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Optical third-harmonic generation at 2314K using a focused ruby laser beam (6943 A) has
been observed in a number of gases. A theory of third-harmonic generation by focused
beams is presented which is used to derive atomic (or molecular) third-harmonic coeffi-
cients from the experimental data. An ambiguity in choice of a sign leads to two

alternative sets of coefficients. One set is preferred on the basis of general agreement
with data given in or derived from the literature: Theoretical calculations of the third-
harmonic coefficients, measurements of the Kerr effect and theoretical dc hyperpolari-
abilities. For helium the measured absolute value is XHe= (7 & 3 ) & 10 esu/atom.WS

For other gases the experimental values of X in units of 10 esu/atom and scaled to&9

X He=4. 0 ( a theoretical value due to Sitz and Yaris which is thought to be reliable to about

1%) are: Ne 8. 9+ 1.5; Ar 126 + 20; Kr 386 +75; Xe 979 + 150; H& 80 + 12; CO~ 156 + 23;
N2 107+11. Some data for (CH2)2, Cl~, 02, air, and glass are also presented.

I. INTRODUCTION

Optical harmonic radiation may be generated in
a medium subjected to an intense light beam pro-
duced by a laser. Optical second-harmonic gen-
eration in a crystal was first demonstrated by
Franken and co-workers' and third-harmonic
generation in crystals, glasses, and liquids
was subsequently reported by Maker, Terhune,
and Savage. ' We have detected and measured
third harmonic radiation at 2314 A generated in a
number of gases by a focused ruby laser beam
(6943 A).

The gases studied were helium, n'eon, argon,
xenon, krypton, molecular hydrogen, carbon
dioxide, nitrogen, oxygen, ethylene, chlorine, and
air. Some of the results were presented previ-
ously in a brief report. ' The experiments are de-
scribed in Sec. II.

The propagation of harmonic radiation generated
by a focused light beam in an isotropic medium is
investigated in Sec. III. This theory is used to
derive atomic (or molecular) coefficients from the
experimental data.

Gases have been studied in this work because of
the relative ease with which calculations may be
performed for an isolated atom (or molecule).
This applies both to ab initio quantum- mechanical
calculations of the third-harmonic coefficients and
to less sophisticated calculations which relate the
coefficients for different nonlinear processes. In
Sec. IV, experimental third-harmonic coefficients
are compared with various theoretical results and

values derived from measurements of the Kerr ef-
fect and calculations of the dc hyperpolarizability.

II. EXPERIMENTAL
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FIG. 1. Schematic diagram of the apparatus.

A schematic diagram of the apparatus is shown
in Fig. 1. A rotating prism Q-switched ruby laser
(Lear-Siegler LS 100) provided a plane polarized
fundamental light beam at 6943 A. The leading
pulse was 30 nsec wide at half-height with 1-3 MW
peak power: Subsequent smaller pulses were also
present. The signal from a photocell (RCA 922)
monitoring the fundamental light was displayed on
one beam of a dual-beam oscilloscope (Tektronix
Type 551 with type L preamplifiers). The laser
beam passed through a red filter (Chance OR1) to
attenuate stray flash-tube light and was focused by
a 15-cm lens 3 cm in front of the 8 -in. -thick glass
entrance window of a cell containing the gas under
observation at pressures in the range 0-6 atm.
All succeeding optical components were made of
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quartz to pass the ultraviolet third-harmonic radi-
ation (2314 A). This choice of windows in the gas
cell and their positioning with respect to the
focused laser beam will be discussed in Sec. III.
Almost all the fundamental light was absorbed in
a 3-,' -cm cell containing saturated aqueous NiS04
solution, and further wavelength discrimination
was effected with a prism spectrometer having a
resolution of 200 A. The signal from the photo-
multiplier detector (Mazda 27M3), corresponding
typically to 50 photoelectrons at the photocathode
or about 10' third-harmonic photons originally
generated, was displayed on the other beam of the
oscilloscope and photographed together with the
trace from the monitor photocell. A typical oscil-
loscope trace is shown in Fig. 2. The pulse
heights VTHG and VM are proportional to the peak
power at 2314 A (g 31d1) and 6943 A (61 '), respec-
tively.

The oscilloscope traces exhibited all the charac-
teristic features of third harmonic radiation. A

log-log plot of g ~& versus g ~& is shown in Fig.
3 for 28 shots of varying power in an otherwise
unchanged experimental situation. The third-
harmonic power is expected to vary as the cube of
the fundamental power

(p 1 ~((p 1)3

The points in the figure are correspondingly scat-
tered about a line of slope 3. The error bars
were estimated on the basis of the statistical er-
rors in the detection of the small number of third-
harmonic photons. Additional data scatter may
arise from variation in the laser mode structure.
A further prediction from the cubic relationship
of Eq. (11.1) is that the harmonic pulse should be
narrower than the fundamental. This feature is
apparent in Fig. 2; the measured pulse widths are
consistent with theory when allowance is made for
the 16 nsec rise time of the detector.

Third-harmonic power increased as the distance
of the glass window from the focus was reduced
(see Sec. III). It was, however, necessary to
make this distance large enough so that spurious
signals, due to laser induced breakdown of the
window, did not occur. Mild breakdown was

FIG. 2. Double-beam oscilloscope trace of third-
harmonic (upper) and fundamental monitor (lower) sig-

(d fnals. The cubic dependence of (P on+ not only
affects the relative pulse heights in each channel but
also causes the harmonic pulses to be narrower than the
fundamental pulses.
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FIG. 3. Dependence of 6' & on + & plotted on a log-
log scale for 28 shots in a given experimental situation.
The error bars reflect the statistical error in the detec-
tion of a small number of third-harmonic photons.

found to produce a pulse with time dependence
similar to that of the fundamental and did not do
any visible damage to the window. Such signals
are distinguished from third harmonic by their
broad spectral distribution and irregular ampli-
tude.

A final interesting check on the nature of the
signal is its dependence on the fundamental polari-
zation. For an isotropic nonlinear medium, a
plane- polarized fundamental generates a similarly
polarized third harmonic but circularly polarized
fundamental does not generate harmonics. ' Physi-
cally this may be understood as follows: The
electric field vector for a circularly polarized
fundamental wave rotates in space at the funda-
mental frequency and is constant in amplitude
throughout the optical cycle. The polarization
vector rotates parallel to the electric field vector
in an isotropic medium and the amplitude is con-
stant even though it is not linearly related to the
fundamental field amplitude. Thus the polariza-
tion has no harmonic content. We used a z-cut
potassium dihydrogen phosphate crystal as a volt-
age-dependent retardation plate to vary the polari-
zation of the fundamental and observed the total
harmonic intensity (see Fig. 4). This is seen to
be in agreement with the above prediction.

