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Energy Straggling of Heavy Charged Particles in Thick Absorbers
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The theory of energy straggling attempts to calculate F (E,S), where F(E,S)dE is the fraction of the heavy
charged particles which have an energy between E and E+dE after a path length S has been traversed in
absorbing medium. This paper develops a method of calculating F(E,S) for path lengths large enough so
that F(E,S) is almost Gaussian. The method remains valid until a large fraction of the particles run out of
energy. The theory is applied to calculations of F (E,S) for 50-MeV protons in Be and for 5.3-MeVu particles
in air. The calculations for n particles in air are in good agreement with the experimental results of Rotondi
and Gieger. The theory is also in agreement with numberical calculations by Tschalar.

r)F(E,S)
P(E,t)F(E,S)d7,

P(E+7,,7)F(E+7:,5)dh, (1)

where P(E,t)dldS is the probability that a heavy
charged particle with energy 8 will lose an amount of
energy in the interval t—f+dt in traversing a thickness
of absorber d5. Almost all previous work has been based
on Eq. (1).' We begin by discussing the earlier work on
energy straggling. In all of these theories it is assumed
that the initial beam is monoenergetic.

A. Thin Absorber Ayyroximation

Vavilov' has solved the energy straggling problem for
absorbe;"s which are so thin that one can replace P(E,t)
and P(E+1.,t) in Eq. (1) by P(Ee, i), where Es is the
initial energy. Once this approximation is made, one
can easily solve for the Laplace transform of F(E,S).
The numerical evaluation of the inverse transform
yields the approximate F(E,S).

XVhen relativistic corrections are small, the Vavilov
approximation begins to fail for reductions in average
energy greater than 10%. In the case of protons or
n particles, F(E,S) becomes almost. Gaussian by the
time this approximation becomes inaccurate.

The Vavilov theory, the best theory for thin ab-
sorbers, replaces more approximate theories by Landau'
and by Symon. 4

' U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).' P. V. Vavilov, Zh. Eksperhn. i Teor. Fiz. 32, 920 (1957)
LEnglish transl. : Soviet Phys. —JETP 5, 749 (1957)j.'L. Landau, J. Phys. USSR 8, 201 (1944).

4 K. R. Symon, Ph.D. thesis, Harvard University, 1948 (un-
published).

I. INTRODUCTION

E consider a parallel beam of heavy charged par-
~

~

~

ticles incident on a plane layer of homogeneous
absorber. We will calculate the function F(E,S), where
F(E,S)dE is the fraction of the particles with energy
between E and E+dE after a path length 5 has been
traversed in the absorbing medium. In calculating
F(E,S), electron capture will be neglected.

It can be shown that

A (5) = $E (E)j"F(E,S)dE, —

where

(E)= EF(E,5)dE. (3)

' J. R. Comfort, J. F. Decker, E. T. Lynck, M. O. Scully, and
A. R. Quinton, Phys. Rev. 15Q, 249 (1966).

s D. L. Mason, R. M. Prior, and A. R. Quinton, Nucl. Instr.
Methods 45, 41 (1966).

7 E. Segre, nuclei and Particles: ArI IrItroduction to Suclear
and Subnuclear Physics (W. A. Benjamin, Inc. , New York,
1965).

8 N. Bohr, Phil. Mag. 30, 581 (1915).' H. Cramer, 3fathematica/ Methods of Statistics (Princeton
University Press, Princeton, N. J., 1946).
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B. Intermediate Absorber Thicknesses

At small 5, the energy spectrum is strongly skewed,
with a long tail toward lower energies. As 5 is increased,
the skewness becomes smaller and F(E,S) approaches
a Gaussian. "4 If an absorber is thick enough so
that F(E,S) is almost Gaussian, but thin enough so
that the full width at half-maximum is small compared.
with the mean energy, we say that its thickness is
intermediate.

The part of Symon's work4 which deals with ab-
sorbers of intermediate thickness has not been published.
Judging from the continued use' ' r of the more approxi-
mate Bohr theory' in this region, it seems that many
workers are not aware that Symon's theory is much
more complete than that of Bohr. For this reason we
will now outline the Symon approximation.

Symon makes use of the fact that a statistical distri-
bution function can be calculated from its central
moments. In particular, if the distribution function
does not differ greatly from a Gaussian, then only the
6rst few central moments need be known. (The actual
construction of a distribution function from its central
moments will be discussed at a later point in the
present study. )

The equations to be derived in this section are due
to Symon, but we will also use them in order to discuss
the Bohr theory. We define the central moments A„(5)
by
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On differentiating Eq. (2) we find

dA „d(F.)= —iz A„ i+
BF(E,S)dE

I:E-(E)3.

If we use Eq. (1), we find that

d(E) - ~!(—1)'3„,+P
I.=i (zz —L)!

M, (E)

where
&((E—(E)) —F(E 5)dE (4)

00

Mt, (E)=— F(E t)Fdt.
J t

d(E&
0=

d5
Mi(E)F(E,S)dE, (6)

where we have used

Ao(5) —=1, Ai(5) —=0.
When zz=2, Eq. (4) yields

Mi(E) (E—(E))F(E,S)dE

+2 Mz(E)F(E,S)dE. (7)

The Bohr approximation assumes that F(E,S) is so
sharply peaked about E=(E) that Mi(E) and M&(E)
are essentially constant over the region where one ob-
tains a contribution to the integrals in Eqs. (6) and (7).
Consequently,

d(E) dA2= —M ((F)), =2M ((E)),
dS dS

and
Eo Mz(E)dE

Az(5) =2
Mi(E)

(8)

where Eo is the initial energy. If we use the classical
expression for F(E,t), we obtain Bohr's original result.

Further details concerning the derivation of Eq. (4)
may be found in Symon's thesis.

Equation (4) provides a good starting point for
understanding all intermediate path length theories.
We first consider the Bohr theory which argues from the
central limit theorem' that F(E,S) will become
Gaussian. Once F(E,S) reaches the Gaussian limit,

F(E,S)=L2zrAz(5) 1 '" expL —(E—(E))'/2Hz(5)$.

