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Threshold Behavior of the X-Ray Spectra of Light Metals
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A simple model to describe the x-ray process in light metals is used to study the transition rate near
the threshold. For the absorption case, the problem consists of calculating the response of a band of free
electrons to the sudden creation of a core hole potential and to the injection of the core electron into the
band. Recently, Nozieres et cl. showed that the transition rate becomes singular at the threshold. We offer
an explanation for how this comes about, and we give a rederivation of Nozieres result by a different
approach, related to Zubarev's method of Green's functions. We set up and solve, for large times, integral
equations for quantities directly connected to the response function. The model is studied explicitly in the
case of absorption for spinless particles and s-wave scattering. The results can be extended to include
emission processes, electrons with spin, and higher angular momenta.

I. INTRODUCTION

ECENTLY, the interest in the problems of x-ray
absorption and emission of metals has been newly

aroused by a prediction of Mahan, ' that singularities
should occur near the Fermi-level threshold, which are
not density-of-states effects. Mahan, and later several
other authors, ' ' found a divergence in the perturbation
expansion of the transition rate due to the sharpness
of the Fermi distribution, similar to the divergence
found by Kondo in connection with the problem of a
localized magnetic impurity in a metal. In an over-
simpli6ed model, the metal is represented by a simple
band of free electrons and one deep-lying core state,
from which an electron is elevated into the band in
the x-ray absorption process, while in the emission
process a conduction electron drops into the deep
core hole. The situation is described by the following
Hamiltonian'4:

H =+ eeae ae+Epb b+Q Vgj as ae'bbt.
k kk'

The first term refers to the free-electron system de-
scribed by aI,t, aJ,-, the second term to the deep-level
state described by bt, b, and the interaction term tells
that once the hole state is present the conduction elec-
trons have to react and to rearrange in its Coulomb
potential. Apparently the following approximations
have been adopted: The Coulomb interaction between
the conduction electrons has been ignored, since one
can argue that the quasiparticle character of the Fermi-
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liquid excitations is described well enough by the above
Hamiltonian, and imagine that the renormalization due
to the interaction has been done already. Further, the
deep hole is strictly localized, i.e., the level is sharp.
More stringent is the assumption that the deep hole
cannot change its state and cannot have a finite life-
time by Auger-type transitions. This means that the
lifetime of the hole is long compared to the time needed
by the band electrons to adjust to the hole potential.

In view of these approximations, it is not surprising
that a singular behavior near the threshold found on the
basis of the above Hamiltonian shows up as a mere spike
in the experimental data. For an investigation of the
connection of theory and experiment, we refer to the
work of Ausman and Glick' on Li, Na, and Al.

Besides the perturbative approaches referred to
above, Nozieres et a/. were the hrst to obtain the exact
result for the transition rate. After they hrst tried a
many-body approach using a parquet diagram expan-
sion, which gave the answer in Born approximation,
they showed, in the third part of their paper, that the
calculation can be formulated in terms of a one-body
problem. They developed a rather unusual approach
still oriented by many-body diagram ideas, which,
despite some delicate and not easily understandable
arguments, led to the correct answer.

The purposes of this paper are the physical explana-
tion of the effect, and the presentation of a di6erent
nonperturbative approach related in some ways to
Zubarev's' method of Green's functions for TN0.

II. PROBLEM FORMULATION

As usual, we consider the interaction of the electrons
in the metal with the photon held to be a weak perturba-
tion and calculate the transition rate for absorption
according to Fermi's "golden rule":

e G. A. Ausman and A. Glick (to be published).
e D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl. :

Soviet Phys. —Usp. 3, 320 (1961)j.
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where we took the dipole operator to be

iI;„,=P wkaktbe '"'+c c.
k

As we focus our attention to the behavior near the
threshold, we will take zuk constant for simplicity.
Though seemingly a many-body prob]em, the calcula-
tion of the transition rate can be formulated as a one-
body problem, albeit a, peculiar one. The interaction
term is present-either if the hole is present, and acts as
an external potential on the band electrons, or if the
deep level is filled and the interaction term is not there.
The change of state can only be brought about by the
emission or absorption of a photon. The difference to a
static impurity problem is that the potential is not
switched on adiabatically but, rather, suddenly.