Each laser pulse yields a relative value for S,

where

S is shown in Fig. 5 plotted for various gases as
a function of pressure. The form of these curves
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~VACUUM —NONLINEAR MFDIUM ~
sumed that the angular spread of the fundamental
beam is small, and the nominal mismatch M is
small

LIGHT
BEAM SOURCE

ELEMENT I

&k = k'- k, I ~k l «k', k .

Equation (III. 13}may be recast in the form

(IIL 16)

(q)E- {r)= - (ivk',b/k) f P- q
K

z'=0 f -b/2 f &+b/2

FIG. 6. Notation for harmonic generation by a lowest-

order Gaussian beam.

&&(1+if,) exp —
(1

.
)

B(z),k(x+y} (m. 8)

viate X(-(d; (d„u&,.. .)to X and to consider only(q)

one component of Eq. (III.7} omitting the tensor
notation. Substitution of Eq. (III. 2} into Eq. (III. 7}
yields

P (r) =2 X E, exp(ik'z}(} (i-) ()

xexp[ —,
' U b($'- $")]exp(iK ~ r)d$', {III.17)

where —!: is -2f/b which is the location of the
vacuum- medium interface.

The total harmonic electric field can now be ob-
tained by combining this equation with Eqs. (III. 8)
and (III. 12) and integrating over dK. The integra-
tion over dKz gives 5(z' —z") so that B(z") from
Eq. (III. 8) may be replaced by B(z') which can then
be ignored since it is unity in the range of the in-
tegration over d$'. After integrating over dz' ' the
integrations over dx", dy", dK~, dE may be done
in any order yielding finally

where k' = qk,

B(z) = i, (z &0)

=0, (z &0) .

(m. 8)

(III. 10)

(111.11)

E(r) = [i2 zk bX Eo /k] exp(ik'z)(1+ j $}
. (I-q) 2 (q) q

where

xexp
(1

.
)

I (q nk, $, (),—k' (x'+y') (III. 18)

I (, teak(() f~d(' " * . ()II. )9)

P~, the component of the harmonic polarization(q)

with wave vector K, is obtained by Fourier decom-
position of P(q}(r).

=(2v) 'f pq (r")exp(-iK r")dr" .(q} -~ q)

(III. 12)

The harmonic electric field arising from this polar-
ization component is '

This harmonic field is a lowest-order Gaussian
mode (this depends, of course, on our choice of
fundamental mode) having the same confocal para-
meter b as the fundamental beam and therefore
smaller angular divergence. The amplitude of the
field is governed by the remaining integral d$' (or
dz') which must be carried out explicitly for each
experimental situation.

The integral I can be evaluated analytically for
an infinite medium ($,I' —~) in which case:

B+ (f)) = —[27(k 2' z/k] g(Ug)exP(i+ r )(q)
0

(III. 13)
f ,exp(z ibrNt')

(1 + i$')q. , q-1

where k is the wavevector for a free-harmonic
wave in the medium, k, is the wave vector for a
harmonic wave in free space,

27r
(bdA/2} exp(- bn, k/2), Z) k & 0 (III. 20)

q-2
q-2 !

for q = 2, (second-harmonic generation) this yields

U =i [K —k' y(K ~K )/2k'+r)k)I
K g ~ y

and g(x) =(1—e )/x= f e dp .

(III. 14)

(m. is)

f(2, nk, ~, ~}=0,

=2xexp(- —,
' bn. k), nk&0

In the derivation of Eq, (III. 13}, it has been as- (m. as)
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and for q =3, (third-harmonic generation)

1(3,rM, ~, ~) = 0, ak» 0

= vbc&exp(- —,'beak), n.k& 0 .
(III. 22)

ko harmonic free wave vector in the
vacuum

wave vector for a component of
the harmonic polarization

The interesting feature emerges that no third har-
monic is generated by focusing in an infinite medi-
um at nominal phase matching (4k=0}.

If absorption occurs for the fundamental and har-
monic, Eqs. (III. 18) and (III. 19) [but not Eqs.
(III.20), (III.21), and (III.22)] still apply. In this
case the wave vectors in Eqs. (III. 18) and (III. 19)
are complex and depend on o., and n, the intensity
absorption coefficients at w, and (d, respectively,

Im(k, ) =-,'o, ,

Im(k') =-,'qa, ,

Im(k) =-.' ~,

Im(nk) = 2 qa, —2 o.

(III. 2 3)

E,(r, f},E,(r) fundamental electric field

Eo maximum fundamental electric
field

-(q) -(q)-P (r, t}, I& (r} harmonic polarization

harmonic electric field

harmonic number

fundamental angular frequency

harmonic angular frequency

The conclusions of this section remain essential-
ly unchanged when higher-order modes of the funda-
mental beam are present. There is no difficulty
in principle in analyzing this situation although the
algebra becomes progressively more involved the
more complicated are the modes considered. The
harmonic field can always be expressed as a linear
combination of terms, the leading terms being of
the form given in Eq. (III. 19) and further terms
having higher powers of (1+i/') in the denominator.

For convenience we reidentify here some of the
notations used in this section:

&k =qk, —k wave-vector mismatch

coordinate along the direction of
propagation of the beam

z coordinate of the focus

confocal parameter Eq. (III. 3).

far field semiangular spread of
the fundamental beam

normalized z coordinate Eq.
(111.4).

Vibration Curves

The integral I may be evaluated for each experi-
mental configuration either numerically or by
analytical approximation. We have found it help-
ful to consider, in addition, a graphical interpre-
tation which we first illustrate for the case of
harmonic generation by a plane-wave fundamental
beam. The harmonic field expressed in terms of
an integral analogous to I is

E(r)o:iXf exp[i4k(z'-z)]dz' (m. 24)

I =vjnk .
C

(III. 25)

The contribution from each element dz' is repre-
sented in amplitude and phase by an infinitesimal
vector in the complex plane. The curve traced
out by adding the infinitesimal vectors may be
called a vibration curve. ' "The integral of Eq.
(III. 24) corresponds to the section of the curve
from z'=0 to z' =z or equivalently to the resultant
vector joining those points.

