau equation with the usual boundary
condition and thus regain the results of Saint-James and de Gennes. At lower temperatures the pair wave
function has a slowly varying component which satisfies a Gnite-order differential equation and a surface
component which does not. An analysis of the surface component gives an effective boundary condition
on the slowly varying part; from this condition the Geld H, 3 is derived. In combination with the results of
Paper I we propose an interpolation formula for the entire temperature range below T,. A comparison with
the available experimental data is encouraging.

I. INTRODUCTION

''N Paper I' we obtained the proper linearized gap
~ ~ equation (LGE) for studying the surface nucleation
critical field II,3 for a semi-infinite pure superconductor
separated from vacuum or an insulator by a specularly
reQecting plane boundary. The result is a linear integral
equation whose minimum eigenvalue is related to II,3.

l3ecause of complications related to the presence of a
boundary, we are unable to solve this equation at
arbitrary temperature. In I,' we showed that at zero
temperature the LGE could be put into a form amenable
to a variational treatment and we found a lower bound
estimate of the ratio H, s/H, & to be 1.925. By perturba-
tion theory we were then able to estimate the leading
term in the temperature dependence of the ratio
to be H, s (T)/H, s (T)—H, s (0)/H„(0) 0.05 (T'/T, ')
&& 1n (T/T. )H.s (0)/H, s (0). The vanishing slope and
small coefficient of this correction suggests that the
ratio H, s/H, & may well remain in the neighborhood of
1.9 for a substantial portion of the temperature range
below T,.
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& C.-R. Hu and V. Korenman, Phys. Rev. 178, 684 (1969). We
will henceforth refer to this paper as I and refer to equations from
I, as I followed by the equation number.
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For temperatures close to T„ the smallness of the
magnetic fields of interest leads to the existence of a
small, dimensionless parameter proportional to
(1—T/T, )ils in terms of which an expansion of our
LGE becomes possible. Indeed, it is by means of just
such an expansion that Gor'kov' was able to show the
validity of the Ginzburg-Landau (GL) equation' in
the interior of a pure superconductor for temperatures
suKciently close to critical (the GL region). Further,
using this equation and taking account of the surface
by means of a boundary condition, Saint-James and
de Gennes (SJdG)e showed that H, s/H, s

——1.695 in the
GL region. ' It will be our purpose in the following to
analyze our LGE (which already incorporates the
effects of the boundary) near T, to determine, first,
whether it reproduces the results of SJdG and, further,
the corrections to these results for temperatures slightly
beyond the GL region. In particular, we will demon-
strate that the boundary condition used by SJdG fully
incorporates the effect of the boundary to the same
order of approximation as is involved in deriving the
GL equation, and will find the modification of the
boundary condition needed in higher orders.

In Sec. II we begin the discussion by expanding our
LGE in powers of (1—T/T, )' is under the assumption

' L. P. Gor'kov', Zh. Eksperim. i Teor. Fiz. 36, 1913 (19&9)
[English Transl. : Soviet Phys JETP 9, 13.—64 (19/9)j' V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).

4D. Saint-James and P. G. de Gennes, Phys. Letters 7, 306
(1963).

~ The validity of the GL equation for impure superconductors
in a wide temperature range was shown in L. P. Gor'kov', Zh.
Eksperim. i Teor. Fiz. 37, 1407 (1959) )English transl. : Soviet
Phys. —JETP 10, 998 (1960)j. The ratio 1.695 for B,3/II, 2 holds
whenever the GL equation does.
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II. EXPANSION OF LINEAMZED GAP
EQUATION ASSUMING 4 TO BE

SLOWLY VARYING

Our analysis is based on the LGE found in I' Lsee
Eq (I-»)3:

A(r) =
r

dr'kp(lr —r'I) exp —2ie A(s). ds A(r')
1' Il)p

l)p
dr'kp(

I
r —R;r'

I )

Xexp —2zt. A(s) ds A(r'), (1)

where the integral phase factor in the second term
involves a path along straight lines from r' to r via r~,
while that in the first involves a simple straight-line
path. The sample is taken to occupy the half-space
s&0, R,r denotes reflection of r in the sample surface,
and the point r~ is the intersection with the s= 0 plane
of the straight line joining r and E, r. The kernel

p ls

that the pair wave function A(r) is everywhere slowly
varying (aide infra). We then demonstrate that in the
lowest order of expansion this assumption is self-
consistent, and that the GL equation and SJdG
boundary condition emerge as consequences. In higher
order, however, the slowly varying condition cannot
be maintained, and in Sec. III we repeat the expansion
allowing A(r) to contain both a slowly varying com-
ponent and a component which is rapidly varying, but
which is nonzero only in the vicinity of the boundary.
Although the complete pair wave function A (r) always
satisfies the SJdG boundary condition, the slowly vary-
ing part in general satisfies a modified condition which
is determined from an analysis of the behavior of the
boundary component. From this analysis we find
corrections to the SJdG value of H, p/H, p proportional
to 1—T/T. and (1—T/T, )P~'. In Sec. IV our results
are compared with previous calculations of these
corrections. In Sec. V the correction terms are combined
with the results of I, and we propose an interpolation
formula giving H, p/H, p at all temperatures below T,.
This formula is then compared with the available ex-
perimental data and shows encouraging agreement.

assumption of specuIar reflection requires the exact 6
to vanish at the boundary, but the smoothed 6, which
we shall always consider henceforth, is readily shown
from Eq. (1) to satisfy the boundary condition (BC)

8, P(r)h(r) I, ,=O,

2 (r)—=V+2ieA(r)

(3)

is the gauge-invariant gradient operator.
From Eq. (2) we see that the range of kp is given by

A second length in the problem is (~.
tri= (2eH)

—'I'. (5b)

YVe will henceforth be concerned only with values of II
equal to the nucleation field H, p, whereupon bi will
become a definite function of T diverging at T,. In
fact, under the assumption that the temperature varia-
tion of H, p in the GL region is that found by SJdG,
which assumption we can verify a posteriori,
~ )p(1—i) '~'))$p, where i= T/T. . The lengths $~ and
$p will set the scale by which we measure the variation
of D(r). More precisely, a function F(r) will be called
"slowly varying" (SV) at r if it satisfies the gauge-
invariant condition

l(r)F(r) I &t~ 'IF(r) I,
and "rapidly varying" (RV) at r if

(6)

l&(r)F(r) I-4 'IF(r) I. (7)

Further, a function will be called "everywhere slowly
varying" (EVS) if Eq. (6) holds for all values of r
inside the sample.