Note that only (E) and Az(5) are needed to determine
F(E,S). Bohr argues that the Gaussian limit will be
reached while the full width at half-maximum is still
very small compared with the mean energy. When m = 1,
Eq. (4) yields

Symon allows for deviations from a Gaussian form.
He also derives the A 's in a better approximation. We
will now derive Az(5) in Symon s approximation. In
evaluating the integrals on the right-hand side of
Eqs. (6) and (7) we use

dMg
Mi(E) =Mi((F-))+ -((E))(E—(E))

dE
and

d&g
M,(E)=M ((E))+—«E»(E-«»

dE
We obtain

d(E) = —Mi((E)),

dMg= —2 ((E))4z+2Mz((E)) .
dE

On solving the last two equations simultaneously, we
obtain

Mi((E))
a, (5) =

Mi((E) 0)

t E» M z(E) —Mi((E) 0)
&& A, (O)+2 — dE . (9)

(a) Mi(E) Mi(E)

In the case of nonrelativistic protons or n particles,
Eq. (9) begins to differ appreciably from Eq. (8) by the
time the incan energy is reduced by 20%. Once the
mean energy is reduced by 50%, Eq. (9) yields an Az
which is larger by more than a factor of 2.

To understand the difference between the Bohr and
Symon approximations, note that Mi(E) is the average
rate of energy loss by particles with energy E. When we
replace the Mi(E) by Mi((E)), we assume that the
average rate of energy loss by all particles is the same.
When Symon includes a linear variation of Mi(E), he
includes that fact that the width of F(E,S) changes not
only because of statistical fluctuations but also because
particles with different energies lose energy at different
average rates. Ke shall eventually show that the non-
statistical type of change in F(E,S) completely domi-
nates its evaluation at large 5.

C. Thick Absorbers

Once 5 is made so large that it is not correct to
assume tha, t the full width of F(E,S) at half-maximum
is small compared with (E), we say that the absorber is
thick. In this region the Symon approximation becomes
poor.

One might think that Eq. (4) couM be used in this
region. However, the M (E) vary so much over the
region where F(E,S) is nonzero that the integral in

Eq. (4) cannot be expressed in terms of a reasonable
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number of A„'s. None of the previous theories holds in
this region.

The purpose of this paper is to show how to calculate
F(E,S) throughout the intermediate and thick absorber

regions.

II. QUALITATIVE DISCUSSION OF
THICK ABSORBER LIMIT

At large path lengths, where QAo is large compared
with the maximum possible energy loss in any single
collision, the collision integral in Eq. (1) can be ex-
panded as

$P(E+t,t)F(E+t,S) P(E,t)—F(E,S)]dt

Bk

[M4(E)F(E,S)),
a=i BE~

by a generalization of the Fokker-Planck expansion. If
P(E,t) were analytic, one could arrive at the expansion
by simply using a Taylor series for P(E+t, t)F(E+t, 5).
In any case, the infinite sum converges very rapidly once
the full width at half-maximum of F(E,S) becomes
much larger than the maximum possible energy loss in
any single collision by a particle with the mean energy.
Equation (1) becomes

BF(E,S) 8'
LM,.(E)F(E,S)).

k=1 BE~

In the case of o. particles or protons at nonrelativistic
energies, the energy spectrum becomes essentially
Gaussian by the time the mean energy is reduced by
10%. The spectrum remains nearly Gaussian until the
mean energy is reduced to less than 35% of its initial
value. Hence, to a good approximation only Ao(5)
and (E) are required for the calculation of F(E,S).
Symon's expressions for (E) and Ao(5) are still valid
when the spectrum becomes nearly Gaussian. Hence,
one would obtain the same values for (E) and Ao(5)
if Mo(E), M4(E), etc. , were all set equal to zero. This
suggests that the Fokker-Planck equation

BF(E,S) 8 B2

LM4(E)F(E,S))+ $Mo(E)F(E,S)),
BE2

is valid for proton or o. particles once the mean energy
has been reduced by more than 10%. In the case of
lighter particles, (E) must be reduced somewhat farther
before this equation becomes valid.

We will now investigate the possibility that even the
second term will eventually become unimportant, so
that

To see that Eq. (10) may become valid for thick
absorbers .we let

and
Mg(E) = (2Z/E) ln(4mE/MI)

Mo(E) = (2m/M)E.

In evaluating Mo(E) we have assumed that t,„))t;.
The latter condition is necessary for this form of p(E, t)
to be accurate. To simplify the mathematics we approxi-
mate as follows:

where

2K (E),i 4m(E)oi
!Mi(E) =

(E). Ei MZ )

a =1—Dn(4m(E) o/MI) ]—'.
If 4m(E)o/MI =20, the approximate M~(E) represents
the original function with an error smaller than 5% for
0.5(E)o~E~1 5(E)o The a,pproximate M~(E) is good
enough for use in what follows.

If Ao(0) =0, Eq. (9) becomes

~oMo(E) Mg((E)) '
a,(5) =2 dE~

(z& M, (E) M, (E)

where Eo is the initial energy. We find

4mEoi
~,(5)= E. (3.+1)1

3f MI l

)M&((E)) '- t(E)i"+'
xl

k M, (E,) 5 E.)

Consider Symon's equation for A2'.

dA2 dM, ((E))= —2 A o+2Mo((E)) .
d(E)

P(E,t) =J:/Eto, if t;.~t~t„,„
=0, otherwise.

Now, Z=7rNZs'e4M/m, N is the number of absorber
atoms per unit volume, Z is the number of electrons
per atom, s is the number of electronic charges of
the incident particle, e is the electron charge, M is
the mass of an incident particle, m is the electron
mass, t .=(4m/M)E, t; =I'/t . , and I is the mean
excitation potential of the absorber molecules as de.ned
by Pano. ' This form of P(E,t) neglects relativistic
sects and inner shell corrections

If we substitute the approximate P(E,t) into Eq. (5),
we find

BF(E,S) 8
PIg(E)F(E,S)].