In the index matched situation (bk = 0), the vibra-
tion diagram is simply a straight line as shown in
Fig. 7(a). For a transparent mismatched medium
(hk real and nonzero), the vibration curve is
circular in shape. Figure 7(b) illustrates this for
a sample with 4k negative and length l~ called the
coherence length.

k'=qk,

fundamental wave vector in the
medium

harmonic forced wave vector in
the medium

harmonic free wave vector in
the medium

As the sample length is increased, the circle is
repeatedly retraced by the tail of the vibration
curve, the resultant harmonic field being a maxi-
mum whenever z is an odd multiple of l~. It is
important to notice that for 4k' 0, the maximum
value of the field, determined by the diameter of

~ ~

~

~

~ ~

th circle, is proportionalto X(q)/b, k rather than
q alone. When, in addition to being mismatched
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FIG. 7. Vibration diagrams for harmonic generation
by a plane-wave fundamental. The fundamental beam
enters the nonlinear medium at z'=0. The vibration
curve is indicated by single arrows, and the vector
representing the resultant harmonic field at z'=z is
indicated by a double arrow. (a) Index matching M = 0

(b) index mismatch, M & 0. The vibration curve is
shown for sample length equal to a coherence length.
As the length of the sample is increased the tail of the
vibration curve repeatedly retraces the circle. (c)
Index mismatched and with mild absorption at the har-
monic. The spiral has been drawn for lm(b k) equal to

I ak I /(ZO~) .

the sample is also mildly absorbingtothe harmonic
radiation [0&1m(hk) « IAkl], the circle becomes a,

spiral. Figure 7(c) shows the vibration curve for a
thick sample with Im(dk) chosen to be 4k/(10m),
the center of the spiral being omitted for clarity.
The magnitude of the resultant field for a sample
substantially longer than the absorption length is
now half that of Fig. 7(b) and is independent of the
small absorption coefficient and the thickness.

For a focused fundamental beam the vibration
curve represents the integral I of Eq. (III. 19)
rather than Eq. (III. 24). The difference (apart
from the convenient use of the normalized coor-
dinate $ rather than z) is that the integral I includes
an additional factor (I+i)') I q This m. ay be re-
written

4 =G,focus ( =O,focus

both in amplitude and in phase, the contribution of
the element d$' to the harmonic field.

We digress briefly to show that Eqs. (III. 27) and

(III. 28) are in accord with the results of more in-
tuitive arguments. Focusing contributes tan-'$'
to the phase ot the fundamental field [Eq. (III. 8)]
and consequently tan '$' and q tan '$' to the phases
of the fundamental and harmonic polarizations,
respectively. The fundamental polarization is
ideally phased to reradiate into the focused mode.
The misphasing of the harmonic polarization due
to focusing is therefore its phase with respect to
the fundamental polarization, which is correctly
accounted for by Qq($'). The function aq($') is the
relative amplitude at $ of the harmonic field con-
tributions arising from elements d$' at $'. The
fundamental power is independent of $' so that the
fundamental field goes as [A(g')] "'where A(g'}
is the beam area at $'. The harmonic polariza-
tion and therefore the harmonic field contribution
at $'+d$' is proportional to the qth power of the
fundamental field [A(g'}]-q/2. The harmonic
power at $'+d$' is proportional toA($')x harmonic
field squared, i.e. , [A($'}]1 q. At $ this power is
spread over an area independent of $' so that the
field contribution goes as the square root of the
power, i. e. , [A($')](I-q)/2which is correctly ac-
counted for by a ($'}.

Vibration curves for second and third harmonic
generation by a focused beam in a transparent
medium at nominal index matching (nk =0) are
shown in Fig. 8. The shape of the curves is seen
to be consistent with the requirement of Eq.
(III. 28) that the phase of contributions changes by
v (q —I)v/2 from the focus to $' = +~. For second
harmonic generation [Fig. 8(a)] the $' =+~ points
have a finite separation, but are both infinitely far
from the $'=0 point (the focus). The resultant
field generated in an infinite medium is repre-

where

(1+i)' ) = a ($')exp(iQ (t')], (III. 26)
1-q

(,) (,2)- (q —1)/2

(=+4 4'

(o) (b)

)]
(q 1)/2

P ((') = —(q- l)tan '$'
q

(111.27)

(111.28)

to emphasize that the effect of focusing is to weight,

FIG. 8. Vibration curves for harmonic generation by
a focused fundamental beam in the index matched case
Ak ='0. (a) Second harmonic (b) third harmonic. The
resultant harmonic field for an infinite medium is rep-
resented by a vector joining the points f'= —~ to $' =+ ~.
This is finite for second harmonic but is zero for third
harmonic since the two points are coincident.
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sented by the vector joining $'=-~ to P, '=+~ and is
finite. A much larger resultant is obtained join-
ing points $' small to $' large corresponding to a
Long crystal with the focus near one surface. ' For
index matched third harmonic [Fig. 8(b)] the points
$'= —~ and g'=+~ coincide so that no net harmonic
is generated in an infinite medium. The total
length of the second-harmonic vibration curve is
infinite when the range of $' is + ~, but the third-
harmonic curve has a finite length. In both cases
the length is independent of &k, which affects only
the curvature p ' of the vibration diagrams.

p '=[(I+)' )b&k/2 —( —1)](1 g")( -3!2
(III. 29)

Figure 9 shows vibration curves for varying de-
grees of index mismatch (-0. 3 &b d k&+2. 0) with
X(&) held constant. Only half of each curve is
shown ($'&0)from which the other half ($'&0) may
be obtained by reflection in a vertical line through
E'=0. It is evident that the sense of the curvature
contributed by the mismatch depends on the sign
of &k. Negative 4k accentuates and positive &k
tends to compensate the curvature present with
bk zero. An infinite medium having negative 4k
yields no net second or third harmonic. However,
for 4k positive, there exists an optimum value of
the mismatch which yields maximum harmonic
generation. In an infinite medium, optimum sec-
ond harmonic generation takes place with an in-
finitesimally positive value of 4k in which case the
$'=+~ point lies on the dashed line drawn in Fig.
9(a). The resultant harmonic field is twice that for

, ( beak =0

(a)

--(=0--

FIG. 10. Schematic vibration curve for second or
third harmonic generation by a focused fundamental
beam with bM large negative. The contributions to the
field from regions on either side of the focus have been
separated for clarity. A curve for beak large positive
can be obtained by reflection in the horizontal line
through $'= 0. The scale of the curves for constant X &

goes as (bEkw while the shape is unchanged. Dk may
be varied in a gaseous nonlinear medium by changing
the pressure but in this case X~&~/Ak remains constant
so that the form and scale of the vibration curve is in-
dependent of pressure so long as 4k is large.