I.et us define an "initial Hamiltonian" for the case
when the core hole is occupied, i.e., b~b =1:

K'=2 ekak ak,
k

(we have omitted the constant Es). The initial state for
the conduction electrons is

kI

I
o)=8 "I0)

where
~
0) is the vacuum state. After the x-ray process

has taken place, one has to consider a "final Hamil-
tonian, " i.e., bb~=1:

illuminating as to the physical idea behind the effect.
The following discussion should help us to gain a little
more insight into the problem. It was, so to speak,
buried when the final states were thrown out, by
introducing the correlation function. There is, however,
an essential difficulty connected with the final states.
Anderson~ has pointed out that the overlap of the
E-particle ground states of the two systems, the one
described by H; and the other by H&, tends to zero as
the volume (or the number of particles X) goes to
infinity. '

lim (O~g ak, P ck,t~0) 1V '""~~&'.
N &o0 kI k2

The ck~ refers to the eigenstates of H~, and 8 is the
phase shift at the Fermi energy. The orthogonality of
the ground states of H; and Hy implies that the final
states appearing in the transition-rate formula cannot
be constructed by applying a finite number of electron-
hole pair operators ck~ and ck on the ground state of
H&. So the final states are practically inacessible to
calculation.

Taking time into consideration, we find that by using
the relationship

lim e'~ 'e '~i'akt
~
0) =ckt

~
0),

the expression

V
+f Z ekak ak+ 2 ak ak'

k Q kkI

kf kf

(0III a.,e'""e '""ll a 'Io)
kI

(10a)

For simplicity, we have replaced Vkk. by a constant V.
A separable potential can still be managed, but it is no
more realistic and makes the calculations clumsy.

The transition rate is conveniently calculated via the
response function

1
S(t)=—Q (i~bt(t)ak(t)ak. tb~i),

g kk'
(6)

thereby circumventing the problem of fixing the final
states. If we use ~i) =bt~ is) and introduce H, and Hi,
we can get rid of the b, b~ and have

S(t) =e+'@o'—p (i
~

e'rr~ a e '~i~a t[ i )+ kk'
(6')

The transition rate is connected with this quantity by

is Anderson's overlap function for t= ~; therefore, it is
equal to zero for infinite volume. Of course, for 1=0 it
is equal to one. What we would like to know is the inter-
mediate time behavior of (10) or at least its asymptotic
expression for large t.

A simple calculation helps us to guess how the
relevant response functions should behave as t —+~.
Consider the hierarchv of correlation functions

S (t) =(i ~e+'~"e '~i'~i )

Sr(t) = (i !e+'&~~+(1)e 'Irf'Qt(1)

(10b)

(10c)

Ss(t) = (is
~

e+'H'%(1)%(2) e ''Hi'4t(2)%t(1)
~
'is), '(10d)

etc. The 4't(j) represent s-wave packets of spinless
electrons. If we put V=O, we can easily calculate these
correlation functions.

For this purpose we change over to an energy
representation

8',b, (~) = 27rw' Im — e'&"+~'&'S(t)dt
~
. (7) n

II+'(~)= 2" Zf(et "e-)a,t "a.'.
Q(e!)

8 is defined similarly to Swithout the phase factor e+' &'.

The calculation of S(t) is a highly technical procedure
which will be performed in Sec. III, and is not very

r P. W. Anderson, Phys. Rev. Letters 18, 1049 (1967); Phys.
Rev. 164, 352 (1967).