BS BE
(10) We will now determine how much (E) must be reduced

before the nonstatistical term becomes ten times as
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large as the statistical term. Kc have

ol

2Mz((E)) 1

2idMi((E))/d(E) jAz 10

(E) — 1—Pln(4m(1 )/MI)g '

Ep 20

15/in�(4mEp/MI)

j
-in(4zzz(E)/MI) —P/4 — (F) pa+1- 1/4

X
1 n(4mE p/MI) Eo

If 4z/zEo/MI= 50, one finds (E)MO 35Eo When 4z/zEo/

MI) 50, it is found that (E) does not have to be reduced
quite so far. We will now check to see if Symon's equa-
tion is still valid at this point. I.et 4z/zEp/MI=50 and

(E)=0.35Ep. Then (Az)'/'/(E) =2.5(m/M)'/'. Svrnon's
equation is still valid for protons or n particles. How-
ever, it is questionable for pions and muons. We then
see that in many cases of interest 2 z(5) starts to evolve
according to

date 2 dMi ((E))2 o

d(F.)

by the time (E) is reduced to 35%%uo of its initial value.
Hence, at larger path lengths nonstatistical changes
dominate the evolution of Ao(5). We can show that the
same is true of A3 and A4. At larger 5, we get the same
evolution for the central moments if we set Mp(E),
Mo(E), etc. , all equal to zero. Thus, at larger S, Eq. (10)
is valid.

It is reasonable that Eq. (10) will also become valid
at large S in many cases where the simple P(E,t) used
in the previous discussion is not sufficiently accurate.
All that is required for the validity of Eq. (10) is that
F(E,S) should eventually become broad enough so that
its rate of change in shape and width due to differences
in average rate of energy loss should dominate the rate
of change in shape and width due to statistical fluctua-
tions. V~e will now investigate the possibility of taking
advantage of the validity of Eq. (10) at large 5.

Equation (10) can be solved by the method of
characteristics. We find

F(E,S) =G(R(E)+S)/M i (E),

where G is an arbitrary function and

R(E) =
Mi(U)

(13)

R(E) is the total distance that a particle with initial
energy E would travel before coming to rest if it lost
energy at a continuous rate given exactly by

dE/dS = —Mi(E) .

The mean range, as measured along the actual path of
the particle, is given approximately by Eq. (13)."

Because of the close relation between R(E) and the
mean range of a particle with energy E, we can make
use of tables prepared by Whaling" in relating R and E.

The validity of Eq. (10) at large 5 suggests tha, t we
should let

H(R,S)=M, (E)F(E,S) . (14)

Once Eq. (10) becomes valid, H(R, S) becomes equal
to G(R+5). Hence, at large path lengths II(R,S) takes
on a constant shape and width. In Sec. III, we will
develop a method that allows us to calculate H(R,S)
until Eq. (10) becomes accurate, and hence determines
it for arbitrarily large 5.

III. CALCULATION OF H(R, S)

We can write
1

H(R 5) =— e ' g(P 5)dP
2m

where

(15)

g(P,S) = e'~~H(R 5)dR (16)

We express g(P,S) as

Kr.(5) (zP) ~

g(P,S)=e-p Z
I.=n

(17)

where the El.'s are the well-known cumulants of the
distribution "

We define the central moments of FI(R,S) by

where

P„(5)= (R . R)"H (R,S)('R—
, .

RH(R, 5)dR.

The P„'s are related to the cumulants of H(R, S) as
follows":

"U. Fano, Phys. Rev. 92, 328 (1953).
~ W. Whaling, in IIandblch der P'hysik, edited by S. Flugge

(Springer-Verlag, Berlin, 1958), Vol. 34, p. 193.
'2 M. G. Kendall and A. H. Stuart, The Advarsced Theory of

Statistics (Hafner Publishing Co. , Inc. , New York, 1963).

&o(5) =0, Ei(5) =B(5),
R'z(5) =Pz(5), E'o(5) =P,(5),
&4(5) =P4(5) —3(Pz(5))', etc.

A Gaussian distribution function has E„(5)=0 for'
n) 2. If the distribution function is close to Gaussian,
one finds that the infinite sum in Eq. (15) converges
rapidly and only a few terms are needed to represent
g(P,S) properly. In the case of nonrelativistic protons
or helium ions whose mean energy has been reduced by
more than 3%%uo only terms through /z=3 need be re-
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eliumner of the protons or e
1 tr tho u hd db 10%, ohas been re ucelolls

=2 d be retaine .
it one can inm i '

vert
n=~ nee

m=3 are su c1en,
Air

If t ms through e=.- "--tl. - terms of the irythe Fourier trans orm
B(R 5) becomesfunction.

Thus, q., E . (21) becomes

dP (5) dB

d5 d5

E) R]"—dE. (22)tR E—
85

00

H(R,S)=— exp/ —iP(R —8) Equation (1) gives

where

—GtP3(5)P' ——,'P2(5)P']dP

e" Ai(w)
)

(37 )'"(2P )'"

—y+(4g~ )-'

(20)

I.et

'"""LR(E)-R]-dE
85

PP (E+t,i)F(E+t,S)——P(E,t)F(E,S)]

&I R(E) —R].«dE.

—y+(72&i) '

12+i

y=(R —8) /L2 P2( 5)]' 't

E 8 "dtdE—P(E+t,t)F(E+t,S)PR(E) 8 "dtd—

F(E,S)~,(E)LR(E)—R -dE.

~ = —P3(5)/{3 L2P~(5)]"'),Pl 3 Thenand '"""- (.) R].dE.-PR
85

1
Ai(w) =—

P(E' t)F(E' 5)LR(E —)—t 8]"dE'-—

P E'i F E',5)P(E' t) 8]"dE', — —

w a F(O,S)=0. Interchangingh assumed that Ewhere we ave a
or ers of integration,

dP (5) dB

d5 d5
F(E',S)

0

ed in aed
'

Taylor senesIf tR(E' —t)——8]" is expanded8]"dR. (21)
BS

00

0

Now)
gk

8 "dE'F(E',5) [R(E')—8]"dE—
gE~k

BF(E,S)BH(R,S)
=nfl

5
~ =2 (—1)"

"P(E',t)i"dt.
alid

wt)dt.

e in terms of the I'.5)'s,

cos(~t +w

be e p essed n erIf J2—Jl can e
of simultaneous i

7i 0

ill become a set o s'

oments can e
q( )th of t

n er rs of integra ionr tion

re uired, one m y,

calculated.be force o

In eva ua1 ting J2, wein er

Vavilov theory,

'=E+t, . J2 become

icall .
m of a Gaussian

as accurat
n4 has use

o calculate e
series. Symo

'1
00on for heavy c es.

F(E5) and Lewis a
harged part1c es.d' tribution function
determined fromW h see th t (

d that the cumu anits cu ulants, an n
central moments. e w

18) o obt
'

00

R(E' i) 8]"dtdE'. — —

0 diGerentiating Eq.