4k =0. This result may also be derived analyti-
cally from Eq. (III. 19). In the equivalent case for
third harmonic generation, &kopttmum is + 2/b
[see Fig. 9(b)].

The advantage of positive 4k may be understood
from a physical point of view. Positive hk means
lkj & qlk, l, but wave-vector match can still be
achieved for noncollinear plane-wave components
existing within the focused fundamental beam. For
example, at optimum matching for third harmonic
generation in an infinite medium, wave vectors for
three fundamental beam components inclined at
anglestothe beamdirection —5„0,+ 6, are matched
to a harmonic wave vector in the beam direction.

When Ak is very large (beak» 1) the curvature of
the vibration diagram [see Eq. (III. 29)] is large and
proportional to 4k. The form of the curve is then
independent of the sign of 4k and becomes a tight
spiral having the E'= +~ points coincident for both
second and third harmonic. This is shown
schematically in Fig. 10. The scale of the dia-
gram is determined by the ratio of the Length to
the curvature, X(q)/4k which for a given medium
is independent of density. This situation is dis-
cussed further in the following section.

Experimental Configuration

FIG. 9. Vibration curves for harmonic generation by
a focused fundamental beam with various values of beak

with y 'f['~ constant: {a) Second harmonic 5) third har-
monic. The index matched curves bb, k = 0 are repeated
here from Fig. 8. The region $'&0 is shown, the other
half-region being obtained by reflection in the vertical
line through $'=0. The asymmetry with sign of beak
is evident. The optimum value of bb k for second har-
monic in an infinite medium is positive infinite-simal
and the $' =+ ~ point then lies on the dashed vertical
line: for third harmonic beak =+ 2 is optimum.

The experimental arrangement in the region of
the focus is shown in Fig. 11(a). A solid nonlinear
medium S transparent to the fundamental radiation
separates the two regions G and G' occupied by
gas. The simplified configuration of Fig. 11(b) is
studied first and later shown to be equivalent to
the experimental one when the solid is absorbing
to the third harmonic radiation. In Fig. 11(b), the
solid occupies the region S (- ~ & $'& )f) and the gas
under observation the region G ((~& $'& $D). " The
plane $~ is effectively at infinity in the sense that
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x g(x, y, (,k '/b )I (III. 36) X =3"2vb (I+~ ')/2(k /3) . (m. 44)

where

exp [ib&ak ()S' —(f )/2]
(m. 37)

Integration by parts yields an asymptotic expan-
sion in (b&d ks) and if bs nks» 1 it is satisfac-
tory to discard all but the leading term. This con-
dition is satisfied in the experimental situation and
implies that the beam area changes insignificantly
within a coherence length. Thus,

I =[ib r k (I+i~ )'/2]-' (III. 38)

With this approximation the harmonic generated in
the solid, evaluated at the detector plane $D is

X mko
E (x, y, $ )=q (I i+) ) 'E 3

S

&&exp[ik 'zl +ikG(z z)]—

x g (x, y, $, k0/b ), {111.38)

where refractive indices for the gas have been set
to unity except in the phase and in ~kG. The fac-
tor g includes a coefficient T for transmission of
the harmonic at the interface, analogous to T, of
Eq. (III. 33) and is given by

2k t k0/3 +
k Is ) 3

(111.40)
kS T, ko+ kS 2k1S

If the refractive index of the solid at fundamental
and harmonic is taken to be 1.5 then g is approxi-
mately —,'. Knowledge of the magnitude of p is not
relevant to the extraction of third-harmonic co-
efficients for gases from the experimental data.

The field in the region G is related to the power
by

p = — f f dxdy I E(x, y, $ ) l' . (III. 41)

S =AlrlX j~k

where &=2'&k '/c'& ').

(III.42)

(III.43)

With region G evacuated, ES is the only harmonic
field at )D and the signal follows from Eqs. (III. 39)
and (III.41)

EG(x, y, tD) = (i vk0'/4kG)b X E0'

&&exp[iks'z +ik '(z —z )]

x Q(x, y, $, k '/b )xI (m. 4s)

where

exp[ibGM ($ '- ] )/2]

(I + i)G')'

(III.46)

In the limit of high gas pressure, bG4kG» 1, IG
may be approximated by the procedure applied to
l3 in Eq. (III. 38) which gives

IG =[ib bkG(I+i) ) z/2]-'

Equation (III.42) can also be deduced by using
the schematic vibration curve shown in Fig. 11(c).
[Schematic vibration curves are shown in Figs.
11(c)-11(e)since only the general shape of the
curves is important to the argument. ] Under the
present condition that the beam area changes in-
significantly within a coherence length, the curve
is a tight spiral and in the region of $& may be
approximated by a circle. Comparison with the
plane-wave vibration curve of Fig. 7(b) shows that
ES is equivalent to half the harmonic field pro-
duced by a plane wave fundamental of area A~ in
one coherence length of solid. A straightforward
calculation of this equivalent plane-wave case
again leads to Eq. (III.42).

The signal given by Eq. (III.42) is unchanged if
the solid S is made mildly absorbing to the har-
monic radiation (0 (Im Aks «lhksl) which means
that there is negligible absorption within a coher-
ence length. Mathematically this is because the
approximation of Eq. (III. 38) still applies. Also
the vibration curve is modified as shown in Fig.
11(d) and the argument based on it is unchanged.
The harmonic field contributions originating from
more than a few absorption lengths within the
solid do not now reach the detector so that the ex-
tended solid region of Fig. 11(b) may be replaced by
an absorbing window of sufficient thickness. This
is then the experimental configuration, Fig. 11(a).

When the gas is present in region G, the har-
monic field EG generated in the gas and evaluated
at $D is obtained from Eqs. (III. 2), (III. 18), and
(m. 31)

and A~,
' a measure of the fundamental beam area

at the interface, is

exp[ink b (g —$ )/2]

ib n.k (1+
iaaf) /2 (III.47)
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The first term representing harmonic generation in
the region $D & $' & ~ is made negligible by choosing
$D sufficiently large. Equations (III.45) and
(III.47) then yield

TABLE I. Third-harmonic signal generated by a
fundamental beam focused near a quartz plate separating
two regions G and G' which may each be evacuated or
filled with ethylene at high pressure.