TH RESHOL D X —RAY SPECTRA OF L I GHT M ETALS 5ii

For s-wave scattering it is possible to take the energy
as the only variable in the (antisymmetric) wave func-
tion f. In the general case, a decomposition with respect
to spin and angular momentum is necessary, but then
again each component can be considered a function of
energy alone. The momentum can be expressed in terms
of the energy, since there will be a dependence on its
magnitude only. Therefore, in the case of s waves, we
have to calculate

S„(/) = 61 ~ ~ ~

~
f(e . . . ~ ) ~

2e i(at+— +en)t

(12)

To find the asymptotic time behavior of S„(t) we need
to know f(ei e„) for small arguments. The f(rst non-
vanishing term of the Taylor expansion near e& ——~2 ——

=~ =0 is proportional to the Vandermonde determi-
nant, or, equivalently,

n

C] ' ' '
6r/, ~ 6z —6g

i)j'

This product consists of —2,rt(tt —1) factors which, when
inserted into (12), shows that

S„(/)-/ —"'.

The S„describes the overlap between a wave function
with n localized electrons being inserted into the con-
duction band and the development of this same wave
function with time. Physically, they describe the spread
of the e electron wave packets with time, or in a hydro-
dynamic picture the spread of a portion of fermion
Quid equivalent to e electrons. Indeed, such a picture,
in which the electron system behaves approximately as
a Quid with density waves of boson character as its
low-lying excitations, is very convenient and helpful
to find out what happens if V/0. In a previous paper, '
we used the Tomonaga model, which is characterized
by these features and showed that for small U (i.e. , in
Born approximation) one correctly derives the essential
features of the asymptotic time behavior of S&(t). This
experience guides us in including V into the discussion
of S„(t)and makes it natural to reinterpret the electron
number e. The spread of the electrons injected into the
band has to be taken into account as before, but now
there is an additional amount of fermion liquid to be
moved a,bout to shield the potential, namely, 8/tr for
s-wave scattering, so that this amount has to be sub-
tracted from 22. A special case is So(t), where only the
potential acts to gather t)/2r electrons in the vicinity of
the potential source, so that simply 22 ~ rtp=b/tr. This
provides the asymptotic time behavior of the overlap
considered by Anderson; it behaves as t &'~ )'.

For our x-ray problem S&(t) is the response function
we need to calculate the transition rate. When an x ray
is absorbed, one electron is elevated into the band, and

K. D: Schotte and U. Schotte, Phys. Rev. 182, 479 (1969).

at the same time V is switched on. Therefore, we
expect that

(])~ (—(i—8 / tt) 2

or, using (7),
~ (~++ )28/m —(2/m )2

(15)

III. CALCULATION OF RESPONSE
FUNCTION

A. General Formulation

We wish to give an exact derivation of the threshold
behavior. Let us go back to the response function (7).
It is convenient to replace

~
io) (i()

~
by its finite-tempera-

ture expression

Zp Zp + ~

Tr(e PK')

1 Tr(e pK&e+tHtape tHf a, ~t)

S(&) =—2
Tr (e

—PH;)

We introduce the notation

Tr (e PH;e+iHi te iKf tg )— —
= (A)

Tr (e PHie+iH~ te i Kf t)— — (17)

a/(r) =e+' f'a/e ' f'=P G// (r)a/;,

where G&2 (r) is a unitary transformation

G/t/t~( —r) =G/t~2*(r) .
For mathematical reasons, which will soon be apparent,
we make use of the quantities

Q,nd

Tr (e pHte+iKtte iHft)— —

C(/) =ln (20)
Tr (e

—PK')

(a/, (r)a/, t+a/ ta/ (r)) =G/, /, (r) . (21)

This Green's function no longer depends upon P and I,.
Of course this is not true for the quantities of interest
(a2. a2(r)) or (a/, (r)a/, ). To calculate them, we shift

It is easy to extend the arguments to the emission
case. If we start out with a quiescent Fermi sea and a,
screened hole, and by emitting an x-ray photon an
electron drops into the core hole, a band hole spreads,
and the band has also to take up with the 8/2r electrons
"freed" in this process. The number of particles appear-
ing in the exponent of t is then ()/2r —1, which implies,
of course, the same asymptotic time behavior of S&(t)
for emission and absorption.