In Gor'kov's' microscopic derivation of the GL
equation for infinite samples he assumed that the pair
wave function A(r) is ESV for T near T,. The LGE for
the infinite sample case is the first term of Eq. (1)
with no restriction on the domain of integration. Under
the ESV assumption one can expand A(r') in a Taylor
series about r, expand the exponential, and find the
infinite-order differential equation with constant
coefficients'

6 (r) = apA(r)+ (3!) 'a, (r)'A(r)
+ (5!) 'a4LX)(r)'+ (2eH)'gD(r)+ (7!) 'apLQ(r)P

+5(2eH)(r)' —2(2eH)g)~(r)'gD(r)+ (8)
with

kp(r)—= I!il T(rw/2~)'R ' Q e ""~'~~"~ (2)
aiid

QIi(r) = (H. P(r))/H

with pp„—= (2++1)pr T, where we have taken A= c=ke ——1,
and X is the interaction strength in the BCS model. Ke
remind the reader that Eq. (1) describes the behavior
of a "smoothed" pair wave function I see remarks
after (I-21)j, where variations on the scale of the
interatoinic spacing pr ' have been averaged out. Our

a —= R"kp(R)dR. (10)

The assumed ESV nature of D(r) and the range of the

6See, for example, L. Tewordt, Z. PhysIk. 184, 319 (1965};
E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
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kernel mentioned above together ensure that successive
terms on the right, -hand side of Eq. (8) are reduced by
a factor (ge/hatt)'~ (1—t), so that retention of a given
number of terms will give accuracy in any computed
quantity up to the corresponding order in 1—t. In
particular, retention of only the erst two terms yields
the linearized GL equation, while the fact that Eq. (8),
truncated at any finite order, does admit ESV solutions,
demonstrates the self-consistency of the original assump-
tion.

The LGE for the present case, Eq. (1), differs from
that for the infinite medium case only for points within
about fe of the boundary. Although the boundary
provides a mechanism for spoiling the slowly varying
nature of the solution we will first study Eq. (1) under
the assumption that it still admits KSV solutions for
the pair-wave function, and check the self-consistency
of that assumption at a later stage.

It is convenient to continue our discussion in terms
of an alternative form of the LGE found in I [see
(I-32)j in which the inherent surface terms are sepa-
rated out:

We may now demonstrate the self-consistency of the
LSV assumptioii and also the validity of the SJdG
approach to this order. We first point out that since
the boundary condition, Eq. (3), is implied by Eq. (11),
it should also be implied by the expansion of Eq. (11)
to any order. That this is so to the present order is
easily verified by applying Z, (r) to Eq. (12), setting
s=0, and using the identity [dX,(s)/ds$ I, o

——sac, which
follows from Eqs. (10) and (14). The result is

P, (r)D(r) I, e
——sitt,g+(r)'D(r) 0

to the order considered. The demonstration is com-
pleted by showing that SLT (II) vanishes to this order,
since the remaining equation admits ESV solutions.

The vanishing of SLT (II) is most easily shown in a
gauge where' 3,=0 so that a Taylor-series expansion of
6 and its spatial derivatives with respect to s becomes
a natural expansion in powers of $o/)rr which can be
truncated at the order of interest. The Taylor series
about s =0 is appropriate since the surface terms vanish
for s&(e due to the s dependence of Xi. Then we have

a(r) = dR k, (IRI) exp[R P(r)ja(r)

l(p
drVee(lr r'I) exp[(& 'r& r) '&(y)]

l(P
dr'z'Iep(I r —r'I).

Finally the constants a„are well known. ' We shall give
their values below.

~ For a detailed derivation see C.-R. Hu, thesis, University of
Maryland, 1968 (unpublished).' See, for example, A. A. Abrikosov, L. P. Gor'kov', and I. E.
Dzyaloshinsky, Methods of Qttasttttrrt Field Theory ie Statistical
I'hysics, translated by R. A. Silverman (Prentice-Hall, Inc.,
Englewood Clips, N. J., 1963).

&({exp[(R.r' —R;ri) . 'Z(ti)$

—e .p[(r' —&"r ) (e) 3&(g) I.=' (ll)

Under the ESV assumption about h(r) the first term
of Eq. (11) will reproduce the expansion of Eq. (8)
while the second term will be the contribution from the
vicinity of the boundary. Since P(r) acting on A(r)
is equivalent to a factor br ', successive terms in the
expansion of the exponential will contain successively
higher powers of $e/$1r, so that we have a natural ex-

pansion of the LGE. To second order we have

D(r) =as'(r)+ sa&g(r)'D(r)+SLT(II), (12)

where the coeS.cients a„ in the "bulk terms" are de-

fined in Eq. (10). The "surface-layer terms" (SLT) to
this order are~

SI.T(II)= —2X, (z)Z, (r)h(r)+2zx, (z)g, (r)'A(r), (13)

where

SLT (II)= —2x, (s) j[V,S(r)$,=,+s[V, a(r) j, ,y }
+2sx, (s)(r,&a(r) I,=,+ ")

= —2x, (z)2, (r)~(r) I, ,=O, (15)

where we have imposed the boundry condition. Thus
we have shown, to order ($ /eb)'r~1 t, that the LG—E
admits KSV solutions, that these solutions satisfy the
GL equation throughout the sample, and that the
entire eRect of the boundary is contained in the simple
boundary condition, Eq. (3), which is just that assumed

by SjdG. The critical field II,& found by SJdG is then
correct to order 1 t, except for—the possibility (ruled
out in the next section) that a non-ESV mode of nuclea-
tion might be more favorable and lead to a higher
nucleation field.