7740 X
E (x, y, t )=

2
E 3(1+i) ) '

G

xexp[ikS'zf+ik (z —z )]

x g (x, y, $, k /5 ), (III.48) iv

Gas pressure
in G'

high

high
0
0

Gas pressure
in G

high
0

high
0

where the refractive indices of the gas have been
set to unity except in the phase and in bkG. The
signal S~ resulting from the combination of solid
and gas at high pressure is obtained from Eqs.
(III.41) and (III.48).

S =ZlqXS/6k —X /rM (III. 49)

Inspection of vibration curves followed by a plane-
wave analysis gives an alternative method leading
to Eq. (III.49) as with Eq. (III.42). The vibration
curve for the region G filled with gas at high pres-
sure is shown in Fig. 11(e). In particular the rela-
tive phase of ES and EG follows directly from the
vibration curves Figs. 11(d) and 11(e).

For (XS /MS ) and (XC/akG) both real, Eqs.
(III. 42) and (III. 49) yield

is transparent to the third harmonic radiation
(2314 A) and so the situation in the region G' [see
Fig. 4(a}]is no longer irrelevant. When ethylene,
a gas for which (X/Sk} is close to that of quartz,
was introduced on both sides of the window, re-
sults essentially according to the scheme shown
in Table I were obtained. It will be seen that (iv)
is an incoherent superposition of (ii) and (iii).
This is because the effective thickness of the
window varies by more than a coherence length
depending on the ray path within the diverging
beam. For obtaining quantitative results, the
glass window is preferable since it leads to easily
interpretable results which are independent of the
window thickness.

IV. RESULTS

Experimental Third-Harmonic Coefficients

(X /Ak )/(r}X /o. k )= I+(S /S0)~& . (III. 50)

The possibility that these quantities are complex
must, however, be considered. XG, 4kG, and bA, S
can be assumed real with confidence since the
gases used were transparent at all the frequencies
involved and the imaginary part of LQS is finite
but small. Although there is no a priori reason
why XS should be real, it will be shown in Sec.
IV that such an assumption is in fact justified.
Apart from the ambiguity arising from choice of
sign, Eq. (III. 50) enables values of (XG/b, kG) rela-
tive to (qXS/c, kS) to be deduced from experimental
determinations of SH/S0. The ambiguity of sign
arises from a lack of experimentalevidence for the
relative phase of ES and (ES +EG) which would be
necessary to determine whether IXG/dkgl is
greater than or less than IqXS/AkSl

At lower gas pressures, the integral IG of Eq.
(III.46) must be computed numerically. Computed
curves for signal as a function of gas pressure
are shown with experimental data in Fig. 5. Un-
fortunately, the shape of the curve for a given
SIf/S0 is only marginally dependent on the sign in
Eq. (III. 50} and does not provide a means of re-
solving the ambiguity.

A few experiments were also conducted with a
quartz window in place of the glass one. Quartz

Third-harmonic signals were measured as a
function of pressure for various gases. Data for
the rare gases are shown in Fig. 5. S~ was less
than S, in all cases, indicating that

[(X/~k) I l2(qX/~k) ).
For several gases (e. g. , krypton and xenon) S&
was found to be undetectably small. This was an
important result because taken together with Eq.
(III. 49) and the subsequent discussion it implies
that XS is real and Eq. (III. 50) is therefore valid.

The theoretical curves shown in Fig. 5 were de-
termined by numerical evaluation of the integral
in Eq. (III.46) and adjusted for best fit to the data.
The form of these curves is expected to be essen-
tially independent of the mode structure of the
laser. The extrapolated high-pressure signal S~
was derived from the curve but is insensitive to
the details of the fit. For krypton and xenon, M
is sufficiently large so that the data points at -', atm
are effectively at infinite pressure. Values of
S&/S 0 for each gas are shown in Table II together
with alternative values (i) and (ii) for (X/hk)G
relative to glass. The two possibilities arise
from the choice of sign in Eq. (III. 50) and cor-
respond to (X/Ak)G less than or greater than
(gX/ak)S, respectively. In all cases, binary
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TABLE II. SH/S0 is the ratio of third-harmonic signals in the limits of high and low gas pressures, respectively.
The value relative to glass of (X/Dk) g, the ratio of third-harmonic coefficient to wave-vector mismatch, is derived

from S&/S0 by use of Eq. (III.50). The ambiguity of sign in that equation yields two possible values (i) and (ii) for
each gas. The data on Dk are taken from the literature and yield relative values of the third harmonic coefficient X.
The convenience of the scaling employed for X will become clear in connection with Table III.

sos x/~u
relative to glass
(i) (ll)

at STP
(cm )

X
(arbitrary units)

(i) (ii)

He

Ne

Ar
Kr
Xe

Glass
H2

CO2

(CH2) 2

C12

N2

02
Air

0.30 +0. 06
0.22 + 0.06
0.05 +0. 04

&0 ~ 02

&0.02

0. 18 +0.04
0, 28+ 0. 05

&0.02
&0.02

0. 24+0. 05
0.34 +0.09
0.34 + 0. 10

0.45 +0. 06
0. 53 +0. 06

0.77 +0.07
1.00 + P. 15
1.00+ 0. 15

1/n
0.57+0. 05

0.47 +0. 04
l. 00+0. 15
1.00 + 0. 15
0.51 + 0. 05
0.41+0. 08
0 ~ 41 +0.08

l. 55 *0.06
1.47 +P. 06

l. 23 ~0. 07
1.00 + 0. 15
1.00 ~0. 15

1/g
1.43 +P. 05

1.53 +0. 04

1.00+ 0. 15
1.00 +0. 15
l.49 +0. 05
l. 59+0. 08
1.59 0. 08

a
0. 38
0. 72
7. pb

]6
42 pc

pd

]4 Qd

9. Od

9. 0

4. 0~0. 5

8. 9%1.0
126 +12
386 +57
979*150

80 +7
156 + 13

107 + ll

86 ~17

4, 0~0. 2

7 2wP

59 ~4
112 =17
286 ~43

58 +2
14S A4

91~3

97 +5

C. Cuthbertson and M. Cuthbertson, Proc. Roy. Soc. (London) A135 40 (1932).
B. guarder, Ann. Physik 74, 255 (1924).
J. Koch, Kungl. Fysiographiska Sallskapets I Lund 19, 173 (1949).
International Critical Tables (National Research Council of the U. S.A. ) edited by E. W. Washburn (McGraw-Hill

Book Co. , Inc. , 1930), Vol. VII, p. 1ff.

mixtures of gases were found to yield values of

SIf/So intermediate between the two values for the
pure gases. This reduces the possible combina-
tions to set (i) for all gases or set (ii) for all gases.
Table II also shows values of bk from the litera-
ture and the corresponding two sets of relative
values for the third-harmonic coefficients X which
are scaled for convenience in connection with
Table III. It will be shown later that set (i) is in
substantial agreement with other data.