The plausible derivation of (15) will be backed up by
an exact calculation for the absorption case in Sec. III.
For a generalization to include spin and higher-order
phase shifts, we refer the reader to Sec. VI.
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operators under the trace, and, using (18), we have

( () ')=2 '"'"+"G ~ - (t)( ' ()) (22)

The Laplace transform of the Green's function
Gkk (t), namely,

(a"a ( ))=2 (a ( )a")e+""""+'"G' (t) (23)
Gkk (~)= Gkk (t)e*"'dt, (35)

Combining this with the above Green's function, we
finally get the following integral equations:

&ak'ak(r))+2 e ""'"+'"

is well known. It has-the form

1 4I
-Gkk (~) = +

CO
—

CIA, 07 —6y CO
—CPI

Inverting the transformation,

4k (~). (36)

("( )a ')+2 ("( )"-')e+'"-"+'" 00

Gkke (t) =— Gkke (M+Zrl)e dre),
2~

(37)

XGk"k. (t) =Gkk (r) . (25)

What we have given so far is an adaptation of
Zubarev's method for temperature-dependent Green's
functions applicable to the x-ray problem. Here t and
P are the inverse "temperatures. "

In principle, we can now calculate S(t). To shorten
the notation, we introduce

where the +irt indicates that we take that part oi
Gkk. (a)) which is analytic in the upper half-plane, we
have for large t

lim Gkk (t) =hkk e "k'-
4k'(ek+irt)e " 4k'(eke+irl)e

(38)

—2 ( ( =t) ')=L(t),
Q aAI

(26) For V=const, tkk is independent of k and O'. Extended
throughout the complex plane, it is given by

1—P (aktak (r=0)) =X(t).
g Ik&

So we can write

(27) where
( )—= t( ) = V/Ll —VF ( )],

"p(*)
P(z) = dx

(39)

(40)

S(t) =L(t)e '"

or, taking into account that

dC(t)/dt= i VÃ(t), C(0) =—0,
t

S(e)=lee) exp( —eU IV(l)dt)

is the Hilbert transform of the density of states p(x).
The asymptotic expression for Gkk (t) with (39) for

t (z) will be used as kernel of the integral equations (33)
(29) and (34). The terms neglected behave as e D' for large

times, where D is of the order of the conduction band-
width. Going over from sums to integrals, the integral

(30) equations we have to deal with are

p(x)L1 —f(x)]e '*'=p(x)t(x)+ p(x)t 1—f(x)]
B. Derivation of Asymytotically Valid

Integral Equations "t (x) t (x')e "—
p (x') t (x')dx', (41)

(31)

In order t.o achieve an asymptotic expansion of S(t), 00 g —x'
we have to study the integral equations (24) and (25).

( )f( ) ( )I( )y (x)L1 f(x)]Introducing the auxiliary quantities " t (x) t (x') e '—&* *')—'——

Q (aktak (r =0))=n(k), X p(x')I (x')dx', (42)

we find

e(k)+e-'"«+'» g G *(t)e(k') =1,

e ~'ke+"k't(k)+p Gkk '(t)t(k') = 1.

(32) where f(x) = (1+e~*) ' and t (x)—= t(x —irt).

C. Asymptotic Solutions for L(t) and N(t)
(33) The two integral equations just derived diff'er only

by the inhomogeneous term; therefore, we shall demon-
(34) strate how to handle one of them (42) and give the

result for the other (41).
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t+t+ 1 —2sipf
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(51)
e We are onlch the procedure. eI.et us first sketc

interested in

p(x)N (x)dx' =E(t), ave

L + ip(1 f)—
X(z) =exp~what we

'
form (42) into an integral equa-

d t an iteration proce ure w'nes and star atwo singular o d
llowing ansatz:

V t 11 " ln(1 —2sipft+)
ds

)
X(s) = exp'

t(s) 2~ithe fo

x e—'*'+Ng(x)e S(x) =eo(x)+ng x —' '

)+no(x e—'

ollect oscillatory and nor-
m order to achieve this in

duced in the denomi ator
o ls. The contributio

ntities g av

er to obtain
of the kernels.

h' is put toget er out when everyt ing i

o d t t ithThe iteration proce ure s

From

1q co+ So—

-- ~=
~ X-27ri(X+t+ X t ) X

(49')

A(s) == L1 —t(s)X(s)/1']/2 it(s).