To look for corrections to this result one must expand
the LGE to higher order. We remark that in the con-
text of ESV solutions the erst correction to II,3 will
be of order ($o/$1r)eec (1—t)s, although corrections to
Eq. (12) of order ($e/far)' will appear. This is because
the bulk terms are all of even order [cf. Eq. (8)] while
the surface-layer terms, though including odd-order
terms, are only nonzero for z within about $e of the
boundary. The critical field B,3 being a global property
of the system, the eRect of the surface-layer terms is
reduced by the ra, tio of (e to the full width of the pair
wave function (II, so that they contribute in one-
order higher than their nominal size. Then to compute
II,s to order ($o/)sr)' we consider the equation

6 (r) =as' (r)+-', a2E (r)'6 (r)
+ (5!) 'a4[E(r)'+ (2eII)'jh(r)+SLT(III), (1ti)

'That this conclusion is in fact gauge invariant is shown in
Footnote (iv) of Ref. 7.
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where'

SLT(III)=SLr(II) —X»(s)Z,'Z.~(r)
—[s'xr(s)+ pxp(s) Ã*'~(r)

Coinbining Eqs. (21) and (22) we find

(23)

dr'[(x —x')"s'"/(s —s') ')x„„&'~(s) —=

z'&0

x „(s)—=x„,„+&(s), x„(s)—=xp, „(s),

+2qsIIx»(&)(s)g, g(r) (17) to order ($p/&B)', where fp=sp/(&. Using Kqs. (22)
and (23), we now evaluate Eq. (17) to order ($p/br)'
by making use of the same Taylor expansion which led
to Eq. (15). The result is

&&~o(lr —"l) (18a) SLT(III) ( 2„,(,) („-i
(18b) +[Xp,p"'(s)+SXp(s) jkB '|p)~(0) (24)

and we have chosen H to be along the y axis. YVe de6ne
the symbol X)&—=2—e,X), .

It is again straightforward to verify that the boundary
condition Kq. (3) is implied by Eq. (16), to order
($p/$B)', which is the order of interest. For the ESV
assumption to be justified it will be necessary to demon-
strate that the rapidly varying surface terms SLT(III)
vanish to this order, at least for the class of functions
D(r) which satisfy the remaining equation and are
otherwise candidates for the optimum-nucleation mode.
These functions will be eigenfunctions of the operator
P(r)' satisfying the boundary condition Eq. (3). In
looking for the optimum-nucleation mode we may
consider functions with no y dependence and, if we
work in the gauge A=H(s —sp 0 0), can ignore x
dependence as well (cf. Ref. 16 of I) so long as we
maximize the computed H, 3 with respect to variations
in so. We remark parenthetically that should we be
able to find appropriate eigenfunctions, which would
satisfy Eq. (3) and

Then even with n=0, SLT(III) will not be zero unless
fp is of order Pp/br or 6(0) is of that order compared
to values of 6 away from the surface. Now in the GL
region, fp 0.77 for the optimum mode4 while the bound-
ary value of the nucleation wave function is comparable
to its value elsewhere, so that neither of these quantities
can be expected to become of higher order here. We
conclude then that the rapidly varying boundary
terms cannot be made to vanish for the pair wave
functions of interest, and thus, that our original assump-
tion that an ESV solution of the LGE Eq. (11) exists
at II,p is untenable, if accuracy to order ($p/$B)

(1—t)' or better is required.

III. EXPANSION OF LGE WITHOUT THE
SLOWLY VARYING ASSUMPTION

Since the pair wave function has been shown to con-
tain a rapidly varying part near the boundary, we look
for a solution of the LGE of the form

(19) h(r) =KB(r)+hsL(r), (25)

and which would allow SLT (III) to vanish, we would
compute H, 3 by solving the equation which follows
from Eq. (16):
1=ap(T) ,'a, (T)PB '—p„——

+(5) ' (T')(-'+1)5 ' (2o)

for H as a function of T and maximizing H with respect
to both e and so.

Since the functions of interest will satisfy Eq. (19),
we may use this equation in evaluating SLT(III).
Thus, in the special gauge mentioned above, Eq. (19)
implies

v,'a( ) l,=,=k —[(,/5 ) —.j~(0),
v.pa( ) l,=,=q„-'[(,/g ) —pj[v,~( )7, ,

—2(Ir 'sph(0) . (21)

We may also use the boundary condition Eq. (3), but
anticipating the needs of Sec. III, write it in a general-
ized form which, in this gauge, is

KAB—=OBr&+OsLAB (26)

where OB and OBL are differential operators which
reproduce the bulk-and-surface-layer terms to a given
order when operating on h. Thus, for example, OBA(r)
to sixth order is the right-hand side of Eq. (8) while
O»g(r) to third order is the right-hand side of Eq.
(17) combined with Eq. (13).

The LGE now takes the form

where the "bulk component" h~ is ESV while the
"surface-layer component" 5 ~ vanishes except in
the boundary region s&gp. Writing the LGE Eq. (1)
or Eq. (11) symbolically as 6=J'Kh, we notice that
J'Kh» is rapidly varying and vanishes away from
the boundary, while J'KAB has an KSV component
and an RV component, which can be separated out by
the expansion procedure used in Sec. II. Symbolically
we set

V,a(s) ~,=,=~P -'a(0), (22)

where n is assumed to be of order (gp/gB)' or smaller.
gB+gsL K+SL+OBgB+OSLgB (27)
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gB 0B+B (28)

whereupon the surface-layer component must satisfy
the inhomogeneous integral equation

We further specify A~ by requiring it to satisfy the
same equation the full pair wave function satishes in
the infinite-sample case

however, depend on err and l'()=—s()/br). " Given n as a
function of H and i'(), the eigenvalues of P(r)' may be
found and from them H, 3 through the analog of Eq.
(20). The effective-boundary-condition parameter n,
however, is determined by the solution of Eqs. (28)
and (29) and the orthogonality requirement which
takes the form

6sL(r)— dr'E(r r')6 (r') =0 6 . (29) )0
dr A*(r)0sLA~(r) =0, (32)

Equation (29) cannot be approximated by a differential
equation of finite order since it no longer contains a
small expansion parameter.

The pair of equations (28) and (29) is a coupled set,
though the influence of b, L on Eq. (28) may not be
immediately apparent. The coupling arises because Eq.
(28) is insuflicient to determine h~(r) without the
imposition of boundary conditions. The bounds, ry
condition is determined by the requirement that the
inhomogeneous term of Eq. (29) be orthogonal to the
solution of the corresponding homogeneous equation,
so that finite solutions of the inhomogeneous equation
may exist.

In particular, Eq. (28) will be an eigenvalue equation
involving the commuting operators P(r)' and Sir(r)
I cf. Eq. (8)j and its solution can be expected to be a
simultaneous eigenfunction of these two operators.
Requiring A(r) to be normalizable leaves one boundary
condition needed at z=0. Since D(r) is infinitesimal
at the nucleation point, the boundary condition must be
linear in A~(r) I,=() and V',An(r) I, e, while gauge
invariance requires V', to appear as the combination

Z, (r). Finally, taking account of translational invari-
ance in the boundary plane, we find the most general
boundary condition at s =0 to be

(33)

where n(") denotes the value of n accurate to mth
order in $()/fir.