(X/hk) was shown in Sec. III to be the important
parameter governing harmonic generation under
nonindex-matched conditions. (X/nk) is independ-
ent of density and the experimental results of
Table II show that it is also essentially independ-
ent of the material. For the rare gases, for in-
stance, whereas the coefficient X varies over two
orders of magnitude, (X/nk) is constant to within
a factor &2. This can be understood on the basis
of perturbation theory (see Appendix C).

The absolute value of lgx/nkl for glass was
estimated from measurements of So by using Eqs.
(III.42) and (III.43), and was then employed to de-
rive an absolute third-harmonic coefficient for
each gas from the relative values given in Table
III. However, a much larger uncertainty must be
associated with the absolute coefficients. Addi-
tional parameters involved in the determination of
(t)X/Ak) for glass are (with corresponding uncer-
tainties in parentheses): The absolute laser power

which was measured in terms of optical rectifica-
tion in ammonium dihydrogen phosphate using the
known value of the optical rectification coef-
ficient "a

[x (0;(u, —(u) +x (0; ~, —(u)]
XP'z XZ$'

(+15/o), the beam area at the glass window Af
which was estimated by burning exposed Polaroid
film (x 2+'), transmission at 2314 A from the gas
cell to photomultiplier including the NiSO4 filter
(+ 15/o), the quantum efficiency of the photomulti-
plier taken from the manufacturer's specification
(+25 /o) and the gain of the photomultiplier and
electronics which was determined from a statisti-
cal analysis of single photon signals 410%). Also
the coefficient derived from Eqs. (III.42) must be
divided by a factor v JL(, unless the laser beam is a
single lowest-order Gaussian mode. p, increases
to six if many confocal lowest-order modes are
present and would also be increased by mode lock-
ing and the presence of higher-order modes. A
crude assessment of the mode structure for our
laser leads to the assignment v )Lt, = 2 + 1. The ab-
solute results which are uncertain to within a fac-
tor of 3 are

(gx/nk) =1.Ix 10 "esu,
glass

which yields for helium

(X/nk) = 5 && 10 ' esu (i)
He
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TABLE III. Comparison of nonlinear coefficients in units of 10 esu/atom. Two sets of experimental third-harmo-

nic coefficients X corresponding to the ambiguity in sign of Eq. (III.50) are compared with other data. "X theoretical"

are the results of direct calculations. "X derived" are derived from the Kerr coefficient X
K or dc hyperpolarizability

shown to their right using Eq. (IV. 4) with the effective excitation energy (d„. All values are absolute except those in

columns two-four for gases other than helium where the values are normalized to X He=4. 0 x 10 esu/atom.-39

absolute experimental third-harmonic coefficients for helium have been refined and reduced by 30% since publication

in Ref. 3.

X

experimental
X X ~n

theoretical derived (10 cm )

XK 0
X

theoretical

He
!

7. 0x3

(ii)

absolute
24 x 3+'

relative to XHe=4. 0

l

4. 0

12.0

O. 9'
3.88

3.87
3.88
4. 9

170 3.66

4. 5~0.3

3.58a
3 59

Kr
Xe

H2

CO2

Ng

8.9+1.5

126 + 20

386+75
979 + 190

80 +12
156+23

107 + 17

7.2+0. 5

59+5

112+25

286 +45

58+4
147+8

91+5

7.6

124

316
987b

9.8

12.0
127
250
317
962

61f

130

93

80
67

8.5+0.7

98+7'

233 + 17
650 +50

47+5'

10.4

194d

P. Sitz and R. Yaris, J. Chem. Phys. 49, 3546 (1968).
See Appendix B.
E. L. Dawes, Phys. Rev. 169, 47 {1968).

d P. W. Langhoff, J. D. Lyons, and R. P. Hurst, Phys. Rev. 148, 18 (1966); M. N. Grasso, K. T. Chung, and

R. P. Hurst, ibid. 167, 1 (1968).
A. D. Buckingham and D. A. Dunmur, Trans. Faraday Soc. 64, 1776 (1968).

fA. D. Buckingham and B. J. Orr, Proc. Roy. Soc. (London) A305, 259 (1968).

or 17X10 "esu(ii) . (IV. 2)

=7X10-"esujatom (i)
He

or 24X10 "esu/atom (ii) .

In the case of molecules X obtained in this way
represents an average over spatial orientations.

Comparison of Third&armonic
Coefficients with Other Data

Experimental third-harmonic coefficients are
assembled in Table III with other data from the

Microscopic coefficients g are obtained by dividing
X by the number density of atoms or molecules
[see Eq. (A. 11) and discussion]. The result for
helium is

literature for comparison.
Three directly calculated values for XHe are

given in column four: The first is the result of a
time-dependent perturbation variation calibration
by Sitz and Yaris" which is though to be good to
about 19'. It is, however, unlikely that the method
can be profitably extended to other atoms. " The
second comes from a time-dependent perturbation
calculation (see Appendix B) which could be exten-
ded to those other atoms where a considerable a-
mount of information on matrix elements is avail-
able. The estimated uncertainty is large enough
so that no significicance is to be attached to the
difference (a factor of 3) between this result and
that of Sitz and Yaris. The third is a calculation
by Dawes" using a perturbation approach where
the sum over intermediate states is reduced to a
single effective term and linear polarizabilities
are used as input data. This calculation is readily
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extendable to other atoms. Again the estimated
uncertainty is large enough so that no significance
is to be attached to the difference (a factor of 4)
between this result and that of Sitz and Yaris. "
The absolute exPerimental values for XHe have
large uncertainties (x3 ') but (i) exhibits substan-
tially better agreement with theory than (ii).