44), there will be a de-to the ansatzCorresponding o
~ ~

fcomposition o

2si t =t /t+ Lsee (39)j,h been made ot 1+2ni ptwhere use has een
(43)

fp =plo+ (1 f)pt— pÃpds X t =Xo(t)+1Vg(t)+Do(t)+ (55)

~ ~, one hasFol p= 1~ 2~

Qo S S Zg
ich is to e caich

'
b calculated from 53)the 6rst term of which

'

and (54):

e '"(1 f)p-—t pe e+' 'ds

S S ZQ

iv( n s (xt(—1 —
f)p

pn„t ds'

„x—x'+ig
(46)

p S —
p S dS

'Sx)
7r

(56)

(1 f)pt--"pn„e "'ds'

x x'+in—

=pl„+ (1 f)pt—pm„ds

Qo S S Zg

(47)

~ip —"' been used. Clearly, Ep is t e
X t) so that E,p

he th ho ld i hift d bthat is, with (30), the t res o

' b(x)
ds.

ent of the1 assumed tha ent the argument
s a earing un er t e in

p

d d o d .o1 dbyastan ar pcan be so ve

(49)
With

equation which

(48)pro ——go+(x) —Po
—(x), 4

+ n o 1 tic, in the upper and+ s and Po (s) are analytic, m e

+—Po [1+2'.ip(1 —f)tfp =4'o —
o

in rinciple asand (47) are solved in pE ua, tions (46) anu
we introduce se(45). As before, w

'
d se

functions

p&y~ = tI"y gy

p+v =4'v 4'v

(57)

(58)

X„(s)=
2all QQ

Pnye ' ds
(59)

d addition, twowe nee, in1'f the notation,To simp i y
other functions:

X+/X =1+2~ip(—1—)t- (50) ]—e+ix tdsp'Sy

Nool d-vili Singular Integrc qNl E Nations (P. N. T. Mus ehshmh,
ho6 Ltd. , Groningen, The Net er a

(60)
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%e And that

~.(s) =-
2mi X(s)

$„ i dh
(X+—X )

X(s) " 1 1 X„+dx
|t.(s) =—

2m.i X+ X x—s

(61)

and using (55), we see that

1V(t) =No+%(r =t) . (73)

Thus, inserting (69) into (68) and summing over i, one
obtains an integral equation for X(r), the solution of
which we need at the point r =t:

Ke have to calculate

where

x(r) =I)/i(r)+ K(r, r')ot(r')dr', (74)

iV.(t) = (pn„e *'"+
pn „)

—ch
K(r, r') =+ Li(7+ri t)Mi—{ri+r' t)dr, —. {75)

E(~'—&. )+(4.+—4 )7ch (63)

Inserting (62), one obtains, after some simple manipula-
tions, cVi(r) =iK(r, t)/V. {76)

The inhomogeneous term on the right-hand side of
(74) is equal to P(r, pi+), which can be calculated with
the use of (68) and (54), and we find

Ã„(t) = (X„+—X„)Ch.
X

1V„(t)= p„+dS.„vX-

In view of (59) and (57), this reads

oo e—ivy

(64)

(65)

&()=&(;r. ( '),
y=l

(77)

Now without much additional work one can transform
the integral equation (41) for t(x) into a corresponding
one for

To proceed further, we introduce the functionals

'bÃ Te

Z(r=t) = p(h) p (t (x)e "'+t (h))dh=—L(t) (78)
v=o

'Py dg
t X is needed to calculate the response function (28). The

integral equations for /(h) and n(h) differ only by their
inhomogeneous terms, which appear explicitly only in
the first step of the iteration procedure. The solution of
thesefirst integral equations fixes f(r;pi). In the case of

(x) =ti(h)e —"'+ti(x)+t~(h)e **'+ . (79)