If we write generally

0"~'(r)=—L~fi(s)+f~(s) 3~'(0) (34)

then from Eq. (24) we see that the leading term in
fi(s) is of first order while the leading term in fs(s)
is of third order, so that one may find n("+" from Eq.
(32) knowing LP(r) only to order n More pr. ecisely

~ (n+2)—

since the solution to the homogeneous equation cor-
responding to Eq. (29) is the full pair wave function D.

Although this coupled set of equations appears
rather formidable, it can be solved to any given order
in $p/&II by means of a finite-iteration procedure.
Since h~ satisfies Eq. (19) as well as Eq. (31), 0 Lhs
can be expanded in a Taylor series about 2'=0, just
as the surface-layer terms were expanded in Sec. II,
and various orders in $0/gil identified. Thus, from Eq.
(24), 0 A~ to second order is proportional to n(') so
that Eq. (32), to second order, has the trivial solution

where r& is a point in the boundary surface. We will

work, henceforth, in the gauge mentioned after Kq.
(18),where there is no dependence of 6 on x, and assume

that, as in the GL region and in computations of

H, 2,
' the nucleation pair wave function does not

depend on y. Then Eq. (30) becomes"

(31)

which contains only the single constant n (which can,

We stress that this is the boundary condition on the slowly
varyin'g part of the pair wave function A(r). It can be considered
as the boundary condition on the extrapolation of the pair wave
function from s»(0 to the boundary s =0.The complete pair wave
function still satisfies Eq. (3), at least as far as we are concerned
in this work. On the true microscopic level, the remarks before
E(l. l3) should be kept in mind.

ds 6*(„)(s)fi("+"(s) (35)

where parenthesized subscripts and superscripts denote
the accuracy required. This is an iterative solution
since fi and fs are easily found to all orders while
6*(„)can be found from Eqs. (27)—(29) and (31) using
the eth-order value for a..

The situation is particularly simple if we limit our
attention to n(4)

I which, as we shall see, allows a
calculation of H, s to sixth order in (1—t)'I'j. Equation
(33) guarantees that A(»(r) be just the SJdG result

"The |fl dependence of a in our special gauge is equivalent to
the nonlocality of Eq. (30) in a general gauge. For example, in
the gauge in which 2, =sH, A„=A,=O, we might look for solu-
tions of the form A(r)= f(s)e'~ . Then Eq. (30) for h(r) will
become Eq. (31) for f(s) with 0.—=1'n(rz —rz')e 'I'(~ ~')dr&', which
depends on sy through the relation I(, = —goj(~'. See Ref. 16 of I.
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to second order, considering the integration range in
Eq. (35). We have set h~sl'(0) equal to 0 because of
the boundary condition, while Atsl" (0) =0 is valid for
the optimum nucleation mode. "Using Eq. (36), then,
Eq. (35) implies

ds f (m+ll(s) d f '" "() (37)

for m=2, 3, or 4. To determine n to higher order, one
would have to solve the integral equation Eq. (29)
to find an expression for hsL to insert in Eq. (35).

When we have also found the eigenvalues of Z)(r)s
as a function of cp and thus of $p/far, it is straightforward
to find the temperature dependence of II,3 to a cor-
responding order. Thus, from Eqs. (8) and (19) the
analog of Eq. (20) to sixth order is

gp —1—(g,/3!)e&~
—'+ (gp/5!) (1+c')&Jl

'
—(g,/7!) (e'+5e) (II ' ——0, (38)

where we have explicitly assumed a zero eigenvalue for
'7)~(r), or no y dependence of LP (r).

This is easily inverted to give $rr 2eH„accu——rate
to sixth order in (1—I)'I' as

for the GL region, which is ESV."Then, in our special
gauge,

A(s) (s) A(s) (0)+sA(s)'(0)
+(s'/2')~ "(o)=~ (o) (36)

bc=Cn (41)

to second order in $p/(Ir. Here C= Be/Ba is evaluated at
et =0 and l p fpsr——, the optimum value of fp in the GL
region. In Appendix A we show that Eq. (41) is also
correct to the next higher order —the order we shall
now consider. Luders also showed how the constant C
could be related to the properties of the eigenfunctions
of P (r)' with the SJdG boundary condition. We discuss
this relation in Appendix A as well. Schultens" used
this relation in a numerical evaluation of C which
recently was found to be incorrect. "He has since re-
evaluated this constant to find

C=0.762.

out solving an integral equation to 6nd the surface
part of the pair wave function.

In the following we shall compute ~ only to third
order, which allows an evaluation of II,3 to fifth order.
The term in (gp —1)' in Eq. (39) is then extraneous.
We note further that H, s is determined by Eq. (39)
also, '4 with &= 1 and can therefore write, now to third
order,

H, s/H, s ——ep-'I I—be/ep

+ (3 ~) (5!) (ep —1)gpgs (gp —1)j, (40)

where e=ep joe, ep is the GL value of e, and we anti-
cipate that be is of at least second order.

To find 8~ as a function of n we follow the calculation
of Luders "who showed that.

2eII cg

3!(gp—1) (3!)' g, 1+e'
1+ — (gp —1)

5.' 8
—(3 I)P g ~ (1+ps)s

2
(5l)& g p 4

An independent rough calculation of C by one of us
(CRH) gives a value close to the above, and we will
take Eq. (42) to be correct.

The final ingredient for the evaluation of Eq. (40)
is the value of o.&p' which is to be found from Eq. (37).
In Appendix 3 we show that

(3!) gs e +
(gp —1)', (39)

7f gs 2

-31 f (5) (&p l' 9 g(6) (
I
—

I
&p+-

70f(3)kg ) 64'(3)k~ )
(43)

which relies heavily on the fact (side ivfr g) that gp —1
~1 I. Note that e—still depends on )lr through its
dependence on n, but that this dependence can be taken
care of in Eq. (39) in an iterative fashion. It is clear
from Eq. (39) that accuracy in c to fourth order will
allow II.3 to be computed to sixth order. Since the
accuracy of e is, in principle, the same as that of the
value of a used to compute it, we see that the sixth is
the highest order to which we can compute II,3 with-

'2This justi6es our remark after Eq. (15) that no non-ESV
solutions need be considered in determining H, 3 to second order.
Our coupled equations require AsL to vanish to this order and
provide a simultaneous microscopic proof of the GL equation and
the SJdG boundary condition for temperatures sufficiently close
to T,.