P(E',t

On i

J—

dR = (dR/dE)dE
=dE/3Ii(E) .

s. Rev. SS, 20 (1952)."H. W. Lewis, Phys. Rev.
=Z (—1)" E') 8]"Mk(E') dE'. —F(E',5) t R E

8E'k
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Subtracting Jl,

Jp —Jx= Q (—1)"
k=1

Then

dg =2 (—1)"
gk—I

H(R, S)Mp(E(R)) —U(E(R))dR. .
gEk —l

Equation (22) becomes

dP (S) dR
+n P. ~(5)=g (—1)"

dS d5

M g(E) = (2X/F) ln(4ME/MI),

E(4nt/M)" 'E" '

n!(n —1)
M„(E)= if e)1.

F(E',S)M i, (E') )R(Li") Rj"dE'—. (23)
QE~k We have

We would like to approximate the right-hand side of dg
Eq. (23) in terms of the P„(5)'s. In order to achieve
this, we will 6rst need to change variables. We use
Eq. (13) in order to express E in terms of R and note
that

~ (—1)'(4m/M)" '
= —1++ H(R 5)E~ '(R)

2(k —1)k! p

E(R)
X dE.

BF." ' inL4ntE(R)/MIjF(E,S)dE =F(E,S)(dE/dR)dR
=H(R,S)dR. Now,

Also,

F(E',5) [R(E') R$ "M—~(E')dE'.
gEIk In order to see what approximations are plausible, we

use the P(E,t) from Sec. II. Then M„'s corresponding
to this P(E,t) are

where

Consequently,

I9
= U(E(R))

8R

U(E) =LM (E)l '.

dptt, dB 00

+n p„,= p (—1)" H(R, S)Mk(E(R))
d5 d5

U(E(R)) (R R)"dR. (24)—
0E-

We will now use Eq. (24) in order to derive expres-
sions for R, P&(5), and Pp(5). A study of these cases
will point out approximations which will be useful for
general e.

n=l. Using Pp(5)—= 1 and Pq(5)—=0, we have

dB 00

= Q (—1)" H(R,S)Mg(E(R))
k=1

—k

X U(E(R)) (R—R)dR.
BE

Note that

M„(E) =n-' —P(E,t)t "dt
M„g(E) p

~ n
—'t„(E) .

P(E,t)t"—'dt

Thus, if the maximum possible energy loss is very small
compared with E, we expect

gk—1U ' gk—1U'

-t (E)
gEk —1 gEk—2 gEk—I

gk—2U gk—2U'

k
gEk—2

It is fairly evident that as k increases, each new' term
is smaller than the previous one by a factor of the order
of nt/M. Even in the case of muons one has as an
excellent approximation:

dR/dS = —1.

To see that the last result is not strongly dependent on
the validity of Eq. (25), let t (E) be the maximum
possible energy loss for a particle of energy E. Then

U(E(R)) (R-R) = U(E(R))
BE BE

gk—1—U(E(R)) .
gEk—l

U(E(R))
(26)

where the arguments of the functions have been sup-
pressed for brevity. We will assume throughout this
study that the last inequality holds. Again, the terms
in the sum are found to be small compared with unity



ENERGY STRAGGLI NG OF HEAVY CHARGE D PARTICLES 6i7

and B(5)=B(0)—S. We define E=E(5) so that We assume, once again, that II(R,S) is fairly sharply
peaked about g. Let

d U/Mi( U).B(0)—5= (27) BU(E)(R—R) B'U(E) (R—8)'
U «(R))=U (E)+2 +

BE BE U(E)

BU(E(R)) BU(E) O'U(E) R jj,'—
+

BE BE BE' U(E)
dE/dS = —Mi(E) .

To improve our first approximation let
with

In the approximation R=B(0)—S, we have E=E(B).
Now ancl.

00 BU(E(R))dR
H(R,S)M~(E(R))

BE

BMg(E) R R-
M.(E(R))=M, (E)+

BE U(E)

B'U(E)
= —4M2(E) P2

BE

dP2
BU(E(R)) BU(E)

M,(E(R)) =M, (E)
BA' BE

We assume that H(R, 5) remains fairly sharply peaked T se aPProximations lead to
about R until Eq. (10) becomes valid. If so, we can use

B BU(E) R —8
+ M2(E)

BE BE U(E)

This is the first two terms in a Taylor series about R.
%e then find

BU(E)= —1+M2(E)
BE

BU(E) BM~(E)—6 — —P2 —2M2(E) U'(E) .
BE BE

M2(E) is usually a very slowly varying function. In
fact, the M2(E) given by Eq. (25) is constant. To get
some idea about the importance of the terms involving
P~ treat M~(E) as a constant. The integrating factor
for the resulting differential equation is

Integrating,

B(5)=E(0) 5+—E (0)
exp/4M(E) BU(E)/BE7.

BU(E)
M2(E) U(E) dE (28) Using the M 's from Eq. (25),

BE

Fquation (28) includes a linear variation of M2(E) and
variations of Mi(E) through quadratic terms.

The reader may have worried about the fact that
U(E) becomes infinite when 4mE/MI =1.The difhculty
is only apparent since the approximate 3f 's are only
valid if 4mE/MI»1. The problem would not arise
with a correct set of M„'s.

e=Z. In this case, Eq. (24) yields

BU(E) 4m 4mE —'-
4mZ)

'
4M2(E) = ln 1—ln

BE HIS 3SII 3IEI

The latter quantity is always very small compared with
unity in any case where the P(E,t) used in Eq. (25) is
valid. Because of the inequality in Eq. (26) we expect
the quantity to be small in almost any case. %e will
replace the integrating factor by unity. P2(5) becomes

dP2—= P (—1)" H(R, S)Mp(E(R)) P,(5) =P,(0)+2
(8)

Mg(E) U'(E)dE. (29)

U'(E(R)) (R—E)'dR.
BE m=3. In this case only the first three terms on the

right-hand side of Eq. (24) are important and

B 2

H(R,S)M,(E(R)) U(E(R)) (R—R)~dR
MdP oo

= 2 H(R,S).V,(E(R))

If the M„'s given by Eq. (25) bear any similarity to the
correct ones, the k=3 term is smaller than the k=2 dp3
term by a factor of the order of m/M. More generally, +3 P2(S) = —3P&
if Eq. (26) is valid, the terms with k)2 are small
compared with the k=2 term and

BU
X U'(E(R))+— -(E(R))(R—R) dR

BE

B 3

H(R,S)M3(E(R)) U(E(R)) (R jg)'dR. —
BR
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If we use our previous approximation for dR/dS, we find we find

dI g 8 U(E)
3M—,(E) P,+ H(R,S)M,(E(R))

BE

8 U(E(R))
3— (R —R)'+6U'(E(R))(R —R) dR

BE

E (0)

Pg [U'(E)M2(E)7dE
(s)

=
L U'(E(o))M2(E(o))P2(o)

—U'(E(5))M2(E(5))P2(5) 7

& (0)

GO ~'U(E(R))
II(R,5)M3(E(R)) 3 —(R—R)'

BE' Hence,

[M,(E)]'U'(E) dE.