(67)X+t e+"'p„dh, —b(', 4. )=

(pi(s) =1/2vriL1 —1/X(s) $, (80)

and study how they are related. To this end we express
y„+, in terms of P„ i, using Eqs. (58), (60), and (61),
and P„, in terms of q „+, using Eqs. (57), (59), and (62).
Inserting these expressions in the right-hand sides of
(66) a,nd (67), we find where

&(r; V.+(4.-i ))

Li(r+ri —t)b(ri, /~i )dri, (68)

pl+ —yl =P«l.
Inserting (80) into (66) and using {70),one finds

f(r, pi+) =I.i(r)

(81)

(82)

g(r;0. (~.'))=i
where

cC(T) =Li(T)+ K(T)T )oC(T )dT
t

(83)%AT

L,(r) = — ch,
27fi t X+X-

To obtain the behavior of Li(t) and 3Ii{t) for large t,
one expands X(s) defined by (51) for small arguments.

(71) For T=O, the asymptotic expressions for Ii and Mi
become very simple:

1
CVi(r) =

27ri
t X+X e+" dx

Defining
(t) g/ti 2))/w-

cv (t) =h/ti+"t.
(84)

(85)
ot( ) =v, r y.+),

y=l
(72)

for the inhomogeneous terms of the integral equation

( + t)p( +)d (69) for Z. {r), so that
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where

with

g= —(A/vriV)e'P sinb I'(1—28/vr),

Iv = —(V/vriA) e—"sin8 I'(1+25/vr),

(86)

(87)

Then, using (86) and (88), we finally have

) (0)I.(t) =Z(r=t) =
p—25/~

(98)

d~(x) )
A =exp —— sgn(x)(ln~ x~) dx

~

7l Qo Cx

—g—26/ m.

) (88)

where d is of the order of the bandwidth. 8=5(0) is the
phase shift at the Fermi edge. In deducing these equa-
tions, it has been assumed that the density-of-states
function is smooth and well behaved near the Fermi
energy. With (84), (85), and (75), one calculates

i dC AE i 8)'1
=x(t) =-

Vdt V V~) t
(99)

Since one knows E(t) only asymptotically, C(t) can be
calculated up to an unknown real constant d',

We can now proceed to calculate the response function
S(t); making use of Eqs. (29), (56), (73), and (94),
we have

C(t) =ihEt (5/vr)' —in(itd') . (100)

With the substitutions

(89) The i in the argument of the logarithm has been in-
troduced because C(t) =C*( t) must —hold.

7 =te. (9o) IV. THRESHOLD BEHAVIOR OF
TRANSITION RATE

p(x) =+iUK(te')tet"' ' ~',
(74) goes over into

tanb sinh (8/vr) x
p(x) =

2w sinh-,'x
Wit (7) and

$(t) e' ag(tit) & (101)

(91) The behavior of the response function for large times
is finally given by

tan8 "sinh (5/vr) (x—x')
p (x')dx', (92)

2vr p sinhs (x—x')

ee ia+Ep+aE) t (it)
—1+apt

=F(n) sinvrn (ov+Ep+/s. E)

p(0) = (8/vr)', (93)

which is of the Wiener-Hopf type and can be solved
exactly. "One finds that

=0

for to+Ep+tIE) 0

for ov+Ep+DE&0, (102)

the demonstration of which will be given in the Appen- we find the important result
dix so that

ip(0)
V(t) =m(r=t) =— (94) ( +z.+~z)'" (103)

In the same way, one transforms (83) into a, Wiener-
Hopf integral equation

) (x) ge
—o/2 —s/~)x

tanfI sinh(6/vr) (x—x')—X (x')dx', (95)
2vr p sinh-,' (x—x')

with

where D is a "bandwidth energy. ""
We note that the mathematical procedure might seem

too technical and heavy, as, in view of the possibility
of the "plausible" explanation in Sec. II, it seems un-
natural to break up the response function into two parts
calculated separately'.