'3 This is easily verified in the solution of Ref. 4. A proof of this
statement from &st principles is also contained in Chap. VI of
Ref. 7.

where f (n) is the Riemann t' function. Then, using
Eqs. (15), (16), (41), (42), and (43), the values
ep=0.59010, f'psr=ep I found by SJdG, and the values

gp ——1—I) IE(0) ln(T/2') —1+I~IX(0)(1—1),
gs=st (3) I)tI&(0)f&P')j'=st (3) I) I&(0)4'
'4%hen there is no boundary, a=1 is the lowest eigenvalue of

Eq. (19).See also Ref. 6.
"G.Liiders, Z. Physik 202, 8 (196/)."Quoted by Liiders. See Ref. 15 and G. Liiders, revised english

note of a talk delivered at Theoretische Physikalisches Seminar,
Gottingen University, 1967 (unpublished). We wish to thank
Professor Liiders for sending us a copy of this note."G. Luders (private communication). Our original calculations
as well as those of Luders in Ref. 15 were based on the earlier
incorrect value of C. It was on the basis of this value that we
predicted in Ref. 7 that II,3/H, 2 had a minimum at a tempera-
ture below T,. We would also like to point out that the correct
value of C was actually obtained much earlier by Ebneth and
Tewordt ! see Ref. 21, Eq. (8)] who evaluated the combination
C/2 pp~ IP =0.496.
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tt, (93/2)t" (5) () jlV(0))s4

were found. We can evaluate Eq. (40) as

(44)

For C given by Eq. (42) we find

H.s/1. 695H,s~1+0.614(1 t) —0.—57 7 (1 t) sts. —(46)

The temperature dependence of H,.3 itself may be
found directly through Eq. (39) (where careful note
of the temperature dependence of as and as is required)
or by using the known relation'

7f(3) Pe,'H„(t)
=6(1—t)(1+0.135(1—t)+Of(1 —t)']) (47)

so that

7f (3)e(o'H.s(t) =6(1.695) (1—t)

XL1+0.749(1—t) —0.577 (1—t)'"]. (48)

To summarize, then, we have shown that: (a) To
order 1—t in H, 3, all relevant solutions to our exact
LGE are ESV solutions to the linearized GL equation
subject to the SJdG boundary condition, so that we
reproduce the well-known results of SjdG. (b) When
accuracy to higher order is required, no solutions of
the LGE are ESV, and a finite-order differential equa-
tion plus a boundary condition can, at most, describe
the pair wave function outside the surface region (i.e.,
for s))Ps), although it can yield a value for H„. In the
surface region A(r) is necessarily described by a non-
local integral equation which no longer contains a small
expansion parameter. (c) The effective boundary con-
dition on the ESV part of the pair wave function is
determined by an expression which involves A(r) in
the surface region. The critical Geld H, 3 can be found
from the boundary condition. To order (1—t)' in H„,,
the boundary condition can be found without actually
knowing the surface part of ~. To higher order, solu-
tion of the integral equation for 6 near the surface is
required.

We have, further, computed corrections to II,3 of
order (1—t)' and (1—t)'t', beyond the results in the
GL region. Further corrections can be computed, in
principle to any order, but the mathematical difhculties
increase rapidly.

Finally, we note that the solution of the integral
equation Eq. (29) for 5 in the surface region is easily
obtained numerica]ly to two nontrivial orders in
(1—t)"s. To this accuracy the kernel may be replaced
by the corresponding zero-field kernel and the equation
solved by means of a Fourier cosine transformation.

H„/1.695H, s 1

+(279/245)f(5)f(3)-'(" ' -1—'—C o "'-)(1 t)—

(7—/ )(3/7)"'Cl( )f (3) '" "'(1—t)"'
=1+(1.53O —1.202C)(1—t) —0.75SC(1—«)st'. (45)

IV. COMPARISON WITH PREVIOUS WORK

The GL equation was proposed on phenomenological
grounds as a unified description of various properties
of superconductors. It was later derived microscopically
by Gor'kov' ' through an expansion, at temperatures
near T„of an integral equation obtained by him earlier,
which is a valid microscopic description of an infinite
superconductor at all temperatures. The usual boundary
condition D.e., Eq. (3)] for the GL equation was pro-
posed by Ginzburg and Landau, ' and by de Gennes"
only through heuristic arguments. "We know of only
three attempts'~" prior to ours to provide a rigorous,
microscopic derivation of the GL equation and bound-
ary condition for a 6nite geometry at temperatures near
the nucleation point. In two of these developments" ""
the authors also were able to generalize the GL equa-
tion and BC to temperatures slightly outside the GL
region, and use them in the calculation of the tempera-
ture dependence of the critical-field ratio H.s/H, s in
this temperature regime. In the following we compare
the present work with these earlier discussions.

Abrikosov, '0 using his somewhat incorrect kernel for
the LGE Lsee remarks after (I-11)], has also arrived
at our Eqs. (12) and (13), from which he proposed a.

procedure different from ours to obtain a simultaneous
derivation of the linearized GL equation and the BC.
His derivation is not completely satisfactory since it
included no check on the self-consistency of the ESV
assumption about the gap function made at an early
stage. He made no attempt to extend the discussion to
lower temperatures, where the effective BC must be
modl6ed.

In the work. of Ebneth and Tewordt, " the authors
first derived the generalization of the GL equation to
fourth order [in &o/grt or (1—t)'t'] for an iejinite sample.
They then obtained a unique expression for the free-
energy density to the same order by requiring it to be
real and by requiring the Euler-Lagrange equation
obtained by varying the free energy to agree with the
generalized GL equation to the order considered. Taking
the free energy of a sample with boundaries to be just

"P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964); Sgpercon-
dmotsvity of Metals amd A/toys, translated by P. A. Pincus (W.
A. Benjamin, Inc., Ãew York, 1966).

'e According to a remark by E. A. Shapoval (Zh. Eksperim. i.
Teor. Fiz. 47 1007 (1964) LEnglish transl. : (Soviet Phys. —JETP
20, 675 (1965)j), an unpublished microscopic derivation of this
boundary condition has also been found by Gor'kov.

"A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz.!47, 720 (1964)
LEnglish transl. :Soviet Phys. —JETP 20, 480 (1965)g.

"G. Ebneth and L. Tewordt, Z. Physik 185, 421 (1965) and
earlier references cited therein. There are a number of misprints
which should be noted. Thus o. should be (m./2p) (&0/l) rather than
{7l-g/2) (&0/l) and a factor of 3 is missing from the numerator of the
right-hand side of Eq. (11.) The numerical value for 8 at large n
is also in doubt as the theory actually predicts IX,3/F1, 2—1.695L1+0.548a '(1—t)j as n ~ ~.