X can also be inferred from the Kerr coefficient
yK and from the dc hyperpolarizability y'. These
coefficients are here so defined (see Appendix A)
that they are equal if the frequency (d, of the ap-
plied optical fieM is negligible compared with fre-
quencies u&„characteristic of the atom. For ~,/
~n small but not negligible, the ratio of the coef-
ficients estimated from time-dependent perturbation
theory is

/(I+5(dl /[2(d ])=y/(1+15(dl /(d ),0 K 2 2 2 2
n n

(IV. 4)

where (d„is an effective characteristic frequency
assigned by inspection of the term scheme.
Column five of Table III contains values for X de-
rived from P or y K using Eq. (IV. 4). In parti-
cular, theoretical values calculated by Sitz and
Yaris' for helium are processed in this way and
may be compared with their directly calculated yHe
as a check on the procedure. Experimental values
for yK measured by Buckingham and Dunmur" and
recent theoretical values for y

' are also given in
Table III and used with Eq. (IV. 4) to estimate
values for y. These values of y' are the results
of variational calculations by Hurst and co-work-
ers. " For helium the result, which is thought to
be good to about I%%d, is in excellent agreement with
the value calculated by Sitz and Yaris.

The ratio of experimental third-harmonic coeffi
cients for different gases is known much more
precisely (about 20%) than the absolute values
(x3+'). To make use of this, the experimental )(
shown in Table III for gases other than helium are
scaled to XHe=4. Oxlo-"esu/atom —the Sitz and
Yaris value. (Dawes theoretical values are
similarly normalized. ) It can be seen that set (i)
is in broad agreement with the other data but set
(ii) is not. We conclude set (i) represents the cor-
rect resolution of the ambiguity in Eq. (III. 50) and
that iX/n, kl for these gases is less than le/

&~glass ~

V. CONCLUSION

The theory of third harmonic generation by
focused beams in homogeneous media has been
discussed and used to extract third-harmonic co-
efficients from measurements on various gases.
Absolute uncertainties are large (x3+') but ratios
are good to about 20%. An ambiguity leads to two

sets of third-harmonic coefficients, one of which
is spurious. Set (i) is found to be in good agree-
ment with a broad range of data on nonlinear co-
eff icients.
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APPENDIX A: DEFINITIONS OF
NONLINEAR COEFFICIENTS

Various definitions of nonlinear coefficients are
used in the literature. That used in this paper is
reviewed here.

The applied electric field E(r, t) in the medium
is

E(r, t}=E (r)+Q —'[E t(r)e

E~i~(-) +'~i t]

~ Q

where E ~ (r) = E t(r),

(A. 1)

(A. 2)

The resulting polarization is

P(r, t)=P (r)+2 ', [P o(r-)e o

(Oo p} +t+t] (A. 3)

where P & (r) = P & (r). (A. 4)

The nonlinear tensor susceptibilities X are defined
by

X*(-uo, &u„u, ~ ) is defined by the complex-con-
jugate equation to Eq. (A. 5) but the coefficient is
expected to be real unless resonant processes in-
volving damping are important. The frequency
labels satisfy the relation

(d = 4J +40 + ~ ~ ~

o 1 2 (A. 5)

K(- uo, ~I, ~2 ~ ~ ) is a real function of its fre-
quency labels only and is of order unity. It is de-
fined so that

A(0;0, o. )=1 (A. V)

and so that for all processes of a particular order

~(d
P o(r) =A(- (u (g (u )0' 1' 2

x X(- ~; &u, ~ ~ ~ )E '(r)xZ '(r)x (A. 5}0' 1 2
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(involving a particular number of applied fields),
X(- mz, &ul, v2 ' ~ ') approaches X(0;0, 0 ~ ~ ) as all
the frequencies tend to zero. This is especially
convenient for the intercomparison of various
processes of a particular order. The values of K
for processes of interest here are

K(0;0, 0, 0) = 1 dc hyperpolarizability
K(- 3~; ~, ~, ~) = —,

' third harmonic generation
K(- ~;~, 0, 0) = 3 Kerr effect
K(- 2~; ~, ~} = —,

' second harmonic genera-
tion. (A. a)

The order of the field frequency labels
in X(~o; ~1, &2 ' ' ') is taken to be irrelevant: All
processes obtained by permuting ~„(d, are in-
cluded in X(- ~o; ~1I'd2" ).

The symmetry of an isotropic medium restricts
a fourth rank tensor to 21 nonzero elements, three
of which are independent. For third harmonic
generation there is only one independent element,
say X, wherezzzz'

=X = (X.. . .+X.. ..+X.. ..);zzzz iiii iijj ij ij ijj i

X =X(- q&o; &u, &u. . .),(q)

= (- 3&v; ur, &o, v),

X =X( 3~i » ~~ ~)y

x' =x(0; o, o, o),
K

X = X (- u&; v, 0, 0) .

(A. 13)

Coordinate subscripts zzzz are omitted and a sub-
script is sometimes used to identify the nonlinear
medium.

APPENDIX B. TIME-DEPENDENT
PERTURBATION CALCULATION

OF THE THIRD-HARMONIC
COEFFICIENT FOR HELIUM

(- 3&@; u&, u, &o) = (e~/ff ')QQQ
n mn'

We have made a calculation of the third-harmonic
coefficient for a helium atom using standard time-
dependent perturbation theory:

i, j=x,y, z; i &) (A. 9) x(glzln)(nIz Im)(m Iz I n')(n'Iz Ig)

X (-&u; &u, ~ )

=N[L((u ) x L((u ) x L(a) ) x ~ ]1 2

X X(-(d '(d, (d ~ ~ ~ ) (A. 10)

where N is the number density of microscopic sys-
tems and L(~) is the ratio of local to applied field
at frequency . For a11 gases discussed here at
pressures of less than 10 atm we set all L(&o) to
unity so that

X=Ny . (A. 11)

While the processes are not directly comparable
in this respect we do not expect deviations from a
linear dependence of X on pressure greater than
those observed for the Kerr effect which are in-
significant at the pressures used here.

In the literature of physical chemistry a coeffici-
ent y is used to describe third-order processes
where

X(- &u; ~1, (u 2, ~3) = -'y (- (u; (o 1, &o 2, (u3) ~

The factor&~ arises from expanding the energy of
the system as a Taylor series in the electric field.