5(t) =1.(t) eo &'&

) (x) tv—ps/7feit/9 —$/~lgg (te/) (96)
t
—(1—$/x)2 t—1+2$/m'. t

—($/m)2

We require that
p'(1 —6/vr)

) (0) =g
I' (1—28/vr)

(97)

vP P. M. Morse, H. Feshhach, I/methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953).

"The proportionality factor as we found it (up to the dipole
matrix element) is d's/ d' &" &'I'(1—b/vr)I'P(2b/vr) —(8/vr)']
XsinvrL (25/vr) —(5/vr)s j (sinB/ —vr V) is of no great nse for a quanti-
tative calculation, as d' is unknown. It makes sense insofar as the
first two terms provide the correct dimensionality for W b„and
the others make sure that S' b,)0, and that the whole expression
tends toward the density of states p as 8 ~ 0 (and h ~ —vr Vp).
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as we have one. isd This procedure also has the dis-
bl e uence that our method wor s onyagreeable consequence

0& ~5~(—'m and has to be modh6ed o inc
vr. While this is feasible and also desirabirable

rom a ma emthematical point of view, fortuna y
'

natel it is not
for h sical reasons. As one can see easi yil

blem readsfrom Friedel's sum rule, which for our pro~ em

v (x) =vi(x) x)0
= vg, (x) x(0,

and introduce the Fourier transforms

(A1)

APPENDIX: SOLUTION OF WIENER-HOPF
EQUATIONS (92) AND (95)

To solve (92) we make the ansatz'0

1=+ 2(2I+1)—, (104)

"(y)= e'*"vi(x)dx,

u of the response function and ti1e separa eup 0
t " e~(') might be of advantageof the "hole propagator e

'
toif lifetime e ects or6' f the hole have to be taken in o

account.
can corn lete theW'th t further calculations, we can compi ou

lude spin and higher-order phase
'

yshifts b
going back to the arguments of Sec. &I. I wa
plained there that the general proportionality

S„(t)-t-"
should hold, where vv is the amount of particles not
necessarily an integer num er,
N the real process is not on.y s wa g,I s wave scattering, uow er

art in shielding thethe other partial waves also take part in s i
Friedel's sum rule. Let ushole potential according to Fri

assume t a an e eh t I ctron of angular momentum/, m, an
ion rocess. Ass in s has been created in the absorption process. s

f between different channels,there is no inter erence e
ofwithin the {Ivvvs} channel, where the effects obto y n

shiel ing an eh' Id d lectron injection inter ere, e p
n2 has to be sunstitu e yb 't t d by the sum over all channels u:

(A2)

~ (y) = e'*&vv(x)dx,

tan6 sinh(6/vr)x
P] S P2 X

2x sinh-', x

tanb " sinh(8/vr) (x—x')

2vr „sinh —,'(x —x')
Using

" e**& sinh(b/vr)x
(A4)dX = 27l )

cosh2vry+cos28

sin28

sinh~@

b written in the Fourier transformed
form as an inhomogeneous Hilbert problem

"(y)l"(y)/I' ( )+ (y)=I"(y)/I' (y) —1, (A~

which are analytic functions in ppin the u er or lower half-
plane of the complex variable y. Then Eq. (92) reads

vv'~ Q vv„,2 with the auxiliary functions10
V

1 5 (1
I vm s is 7'(y) =I' -+ iy I'~ ——iy

—I'——(-——iy),which for an electron characterized by {I,vm, s} is Y y
given by

22E.:=I1—+

bv
=1—2—+ Q 2(2l'+1)

a,ll t' vr

(106)

This has the important consequence thae that the ex onent
the transition rate can either pe ositive or negative

'f II 8 are positive. This could explainain that foreven i a ~ are
hl to zeroexampe, t e sI he X spectrum of Li goes smoothly
mof Xawhile there is a spike in the I.& 3 spectrum o

probably due to the divergence. 4 '

Imy) 0

1 8 (1 8
=I' ' -+ +iy I'—'~ +iy——I"—(-,'+iy),

2 ~ k2

Imy&0

which solve the homogeneous Hilbert problem

tanb sin26

cos2vry+cos2ii

(A6)

(A7)

We solve for v +(y) taking into account the asymptotic
behavior of I"(y):
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and get

lirn I'+ (y) =1+i(5/vr)'1/y,

~+(y) =1—I/I'+(y),
~ (y) = —1+1/I' (y) .