"E. Scholer, thesis, Gottingen, 1966 (unpublished). Also the
series of papers by G. I,iiders: Z. Naturforsch. 21a, 680 (1966);
21a, 1415 (1966); 2la, 1425 (1966); 21a, 1824 (1966); 22a, 845
(1967). See also Ref. 15 for a brief account of this work.
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the integral of this free-energy density over the cor-
responding finite volume, they then varied this ex-
pression to obtain, along with the generalized GL
equation, the generalized BC to the same order. Using
these they were then able to compute H„(t)/H, s(t) to
order 1—t. In the limit of in6nite mean free path, the
result is identical to the corresponding term in our
Eq. (46).

Now it is clear that this procedure can only be correct
insofar as the true pair wave function A(r) satisfies the
generalized GL equation everywhere, and we have
demonstrated that this cannot be the case. In computing
H, ~ to fourth order, however, 6 is required only to
second order, and we have found in Sec. III that ~s~,
the part of 6 which fails to satisfy this requirement,
appears 6rst in third order for a sample with a specularly
reflecting surface. This accounts for the agreement we
noted in lowest order, but agreement with our results
in any higher order is not to be expected. In fact the
procedure of Kbneth and Tewordt cannot give rise to
half-integer powers of 1—t in the expansion of H.3

while the next term in our Eq. (46) is proportional
to (1—&)s~'.

Perhaps the first rigorous, microscopic treatment of
the bounded-sample problem is that of Scholer and
Luders. 22 This work agrees with ours in many respects,
although the approach is quite diferent. They obtain
the same equation as we do for the major component
of the pair wave function (our hn) and an effective
boundary condition on this component which is deter-
mined by an analysis of the eBect of the boundary
surface. Their BC (and thus the value for H, s com-
puted by Liiders" 'r) agrees with ours to the order they
computed it (the first nontrivial order), so that they
have derived the linearlized GL equation and the usual
boundary condition for T sufficiently close to T„as
well as the first correction term for lower T. An extension
of the work of Scholer and Luders to impure samples
by Usadel and Schmidt, "furthermore, agrees with the
corresponding expression found by Ebneth and
Tewordt" to this same order. As we shall explain below,
we expect that the treatment of Scholer and Liiders
will agree with ours for three nontrivial orders but no
farther.

The major differences in the two treatments are as
follows: We have treated the boundary surface quantum
mechanically while Scholer and Luders treat it by
means of a classical scattering analysis. Though perhaps
less "microscopically correct, " their analysis does have
the advantage of being applicable to diQuse scattering
as well as the specular reQection we have had to assume.

Of more importance is a difference in the two treat-
ments of the rapidly varying component of the pair
wave function, which will lead to disagreements in.

higher orders. In particular, in Scholer-Liiders an e6ec-

"K.-D. Usadel and M. Schmidt (unpublished). %'e thank the
authors for sending us a copy of tQe&z ~rk before publication.

tive boundary condition can be found to any finite
order in (1—t)'~s by iteration. We have found that for
terms of order (1—t)"' and higher in H, ,„ the solution
of an integral equation exact to all orders $i.e., Eq. (29)
for d, sLj is required before the boundary condition
can be found. We believe that the effective BC which
Scholer and Liiders will obtain is given by our Eq. (32)
with 6* replaced by 6 *, which is correct only for the
three lowest nontrivial orders of expansion. The reason
is that their approach involves an expansion-and-
truncation procedure which does not treat the SL
component correctly. The boundary condition is then
not correct when AsL becomes important in its deter-
mination, as it does at ran=3 in our Eq. (35). Thus
Scholer and Liiders only can calculate correctly modi6-
cations of H, 3 to the first three nontrivial orders.

V. SUMMARY, DISCUSSION, AND COMPARISON
WITH EXPERIMENT

In Paper I we studied the ratio H, s(T)/H, s(T), for
a pure superconductor with a specularly reAecting
plane surface, near T=O'K. . The result was

H„(T)/H, s(T) 1.93/1+0.05P in/+0(P) j. (49)

The coeKcient 1.93 (more precisely 1.925) is a varia-
tional lower bound to the true value of the ratio at
T=0 K while the coefficient 0.05 is estimated by first-
order perturbation theory, using the T=O variational
wave function. This low-temperature value for the
ratio of the critical 6elds is substantially higher than
the value 1.695 which was found by SJdG' in cases
where the GL equation may be used to describe the
superconducting state. Further, the rather slow tem-
perature dependence of Eq. (49) suggests that the ratio
will remain well above 1.7 for a substantial portion of
the temperature range below T,. We note that the
similar variational calculation by Gor kov" of H, 2 near
T=O has a stronger temperature dependence than Eq.
(49), yet agrees rather well with the exact calculation
of Helfand and Werthamer" for t&0.15. We may hope
that the temperature dependence of Eq. (49) is correct
in a similar range.

Starting from the same basic formulation, we com-
puted above the ratio of the critical fields for T near T,
to two nontrivial orders in (1—t)'I' beyond the result
of the SJdG calculation. Our result is given by Eq.
(46), where the coefficients are now exact rather than
best-variational values. It is difficult to estimate the
range of validity of Eq. (46), but from the coefficients
we may expect that it will be relatively accurate for
1—t on the order of a few tenths.

A convenient interpolation formula which reduces to
Eq. (46) for t 1, and which reproduces the value and

24L. P. Gor'kov', Zh. Kksperim. i Teor. I'iz. 37, 833 (j.959)
t English trsnsl. : Soviet Phys. —JETP 10, 593 (1960)g."E.Helfand and N. R. Werthamer, Ref. 6.
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zero slope of Eq. (49) at t=0 is

H, s (T)/1.695H, s (T) =1+0.614(1—t) —0.577 (1—t)"'
—0.007(1—t)'+0.106(1—t)'t'. (50a)

We may also take account of the fact that the 1=0
value used above is only a lower bound to generalize
Eq. (50a) to

H, s (T)/1.695H, s (T) = 1+0.614 (1—t)
—0.S77(1—t)'t' —(S.687—2.951',) (1—t)s

+(4.650—2.360r,) (1—t)'" (50b)

where rp is the true ratio of the critical fields at 1=0,
rp& 1.925.