4l U(E(R))
P (5) =P (0)+6LU'(E(o))M (E(o))P (o)

+18U(E(R)) —(R—R)+6U'(E(R)) dR. U~(E(5))M, (E(5))P,(5)]BE
E (0)

Because of Eq. (26)
(S)

[Mg(E)]'U'(E) dE

BU B'U
M.—(R—R) '))M3 (R—R) '

BE BE'
E(p)

M3(E) U'(E) dE. (30)

BU
6 U'(R —R)Mg))18 U M4(R R) . —

BE

Thus, it is quite accurate to use

B 3

II(R,S)M3(E(R)) U(E(R)) (R—R)'dR
BE

=6M'(E) U'(E) .

In evaluating the other integral, the same approxima-
tions are used for 4l U/BE and U as in deriving Eq. (29).
Ke find

dP, — BU(E) 4lM2(E) O' U(E)
M, (E) P,

dE BE BE BE'

= —6P, (5) [U'(E)Mg(E)]+6M3(E) U4(E) .
dE

Once again the integrating factor is approximately
unity, and

P3(5) =Pa(0)+6
g(p) d

P2 [U'(E)M, (E)]dE
(s)

& (0)

M3(E) U'(E) dE
(S)

Consider the integral involving I'2. On integrating by
parts and using

dP2/dE= —2M2(E) U'(E),

The fourth cumulant can be calculated by solving

d d
[P4—3(P2)'] = —12P3 [U'(E)M~(E)]

dE dE

4l U(E)
+36U'(E),V, (E)P,

BE

+24 [U'(E)M3(E)7P2 24U'(E) iV4—(E) . (31)
dE

In the case of originally monoenergetic n particles,
protons, or E mesons, three cumulants suffice, except
at short path lengths where the Vavilov theory holds.
Three cumulants also suffice for nonrelativistic pions
and muons if they were originally monoenergetic, and
their mean energy has been reduced by at least 20%.
Thus, in most intermediate or large path length situa-
tions we ca,n combine Kqs. (20) and (28)—(30) in order
to calculate II(R,S) and hence F(E,S) from Eqs. (13)
and (14).

IV. SOME SPECIAL CASES

In this section we will demonstrate how the theory is
used to calculate F(E,S) in two specia, l cases.

A. Straggling of SO-MeV Protons in Be

In this situation, relativistic eBects can be neglected,
and inner shell corrections are small. The M„(E)'s given
by Eq. (25) can be used.

In the ca.se under consideration, one has 4mEo/MI
=1700, where Ep is the initial energy of the protons.
Ke will now demonstrate how one can derive simple
but accurate formulas for R, P2, and P4 if 4mEO/MI
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~ 100 and Eq. (25) holds. From Eq. (25)

U(E) = (E/2K) (ln4mE/MI) '

%e will now investigate the possibility of approximating
this U(E) by a simpler. function U, (E), where

«.is) =—'(in-" '-) '(—)',
with

a = 1—(ln4r~Eo/M I)
The reader will recognize this approximation as being
identical to the one used in calculating As(5) in Sec. II.
U(E) and U, (E) are equal and have the same first
derivative at Eo. This leads us to think that the approxi-
Ination will be very good for E near Eo. In order to see
how good the approximation is for smaller E, let
X=E/Eo, Uo 4mEo/M——I, b=lnUo, and

R(X) = U(E)/U. (E)
=expI (lnX)/b —ln/1+ (lnX)/b) ) .

I.et y(X) = —(lnX)/b. Then

R(X) =e—"'x'/L1 —y(X)).

R(X) is graphed as a function of y in Fig. 1. From Fig. 1
we see that when y(X)(0.19, the error made by re-
placing U(I.') by U, (E) is less than 2%. If E/Eo
)exp( —0.19b), U, (E) represents U(E) with an error
less than 2%%uo. If 4rNEo/MI~ 100, E can be reduced to
0.42Eo before the error becomes greater than 2 j~. In a,

similar way, we find that E can be reduced at least as
far as 0.28Eo before the error made by using U, (E)
becomes greater than S%%uo.

The integrals involved in Eqs. (28)—(30) have the
property that the integrand decreases as E is decreased.
In fact, our qualitative discussion in Sec. II suggests
that most of the contribution to these integrals should
occur before the mean energy is reduced to 35%%u~ of
its initial value, that is, from the region where U, (E)
approximates U(E) very a.ccurately. We will replace
U(E) by U, (E) in evaluating Es, Ps, and R.

From Eq. (28)

mE(0) 4nsE(0) —'
B(5)=A*, (0) —5+ U(E(0)) ln

2M MI

E(5)q "-
X 1 — ~, (32)

E(o)/

where one must use E(0) instead of Eo in calculating a
(one does not have to make this distinction if the initial
beam is monoenergetic). From Eq. (29)

Ps(5) =I's(0)+ LU(E(0))E(0))'(3a+1)
M 4'�(o)—

X ln — (1—rs'+') (33)
MI

with r=E(5)/E(0). From Eq. (30) we have

P, (5) =I', (0)y—$E(O) U(E(O)))
3f

where

4'(0) -i
y ln I's(0)L1—r")

3fI

+4(~'M) LU(E(0))E(0))'(1—a)'g(") (34)

3(1 ro«+t) 3rs«(] rsa+t)
a(r, a) =

5a+1 3a+1

&4e+2

(1—a) (4a+ 2)

If the initial beam is monoenergetic, we can express
py as

y = ——'(m/M)'t'(3a+1)'~'(1 a)'I'—
XL1—r' +') 'i'g(r, a) . (35)

For 50-MeV protons incident of Be, we use l =64 eV
and find a=0.866 and U(Eo) =105 mg/MeV cm'.
Equations (33) and (35) yield the values of I's(5) and
pt tabulated in Table I. Equation (27) was used to
relate the r values in Eqs. (33) and (35) to the corre-
sponding absorber thicknesses.