In the body of this paper abbreviated notations
for coefficients are used where convenient

The microscopic nonlinear polarizability X is re-
lated to X by"

x{[(~ —3~)(~ —2&v)((u —(g)]
-'

n m n'

+ [(& + (d)((d + 2(o)((o, + 3(u)]n m n'

+ [(~ +(d)((d —2&d)(&d, —&u)]n m n'

+ [((d +(al)(&d +2(d)(4P, —rd)] -'j
n m n'

For comparison, the linear optical polarizability,
related to the refractive index is

(-I'd; ~) = (e'/&)Z (g'Iz In) (nIz Ig)zz n

x[((g —u)) '+((o +(g) '] (B.2)

In these expressions (gl z ln) is a matrix element
of z between the ground state g and an excited
state n at energy S~n. The sums are over all in-
termediate states including singly excited states,
doubly excited states and the continuum. Terms
where m =g also contribute.

y (- &o; &u} has been computed by Vinti" and it is
useful to compare that problem with the calcula-
tion of Xzzzz(- 3» ~ ~ ~).

(i) Itzz(- ~; u&): involves a single (infinite) sum;
requires only 1$-nP matrix elements; These
matrix elements enter as the modulus squared so
that no knowledge of the sign of the matrix element
is necessary and all contributions have the same
sign (for (u «alp).
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(ii) X (-sm; ~, ~, rg): involves a triple in-
finite sum; requires all nP —mS, nP —mD matrix
elements; the signs of matrix elements are im-
portant and significant cancellation occurs between
various terms in the sum.
Thus the nonlinear coefficient requires more data
and is more sensitive to its accuracy than is the
linear coefficient. Also, Vinti showed that for
helium the dominant contribution to Xzz(- ru; ~)
was from the continuum. The same is not neces-
sarily true for X zz(- su&; &u, &o, ur). In any case we
ignore both the continuum and doubly excited states
and calculate the contribution due to singly excited
states only. Matrix elements were derived from
the following sources in order of preference:

(a) Magnitude from measured absorption f num-
bers and sign from method b.

(b) Coulomb approximation calculations of Bates
and Damgaard 2O

(c) Extrapolation from the table of Bates and
Damgaard.

(d) Interpolation within the array of matrix ele-
ments.

All terms in the triple sum were included which
contained no P states higher than 11P nor any S
state higher than 9S nor any D state higher than7D.
On the basis of the rate of convergence it is esti-
mated that the total contribution involving higher
discrete states is small.

The result is that for helium with 2'/&o = 6943 A

(- 3&v; &o, &u, ~) = 12x 10-" esu/atom . (B.3}

No account has been taken of the continuum.

APPENDIX C. VARIATION OF X
AND X/&k FROM GAS TO GAS

Multiplying the expression for X (- 3&@» &u» &u~, u, )
calculated from perturbation theory [Eq. (B.1)] by
N, the number density of atoms, gives the corres-
ponding expression for X(-3w, ', w„w„w,}[see Eq.

(k..ll}]. The mismatch parameter M is related
to X(-&o;&u) given in Eq. (B.2) by

rhk = [12m+,N/c(n, +n, )] [X(- 3&v„'su&, ) —X(- ~„'&u, )]
(c.1)

where the refractive indices n, and n, may be set
equal to unity for a gas. If the sum in Eq. (B.2)
is replaced by a single effective term, the form of
the result is

X(- ~; &u) = constants & (matrix elements}

x [((g +(o) '+(up —(o) ']
n n

(c.2)

Equation (C. 2) gives a good fit to refractive-index
data for many gases when matrix elements" and

+n are treated as a pair of free parameters for
each gas. Similarly reducing the sums in X(- 3&v„.

&u„(u„(o,) and

[x(-3~, 3~,}—x(- ~„~,)1
to single effective terms and using the approxima-
tion v, '/ru„'«I leads to expressions of the form

X(- 3&v„&u„&u„&u,) = constants

x(matrix elements)x(~ -'+. . .)
n

(c.s)

and

[x(- 3~„3~,) —x(- ~„~,]
= constants x (matrix elements x (u&'/ru '+ ~ ~ ~ )

n
(c.4)

Thus whereas the third-harmonic coefficient X is
strongly dependent on con and matrix elements, the
ratio X/n k is independent of &u„and is less depend-
ent on matrix elements. It is therefore to be ex-
pected that the variation from gas to gas of X will
be more marked than that of X/n k. The experi-
mental results of Table II demonstrate this feature.
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A brief discussion of the fundamental formulas for electron-electron and electron-atom
bremsstrahlung is given. Some general results are given for complex atoms and explicit
expressions for the cross sections for one- and two-electron atoms are exhibited graphically.
It is shown that for le and 2e atoms which have a residual charge, that is, for ions, the total
cross section is composed of several terms, one of which is (Z-1) or (Z-2) (respectively)
times the cross section for electrons incident on unshielded protons. Some results for gen-
eral atoms or molecules in the high- and low-energy limits are indicated.

I. INTRODUCTION

Bremsstrahlung in encounters of high-energy
charged particles is an old problem, first treated
in detail by Bethe and Heitler' and by Bethe. ' It
is closely associated with the process of pair pro-
duction which has essentially the same set of
Feynman diagrams and corresponding matrix
elements. While the problem of bremsstrahlung
(and pair production) in a pure unshielded static
Coulomb field is regarded to have been solved
satisfactorily in the original work of Bethe and
Heitler, some confusion has continued to exist
regarding electron-electron bremsstrahlung.
Basically, the question is whether, in the latter,
recoil and exchange effects come in; we shall re-
turn to this point shortly. These questions are
relevant not only to the problem of bremsstralung

in the scattering of two free electrons, but also
to the case where one electron is (initially, at
least) bound in an atom. For low-Z atoms es-
pecially, it is important to treat accurately the
effects of the interaction of the incoming high-
energy electron with the atomic electrons. The
total bremsstrahlung cross section for an electron
incident on an atom or ion is essentially propor-
tional to Z' + Zel where Z is the nuclear charge
and Zel is the number of atomic electrons. More-
over, as Wheeler and Lamb' have emphasized, it
is necessary to sum over final states (including
the continuum) of the atomic system which scat-
ters the incoming electron. Actually the depen-
dence (~ Z' + Zei) of the total cross section on
nuclear charge and number of atomic electrons
appears only after this summation over final
states is performed.