The experimental situation is not yet completely
clear. The difhculty is that Eqs. (46) and (49) apply
only to pure weak-coupling superconductors with per-
fectly specular rejecting surfaces. Unfortunately most
pure superconductors are type I, so that H, 2, and per-
haps H, s, can only be measured in supercooling experi-
ments, which are quite difficult. Pure vanadium and
niobium are type-II superconductors, although niobium
has almost strong coupling character. It would seem
that vanadium would be the erst choice for checking
our results, with niobium a close second, since strong
coupling effects do not seem to greatly aRect the be-
havior of the ratio of the critical fields. '6

In fact, measurements of the critical field ratio of Nb
have been reported recently by Webb" and by Ostenson

2 Q. Filenberger and V. Ambegaokar, Phys. Rev. 158, 332
(1967);K. D. Yorke and A. Bardasis, ibid. 159, 344 (1967).

» Q. %'. Webb, Solid State Commun. 6, 33 (1968)

FIG. 1. H, 2(t) computed from measured values of H,z(t) in pure
Pb (see Ref. 35). Curve a computed according to H,3(/) =1.695
H,m(t). Curve b according to Eq. 50a. The point at t=0 is an
extrapolation and curves a and b are extrapolated linearly to
t=1. The right-hand scale shows H, 2 normalized by its negative
slope at t=1. Curve c is Helfand and Werthamer's (Ref. 25)
theoretical calculation for this normalized field.

and Finnemore, ~' while Fischer' has shown us the
data from his preliminary measurements on this same
material. Webb's measurements were on high-purity
Nb with an apparently very good surface. The experi-
mental values of H„/H, s are qualitatively quite similar
to our interpolation formula Eq. (50a), though they
seem to be systematically smaller than theory predicts.
In particular Webb finds near T, that H, s/H, s ~1.67
L1+0.48(1—t)g, while the ratio is extrapolated to a
value of 1.89 at T=O. There is considerable scatter in
the data.

Fischer's sample was less pure, with a residual
resistance ratio better than 50 and Pe/l s, but his data
show much less scatter than those of Webb. The
measurements only covered the temperature range
0.3&t&0.85 but strongly indicate a limiting value of
H, s/H, s smaller than 1.695 at f=1. The experimental
points again fall consistently below our Eq. (50a).
Impurity eRects could account for the discrepancy at
lower temperatures but not near T,.

The experiment of Ostenson and Finnemore, on
high-purity Xb, is apparently the most accurate of the
above in the immediate vicinity of T,. Although
agreeing with Webb's values for t&0.9, the ratio
H„/H, s is found to drop exponentially to unity in the
range 0.9&t& 1.The conclusion seems inescapable that
theory and experiment disagree.

Now it is known' that the critical field H.2 in pure
niobium and vanadium does not follow the Helfand-
Kerthamer" temperature dependence, and indeed this
deviation is found again in the measurements of
Fischer. '9 It has been suggested"" that the deviation
is due to Fermi surface anisotropy, and anisotropy of
the measured H, ~ has been reported. " Since we have
not taken account of possible anisotropy in our de-
velopment, our predictions may not be applicable to
niobium or vanadium at all. It appears then that
experiments on Type-I materials will be required for a
definitive verification of our theoretical results. If,
however, Ostenson and Finnemore" are correct in
attributing the drop of H, s/H, s near T, to critical
Quctuation eRects, agreement very near T, may not
be found in any material. '4

2S J. E. Ostenson and D. K. Finnemore, Phys. Rev. Letters 22
188 (1969)."G. Fischer (private communication)."D. K. Finnemore, T. F. Stromberg, and C. A. Swenson,
Phys. Rev. 149, 231 (1966)."N. R. Werthamer and W. L. McMillan, Phys. Rev. 158, 415
(1967).

3' P. C. Hohenberg and N. R. Werthamer, Phys. Rev. 153, 493
(1967).

3 D. E. Farrell, B.S. Chandrasekhar, and S. Huang, Phys. Rev.
176, 562 (1968).

34 We no not, however, believe that the explanation in terms of
fluctuations is correct. One of us (CRH) has shown that the results
of Ref. 28 can be fully accounted for in the present theory in a
model where the coupling constant IX I

is slightly depressed near
the sample surface. ln such a model the effective transition tem-
perature is lowered in the surface region and the ratio of critical
fields as a function of temperature is correspondingly modified.
A discussion of the fluctuation explanation and details of the
model calculation will be presented in a future publication.
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Perhaps the best experimental verification of the
present work yet available comes from analysis of
measurements of H, 3 performed by Fischer" in pure Pb.
Fischer originally analyzed his data in terms of Luders'
expression'P for H, s/H, s in the presence of diffuse
scattering at the surface and found a good 6t for a
value of the "diffuseness" paramet. er p =0.48. Now the
error in the constant'~ C mentioned above changes
Luders' formulas in such a way that the parameter p
becomes 0.85 for a good fit to Fischer's data, while later
study of his samples'9 points to almost complete
specular reflection p 0. We have, accordingly, re-
analyzed Fischer's experimental data in terms of our
Eq. (50), which is appropriate when p=0.

In Fig. 1, curve a gives values of H, s(l) computed
from Fischer's H„values according to the SJdG
relation H,3=1.695 H, 2. Curve b gives corresponding
values computed using Eq. (50a). The points at t=O
follow from Fischer's extrapolation H, s(0) =1181+4
Oe, which we believe to be accurate. The data have been
extrapolated linearly to t =1. Note that curve b
passes through the point t=1, H, ~

——0, in agreement
with the theoretical prediction" that H, s(t) is very
nearly linear near t=1. Curve a fails to have this
property.

The right-hand scale of Fig. 1 shows values of h*(t),
H, s(t) normalized by its negative slope at t=1. The
normalizing slope (which must be the same for curves
a and b) is taken from our extrapolation of curve b to
be 795~5, in excellent agreement with a different
extrapolation" by Fischer. Finally, curve c is Helfand
and Werthamer's" theoretical prediction for h*(t) in
pure materials. We choose to compare with h* rather
than with H, 2 itself since the latter is greatly modihed

by strong coupling effects while k* has been shown" to
change by at most 2%, due to the strong coupling char-
acteristic of niobium, and perhaps will not be modified

by much more than that due to the stronger coupling
in lead.