In Figs. 2 and 3, we have graphed H(R,S), as calcu-
lated from Eqs. (20), (33), and (35), for r=0.97 and
for r=0.90. In order to show that H(R,S) evolves
toward a Gaussian as 5 is increased we have also
graphed

Ha(R, S)= L2m Ps(5)) "' expL —(R—R)'/2I', (5)).
Note tha, t H(R, S) is almost Gaussian by the time r is
reduced to 0.9.

In the above case, or in any other where the full
width at half-maximum of Ii(E,S) is very small com-

I.28
l.26
I.24
1.22
I.20
I. I 8

R(&)

I.I4

I.I2

I.10

I.08-
I.06-
I.04-
I.02
I.OO

0 . I .2 .g .4 .5 .6 .7
y= - In x/b

FIG. 1. U(L)/U, (E) versus y(X). 3f&(F) is the average stopping
power of a particle with energy Z, U(F) =L&)f&(Z)j ', U, (E) is
the approximate U(F), b=ln(4mEp/3EI) and X=X/L'o From.
this graph one can determine the error made by approximating
the stopping power by an expression of the form M, (L)
=iVI(E0)(F0/8)', With a =1—6
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s s

H(R, S) where p&~0.03, and Eqs. (36) and (37) are not valid in
the thick absorber region. Thus, we should remember
that Eq. (38) fails both at small and large S.

If y& becomes smaller than 0.01 before Eq. (38)
becomes inaccurate, F(E,S) can be approximated at
larger S by

F(E,S)=[2s-As(5)] '"
)&exp{—[E—E(B)]'/2As(5)), (39a)

where
-"25 -20 -I5 -10 "5 0 5 io {5 ZO 25

(R- R) (mg /cm~)
A.(5)=P.(5)/[U(E/(k)] . (39b)

FIG. 2. H(R, S) and Ho(R, S) versus R R for—50-MeV protons
in Be. Ho(R, S), the Gaussian approximation to H(R,S), is given
by the dashed line. The mean energy has been reduced to 48.5
MeV.

At large S, the energy spectrum becomes fairly broad
and we cannot continue to use a linear relation between
R and E. However, from Kqs. (11), (27), and (32)

pared with the mean energy, F(E,S) can be calculated
from II(R,S) quite easily. Note that

U(E') dE'

U(E') dE' mE p U(Fp—)

X ln 2' 1—— . 40

U(E(R))e" Ai(tt/)
F(E,S)=

(3~ )r/p(2p ) t/s
(38)

where y&, Ps, a, tr/, and Ai(tt/) are the same as in Eq. (20),
except the y's in m and v must be replaced by

y = U(E(R))LE—E(R)]/(2Ps(5)) .

Equation (38) holds when all of Eqs. (36), (37), and
(20) are valid. However, the three cumulant approxi-
mation used in deriving Eq. (20) is not valid at small 5

TAaz.z I.B, I'2, and y1 for 50-MeV protons in He.

= U(E(E))[E—E(B)],
for any E which is very near E(B). If S corresponds to
a thin or intermediate absorber thickness, Kq. (36) is
accurate at any E for which F(E,S) is appreciably
nonzero. In the above situation

F(E,S)= U(E(B))H(R(E),5) . (37)

When Eq. (36) is valid, the shape of F(E,S) is almost
identical to that of H(R, S).

When Eqs. (36) and (37) are valid, F(E,S) can be
calculated directly. From Eqs. (20), (36), and (37).

If E is near E, U(E') can be approximated by

U.(F ) = U(&)(E /&)',

R —8= U(E)E(1+c) '[(E/E)'+' —1] (41)

With 50-MeV protons incident on Be, Eq. (36) can
be used until FI(R,S) becomes Gaussian. In fact,
Eq. (36) is valid until E is reduced by more than 50%.
At larger 5, we note that Ps(5) approaches a constant
value, and H(R,S) is a Gaussian with the width
(2Ps)'/' =47.1 mg/cm'. In the U(E') given by Eq. (25)
is still valid a,t large S (and small E),

F(E,S) = U(E) (E/E) '(27rPs)

&(exp{—[R(E)—E]'/2Ps), (42)

c=1—(in4mE/MI) '

As was pointed out previously, this type of approxima-
tion is quite good if 4mE/IrII is large compared with
unity and E' is near E. In particular, if 4mE/MI~ 100,
we can use U, (E,') in the range 0.42E~E'~2.3E and
be sure that the error made by using the approximate
U(E') is less than 2%. Even when 4mE/I//II=20, the
error is less than 2% in the interval 0.58E+E'&1.75E.
If the full width of F(E,S) at half-maximum is less than
0.6E, we will usually be able to relate R and E by

0.98
0.97
0.96
0.90
0.70
0.50
0.30
0.16
0.00

S
(mg/cm')

105
157
206
501

1330
2080
2567
2778
2875

8
(mg/cm')

2770
2718
2669
2374
1545
795
308

97
0

z (s)
(mg'/cm4)

78
116
152
366
806

1020
1100
1112
1116

0.0375
0.0307
0.0266
0.017
0.0077
0.0057
0.0045
0.004
0.0039

where R(E) 8 is given by Eq. (41).F—igure 4 is a graph
of Eq. (42) for the case E=8 MeV or r=0.16. The
reader may also be interested in using Whaling's"
range-energy tables in order to relate 8 to R. In this
approach, we write

F(E,S) = U(E)(2 P ) '" exp[ —(R—R)'/2P. ], (43)

and use 8=96.7 mg/cm'. R can be related to E by use
of the range tables. U(E) is obtained by the numerical
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evaluation of dR/dE in terms of differences from the
tables. For example,

H(R, s)

U(8 MeV) =R(8.5 MeV) —R(7.5 MeV)

8.5 MeV —7.5 MeV

=20.5 mg/MeV cm'

Equation (43) and Whaling's tables lead to values of
F(E,S) which are quite close to those obtained from
Eq. (42). The use of empirical range-energy tables is
particularly useful in cases where the theoretical U(E)
becomes incorrect at small E.