(A8)

(A9)
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Inverting the Fourier transform, we have finally

1
v(x=0+) =— v+(y)dy= (h/vr)s. (A10)

) r(x)+4(x) =ge o's—'~"&*8(x)

Integral equation (95) can be solved in exactly the same
way, by introducing X& and P 2 for x&0 or x(0, as before.
We have then, instead of (94),

r) I'-(—i(-', —6/z. ) )
)+(y) =

(s —~/ —sy) I'(y)
(A13)

For X(0+) one finds

where 8 is the step function. Its Fourier-transformed
version is

CF (y)
)+(y)I"(y)+) (y) I' (y) =, , («2)

8/7—r iy—
giving for )+(y),

" tanb sinh(5/7r) (x—x')
),(x')d~', (A11)

27r sinhs (x—x')

00

) (0+) =- ~+(y)dy=P'
I

r:I
I I (A14)

E2 ~/)
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Propagation of Light Pulses in a Laser Amplifier*
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The problem of a light pulse propagating in a nonlinear laser medium is investigated. The electromagnetic
field is treated classically and the active medium consists of thermally moving atoms which have two elec-
tronic states with independent decay constants p, and p& in addition to the decay constant p,& describing the
phase memory. The self-consistency requirement that the field sustained by the polarized medium be equal to
the field inducing the polarization leads to coupled equations of motion for the density matrix, and equations
of propagation for the electromagnetic field. Although the theory is developed for a Doppler-broadened
gaseous medium, it may also be applied to a solid medium with inhomogeneous broadening. A unified treat-
ment is given encompassing a wide range of pulse durations from cw signals to psec pulses. Continuous pump-
ing is allowed, as well as any amount of detuning of the carrier frequency of the pulse from the atomic reso-
nance frequency. The three independent decay constants p, p&, and y, & provide greater flexibility than that
obtained by using 1/Tr and 1/T2. The equations are solved analytically in a few specialized cases and nu-
merically in the general case. Flow charts for accomplishing the numerical integration are given. Among the
special problems considered is the apparent paradox of pulses propagating faster than the velocity of light
under circumstances described by Basov et al. It is shown that this contradiction with relativity arises from
the use of an unphysical initial condition.

I. INTRODUCTION

~

~ ~

~

~

~

~

~ ~E present a theoretical investigation of the be-
havior of light pulses traveling in an amplifying

laser medium. A semiclassical description of the inter-
action between matter and radiation will be used, treat-
ing the medium quantum mechanically and the radia-
tion field according to Maxwell's theory. The basic ideas
are derived from Lamb's theory of optical masers. '
However, some of his original assumptions and restric-
tions are relaxed in order to properly apply the theory
to the problem at hand. Since there are differences
between the problems of a self-sustained oscillator and of

an amplifier, it is desirable to develop the theory from
first principles.

The medium shall be considered to be a collection of
two-level "atoms" (Fig. 1) coupled only through their
interaction with the over-all radiation field. If a popula-
tion inversion between the levels a and b is established,
such a medium is capable of amplifying light in a fre-
quency band around the separation of the levels.

In order to carry out necessary statistical summa-
tions, it is convenient to represent the state of a two-
level atom by means of a 2&(2 density matrix p. This
is related to the wave function description in the follow-

*Research sponsored by Yale University, the Air Force OfBce
of Scientific Research under AFOSR Grant No. 1324-67, and the
NASA under Grant No. NASA-NGR 07-004-035.

f This paper is based on material submitted by A. Icsevgi in
partial fulfillment of the requirements for the degree of Doctor
of)Philosophy at Yale University.

' W. E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).

FIG. 1. Energy diagram
of the two-level atom. The
levels have a resonance
transition frequency au) 0.