It is clear from Fig. 1 that Eq. (50a) is far more
satisfactory for interpreting the H, 3 data than is the
SJdG relationship for the ratio of the critical fields.
Taking account of the fact that Eq. (50a) is based on a
lower bound for the t=0 ratio, and using the more
general result Eq. (50b), essentially perfect agreement
with the theoretical curve for h*(t) is obtained for a
value of ro, the ratio of critical 6elds at t=0, equal to
2.06. Allowing for a possible 5% deviation due to strong
coupling effects, this suggests that ro is the range 1.95
&ro(2.15, which is consistent with the estimate of 1.97
which we made in I on the basis of quite different con-
siderations. The over-all agreement is encouraging and
we consider it good evidence for the correctness of the
theoretical development. Note that possible critical
fiuctuation effects would not be seen here since the
measurements of H, 3 did not extend beyond t 0.8. We

"G. Fischer, Phys. Rev. Letters 20, 268 (1968).

look forward to the simultaneous measurement of H, s
and H, 2 by supercooling techniques for the 6nal veri-
fication of our work.
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e = ep+n(Be/Bn)+s (Bfp) (B e/Bt p )+nBfp(B e/BnBt p),

where eo is the minimum e for n =0, and the term linear
in Bfp consequently vanishes. The derivatives are
evaluated at n=O, fp t psr, t——he value of t p where e

has its minimum for n=0. Terms quadratic in n are
neglected since they do not contribute in the third
order. Minimizing e at finite n, taking account of the
dependence of n on 1 p, we find

(Bn/Bgp) (Be/Bn)+bf'p(B' e/Bt p')+n(B' e/BnBt p) =0

We see from Eq. (43) that Bn/Bfp is of the same order
as n, so @p is also of second order and all the quadratic
terms may be neglected in evaluating e to third order.
Then we have

Be= e —ep=n(Be/Bn)z p tp rp~=—Cn.= (41)

We have limited our attention to third order in be

so as to be able to use this simple form.
Another expression for C is found by considering the

eigenvalue equation (19) which may be written

where I"=s/$~ At —constan. t f p the solutions are charac-
terized by the eigenvalue e. Then, for n sufFiciently small

dll'/dt'
I r=p =d~/4 I tpp+ Cn B'=~, /=BC Be

I r-p, —,,
where we have used the relation be=Cn, which is
certainly true at constant t p Comparison . with the
boundary condition d&/df'~r p=nh(0) yields the re-
quired relation C =6(0)/LB'6/B/Bej evaluated at

APPENDIX A: EVALUATION OF a AS A
FUNCTION OF 0;

The eigenvalue e is a function. both of n(I p) and
(explicity) of f'p and, for any given n(f p), the optimum
mode is determined by minimizing e with respect to
f'p Lsee Eq. (39)$. For small n we may anticipate a
small change in the optimum t p and expand e as
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Z),'2, ".D~ (r)
+-,'[z'X, (z) yzx, (z)]Z,'an(r)
+[z'x, o& (z) —3zx, ,&'~ (z) j$tr

—'Q, An(r)
—[-', z'Xp z&'&(z) —zxp, "&(z)jbr 'z-"i (r),

~(i) =D:(.-ii[v2(i' —|p)).

Then we have

i =0, e=ep, and 1 p
——t pis zWe note that 6 here is the surface term in Eq. (11) yields'

solution of the surface-nucleation problen& in the GL
region which is known to be4 OsLDs(r) =-SI.T(III)+zxp, i(z)

~= —D-; t,~i) (—v2| p~)
ct'D; („ i) (—&2' p~)

ct epcti psr

APPENDIX B: EFFECTIVE-BOUNDARY-CONDI-
TION PARAMETER TO THIRD ORDER

which is an intrinsic property of these parabolic cylinder
functions. It is this expression which has been evaluated
by Schultens. ""

where SLT(III) is defined in Eqs. (13) and (17) while
the various X's are defined by Eqs. (18). Now using
Eqs. (19) a,nd (22) and in our special gauge, the above
is expanded in a Taylor series around x=0 and the
term proportional to e separated out to give

fi"'(z) = —2xi(z)k- '

f,«()=Lx„' ()+-;x,(.)
+[-',z'X, , 'i (z) —zX, , t'~ (z) —zX, ,,&'&(z)j( —'.

To find cr "& we must first evaluate 0 6 to fourth
order. A, tedious but straightforward expansion of the

These may be substituted in Eq. (37) and the integra, —

tions performed to finally give Eq. (43).
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Alfven-Wave Propagation in Solid-State Plasmas. III. Quantum
Oscillations of the Fermi Surface of Bismuth*f

R. T. ISAACSONt AND G. A. WrLLIAMS

Department of Physzcs, The University of Utah, Salt Lake City, Utah 8411Z
lReceived 14 Pebrtsary 19ti9l

We have measured the quantum oscillations of Alfven-wave mass densities in pure bismuth. To fit the
experimental results, we use a four-energy-band model, corresponding to three equivalent nonparabolic ellip-
soidal electron Fermi surfaces and one nonparabolic ellipsoidal hole Fermi surface. This enables us to evaluate
the number of carriers, the carrier masses, the two energy gaps, the Fermi energy, and the overlap energy.
These experiments yield a value for the energy gap E&2 of 250~50 meV. The value of the overlap energy is
increased over the previously reported value of 36.0 meV. We find a value of 38.2+0.15 meV necessary. The
other numerical parameters used are taken from previous values with some refinement. They are n= (2.92
~0.05) &&10"cm ', mi ——0.00651, m2 ——1.362, ma=0. 0297, m4 ——~0.1635, &1=0.0644, 3II3=0.696, kg= 26.6
~0.18 meV, and Egad=15.0 meV. In addition, estimates are made for the lattice dielectric constant for
several orientations.

I. INTRODUCTION

HE phase velocity of Alfven waves in solids is
determined by two quantities, the strength of

the magnetic field and the mass density of the charge
carriers. In a classical description the mass density is
unaffected by a magnetic field. The quantization of elec-
tron energy into Landau levels brought about by a mag-

*This work was supported by the U. S. Air force OAice of Sci-
entific Research under Grant No. AFOSR 901-65.

f Based in part on a thesis submitted by R. T. Isaacson to the
University of Utah in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

f NASA Predoctoral Fellow, 1964—1966. Present address:
Physics Department, University of Ottawa, Ottawa 2, Ontario,
Canada.

netic held causes the Fermi energy to oscillate in value
as a function of the magnetic 6eld. ' ' This oscillation
causes the number of carriers and, hence, the mass den-
sity also to oscillate with the magnetic field. The devia-
tion of the mass density from its classical value is the
subject of this paper.

Buchsbaum and Gait' pointed out that Alfven waves
could propagate in certain solid-state plasmas. Since
then, Alfven-wave propagation in bismuth has been

' G. A. Williams and G. E. Smith, IBM J. Res. Develop. 8, 276
(1964).' G. E. Smith, G. A. Baraff, and J. M. Rowell, Phys. Rev. 135,
A1118 (1964).

3 S. J. Buchsbaum and J. K. Gait, Phys. Fluids 4, 1514 (1961).