In the preceding calculations, we have assumed the
strict validity of U(E), M&(E), and M, (E) as given by
Zq. (25). Actually, the Ms(E) given by Eq. (25) is too
small because of the neglect of inner shell corrections.
This results in our Fs(5) being too small by 2—3%. We
base this estimate on calculations by Sternheimer. '
U(E'), as calculated from Kq. (25), differs from what
would be estimated from Whaling's range-energy tables
by 5—15% in the interval 2(E'(10 MeV.

At large S, statistical fluctuations become un-
important. If further statistical fluctuations can be
neglected after a thickness 5&, a particle with energy in
the interval E to E+dE will end up with a range in the
interval St+R(E) to St+R(E+dE). I.et G(p, Ee)dp be
the fraction of particles with initial energy Eo which
have a range between p and p+dp. Choose E and dE so
that p=St+R(E) and dp=R(E+dE) —R(E). Then

or

G(p, Ep)dp =F(E,St)dE
=H(R(E),Sr)dp,

G(p,E,) =H(p —5„5,).
It has been assumed that Sj is large enough so that P2
and P3 have reached their limiting values. We then see
that the limiting values of P2 and P3 should be identical
to the corresponding central moments of the range
distribution function. The reader may have already
noticed that Eq. (29) reduces to the well-known
expression for the second central moment of G(p, Es)
when Fs(0) =0, E(0)=Es, and E(5)=0.

"R.M. Sternheimer, Phys. Rev. 117, 485 (1960).

B. Energy Straggling of 5.3-MeV e Particles in Air

In this situation, H(R,S) becomes Gaussian by the
time the mean energy is reduced by 5%.This prediction
is based on Eq. (25), but there is probably considerable
similarity between the correct and approximate
M (E)'s. Hence, we will proceed on the assumption
that H(R,S) is Gaussian for E~5.0 MeV. We also
expect that Eq. (36) will remain valid until the mean
energy is lowered considerably. Equations (39a) and
(39b) can be used until Eq. (36) fails.

"50 -40 -30 -20 -lO 0 IO 20 30 40 50
(R-R) (mg/cm~)

FIG. 3. H(R,S) and Ho(R, S) versus R R for 50—-MeV protons
in Be. Ho(R, S), the Gaussian approximation to H(R, S), is given
by the dashed line. The mean energy has been reduced to 45 MeV.

This situation has been studied experimentally by
Rotondi and Geiger. "They find that F(E,S) becomes
Gaussian as expected. Since a Gaussian is completely
speci&ed by (E) and A&(5), we will not compare every
detail of the theoretical and experimental F(E,S)'s.
Instead, it is sufhcient to calculate n=t 2A.„(5)]'~' and
compare it with the experimental values.

In this situation, inner shell corrections are impor-
tant; therefore the M„(E)'s given by Eq. (25) cannot be
used. Livingston and Bethe" have used the first-order
Born approximation to derive an expression for Ms(E)
which includes inner she1.1 corrections. They find

Z' k~I~Z~ 2m V'
M, (E) =M,s —+Q ln——

Z - ZmV2
(44)

where M» is the M&(E) as calculated from Eq. (25),
Z„ is the number of electrons in the mth shell, I„is the
effective ionization potential of the eth shell, k is a
constant which will be taken as 34 for all shells, V is the
speed of the incident particle, the sum extends over all

F(E,$}

.24-

.20-

. l 6-

.12-

.Q8-

.Q4

QQi s s

0 1 2 5 4 5 6 7 8 & lO l l

E (MeY)

Fzo. 4. Energy distribution function for 50-MeV protons in Be.
The mean energy has been reduced to 8 MeV.

'5 E. Rotondi and K. W. Geiger, Nucl. Instr. Methods 40, 192
(&966).

~e M. S. Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 261
(1937).
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TABLE IX. Results of theory and experiment for the energy
straggling of 5.3-MeV a particles in air at 760-mm Hg and 15'C.
E, S, and the experimental values of n were taken from Rotondi
and Geiger (Ref. 15). The values of U(E) were extracted from
the E-versus-S data of Rotondi and Geiger (Ref. 15) and from
the range-energy tables of Whaling (Ref. 11) (the latter values
are marked with an asterisk). U, (E)=1.075(E/5.3)'" cm/MeV,
with E in MeV. Ps(5) =1 28.)&10 s(1 r—"'7 cm' (47)

determined from the experimental data of Rotondi and.
Geiger. When E(1.7 MeV, U(E) will be taken from
experimental data.

From Eqs. (29), (45), and (46)

S E U.(E) U(E)
(cm) (MeV) (cm/MeV) (cm/MeV)

I'.(S) n (keV)
(cm') Expt. Theory

0.000 5.300 1.075
5.000 1.04

0.833 4.500 0.98
4.000 0.92

1.388 3.930 0.91
3.500 0.85

1.943 3.280 0.82
2.554 2.450 0.69
2.998 1.705 0.56
3.276 1.140 0.44
3.526 0.545 0.30
3.590 0.385
3.640 0.275
3.664 0.225

1.075 0.000 13 0
1.05*
1.01, 0.99* 0.00046
0.91*
0.97 0.00071
0,84*
0.833 0.000933
0.690 0.00112
0.556 0.00122
0.445 0.00126
0.40 0.00128
0.44 0.00128
0.484 0.00128
0.528 0.00128

32 31.0

43 41.4

54 51.9
70 68.6
92 89.0

109 113.0
122 127
115 115
105 105
94 95.5

Ms(E) =264 keV'/cm. (45)

U(E) cannot be calculated from Eq. (25), but when

E)1.1 MeV, we can use

U(E) =1.075)&10 '(E/5300)'. "cm/keV, (46)

where E is in keV. Equation (46) is an empirical relation
which reproduces range-energy data fairly accurately
in the interval 1.1~8~5.3 MeV. Table II includes
both values of U(E) calculated from Eq. (46) and values

' R. M. Sternheimer, Phys. Rev. 88, 851 (1952).

shells for which I (2mV' and Z' is the effective num-

ber of participating electrons as defined by Livingston
and Bethe. We will use Eq. (44) in calculating Ms(E)
for air.

We first consider Ms(E) for pure nitrogen. We use" "
I~=495 eV, Z~=2, I2=57 eV, Z2=2, I3=38 eV, and
Z3 =3. We find that M2 is 1.353112~ at E=5.3 MeV, but
it increases to 1.46M» by the time E is decreased to
3.0 MeV. For pure oxygen I~ =710 eV, Z~ =2, I2 =68 eV,
Z~ ——2, I3——49 eV, and Z3 ——4. It is found that 3II~ is
1.35&2& at 8=5.3 MeV, but increases to 1.41M» by
the time 8 is reduced to 3.0 MeV. By the time E is
reduced to 3.0 MeV, Ps grows to about 75% of its
limiting value. The heavy contribution to I'2 from E
near E(0) suggests that we can replace 3fs(E) for air

by a constant value 1.38 times as large as that calculated
from Eq. (25). This approximation should lead to values
which are within 3% of what would be obtained if we
included the E dependence of Ms(E). If the air is at a
pressure of 760-mm Hg and a temperature of 15'C,
we have

where r =E/(Es, and we have taken P&(0) =0. Actually,
P, (0) is not zero in the Rotondi-Geiger experiment, but
it is small and can be neglected at intermediate and
large absorber thicknesses. Equation (39b) and (47)
can be combined to calculate n=L2As(5)7'". The
calculated e is compared with experiment in Table II.

The reader may wonder about the continued use of
the theory for E(1.7 MeV. After all, the present theory
neglects electron capture and loss, and these effects are
important for E(1.7 MeV. However, the solid-state
detector used by Rotondi and Geiger detects the
particles and classihes them according to their energy,
without regard for their charge state at the instant
they enter the detector. Also, F(E,S) may be broad
enough by the time electron capture and loss becomes
important so that nonstatistical changes will domina. te
changes in the energy spectrum due to statistical
fluctuations of any kind. In this event, each particle can
be treated as if it loses energy at a definite rate. This
rate of energy loss is the weighted mean of the average
rates of energy loss for the different charge states, the
weight factors being the fractions of the distance
traveled while in each charge state. If we determine
3f~(E) from the experimental data and interpret
F(E,S)dE as the fraction of the particles (without
regard for charge) with energy between E and E+dE,
the theory could continue to hold at average energies
below 1. MeV. This is observed to be the case.

The excellent agreement between theory and experi-
ment for E(1.7 MeV may involve some luck. We say
this because when E(1.7 MeV we use (r2rP )"'/s
Us(E). It is difficult to believe that Us(E), the value
for U(E) extracted from the Rotondi-Geiger E-versus-5
data, is as accurate as the theoretical values of n seem
to be.

Comfort, Decker, I.ynck, Scully, and Quinton' have
studied the energy straggling of n particles (Ep=8.78
MeV) in various metal foils. They compare the mea-
sured full widths at half-maximum (FWHM) with the
Bohr theory. Even though several diRerent forms of
cVs(E) are used, they find that the calculated FWHM is
always much smaller than the experimentally deter-
mined value at large 5. Ke have found that the same
type of theory used here for air gives good agreement
with experiment' in the case of nickel foils. It is also
found that the experimental results for thin aluminum
foils can be calculated fairly accurately if one assumes
that each individual foil has a Gaussian distribution of
thicknesses with a standard deviation of 0.12 times the
average thickness. The inclusion of nonstatistical
spreading of the energy spectrum (and multiple scat-
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tering) may also bring the theoretical calculations for
.the other types of foils into much better agreement
with experiment.

V. CONCLUDING REMARKS

At the time the preceding pages were written there
was no alternative theory at large path lengths. How-
-ever, Tschalar" has recently extended the calculation
of F(E,S) into the thick absorber region. This was
achieved by carrying out the numerical solution of a
simplified form of Eq. (1).In these calculations Tschalar
uses a F(E,t) which leads to the 3fi(E) and cV2(E) given
by Eq. (25). Hence, these calculations neglect both
inner shell corrections and relativistic effects. We will
now compare the results derived in the present paper
to those of Tschalar.

Tschalar has considered 49-MeV protons incident on
an aluminum absorber. In particular, he works out the
case where the absorber thickness is such that the peak
of F(E,S) is at E=5 MeV. It is found that the calculated
spectrum is in good agreement with the experimental
,results of Raju" for E)2 MeV. To calculate this spec-
trum from the present theory, note that pl is small so
that II(R,S) is almost Gaussian. We can use Eqs. (41)
and (42) in calculating F(E,S). However, before using
these equations we must determine E. If we let

U'(E) = ~(E-)(E/E-)",

with d = 1—(ln V ) ' and V =4mE /MI, we can show
-that

E/E =[1—(2m/M)(d)(d+1)(3m+1) '

X(1—~)'(1—d) '(Eo/E )']""+"
'With E„=5 MeV, M/m=1840, Eo 49 MeV, I=——163
eV, a=0.846, and d=0.762, we find i=4.26 MeV. At
la, rge S (or small r),

2P,(U(E)Ej '=
(
—

) ( )
"C, Tschalar, Nucl. Instr. Methods 64, 237 (1968).
' M. R. Raju, University of California Lawrence Radiation

I aboratory Report No. UCRI -16613, 1965 (unpublished).
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FIG, 5. Energy distribution function for 49-MeV protons in Al.
The most probable energy has been reduced to 5 MeV.

lf we use the last relation, Eq. (42) becomes

F(E,S) =0.167(E/4.26)""
Xexp( —0.514[(E/4.26)""—1]'),

where E is in MeV. The F(E,S) calculated from the last
equation is graphed in Fig. 5. The F(F,S) calculated
here is in excellent agreement with the data of Raju
and the calculation of Tschalar. We have compared the
present theory with that of Tschalar for cases where the
heavy charged particles were pions and helium ions. In
every case that was considered the agreement between
these calculations was excellent. This work achieves to
a great extent analytically what Tschalar has done
numerically.

The theory that has been developed here is not
restricted to cases where the cV„(E) given by Eq. (25)
are accurate. This is important since inner shell correc-
tions to M2(E) are important in many situations of
interest. Sternheimer'4 has estimated that these cor-
rections are about 16% for 10-MeV protons in alu-
minum. These corrections are larger at lower energies
and are about 6% even at E=50 MeV. At a given
energy, these corrections are even more important
for n particles.
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