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A simple model to describe the x-ray process in light metals is used to study the transition rate near
the threshold. For the absorption case, the problem consists of calculating the response of a band of free
electrons to the sudden creation of a core hole potential and to the injection of the core electron into the
band. Recently, Nozieres et al. showed that the transition rate becomes singular at the threshold. We offer
an explanation for how this comes about, and we give a rederivation of Nozieres’ result by a different
approach, related to Zubarev’s method of Green’s functions. We set up and solve, for large times, integral
equations for quantities directly connected to the response function. The model is studied explicitly in the
case of absorption for spinless particles and s-wave scattering. The results can be extended to include
emission processes, electrons with spin, and higher angular momenta.

I. INTRODUCTION

ECENTLY, the interest in the problems of x-ray
absorption and emission of metals has been newly
aroused by a prediction of Mahan,! that singularities
should occur near the Fermi-level threshold, which are
not density-of-states effects. Mahan, and later several
other authors,?? found a divergence in the perturbation
expansion of the transition rate due to the sharpness
of the Fermi distribution, similar to the divergence
found by Kondo in connection with the problem of a
localized magnetic impurity in a metal. In an over-
simplified model, the metal is represented by a simple
band of free electrons and one deep-lying core state,
from which an electron is elevated into the band in
the x-ray absorption process, while in the emission
process a conduction electron drops into the deep
core hole. The situation is described by the following
Hamiltonian34:

H=Z dekfak—!-EobTb—I'Z karak*ak'bb“. (1)
k kk’

The first term refers to the free-electron system de-
scribed by aif, ax, the second term to the deep-level
state described by &', 5, and the interaction term tells
that once the hole state is present the conduction elec-
trons have to react and to rearrange in its Coulomb
potential. Apparently the following approximations
have been adopted: The Coulomb interaction between
the conduction electrons has been ignored, since one
can argue that the quasiparticle character of the Fermi-
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liquid excitations is described well enough by the above
Hamiltonian, and imagine that the renormalization due
to the interaction has been done already. Further, the
deep hole is strictly localized, i.e., the level is sharp.
More stringent is the assumption that the deep hole
cannot change its state and cannot have a finite life-
time by Auger-type transitions. This means that the
lifetime of the hole is long compared to the time needed
by the band electrons to adjust to the hole potential.

In view of these approximations, it is not surprising
that a singular behavior near the threshold found on the
basis of the above Hamiltonian shows up as a mere spike
in the experimental data. For an investigation of the
connection of theory and experiment, we refer to the
work of Ausman and Glick® on Li, Na, and Al

Besides the perturbative approaches referred to
above, Nozires et al. were the first to obtain the exact
result for the transition rate. After they first tried a
many-body approach using a parquet diagram expan-
sion, which gave the answer in Born approximation,
they showed, in the third part of their paper, that the
calculation can be formulated in terms of a one-body
problem. They developed a rather unusual approach
still oriented by many-body diagram ideas, which,
despite some delicate and not easily understandable
arguments, led to the correct answer.

The purposes of this paper are the physical explana-
tion of the effect, and the presentation of a different
nonperturbative approach related in some ways to
Zubarev’s® method of Green’s functions for T50.

II. PROBLEM FORMULATION

As usual, we consider the interaction of the electrons
in the metal with the photon field to be a weak perturba-
tion and calculate the transition rate for absorption
according to Fermi’s “golden rule”:

W aps =2 Z/: l % wi(f|ai'd|4) |8 (Ei—w—Ey), (2)

5 G. A. Ausman and A. Glick (to be published).
8 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [ English transl. :
Soviet Phys.—Usp. 3, 320 (1961)].
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where we took the dipole operator to be

Hine=72_ wiai'bet4-c.c.

k

As we focus our attention to the behavior near the
threshold, we will take w; constant for simplicity.
Though seemingly a many-body problem, the calcula-
tion of the transition rate can be formulated as a one-
body problem, albeit a peculiar one. The interaction
term is present -either if the hole is present, and acts as
an external potential on the band electrons, or if the
deep level is filled and the interaction term is not there.
The change of state can only be brought about by the
emission or absorption of a photon. The difference to a
static impurity problem is that the potential is not
switched on adiabatically but, rather, suddenly.

Let us define an “initial Hamiltonian’ for the case
when the core hole is occupied, i.e., bT6=1:

Hi=z ek(ldek, (3)
k

(we have omitted the constant ). The initial state for
the conduction electrons is

lio>=ﬁ a1]0), @

where |0) is the vacuum state. After the x-ray process
has taken place, one has to consider a “final Hamil-
tonian,” i.e., bbT=1:

14
Hi=% aalo+—3 alaw. (3)
k

kk’

For simplicity, we have replaced Vi by a constant V.
A separable potential can still be managed, but it is no
more realistic and makes the calculations clumsy.

The transition rate is conveniently calculated via the
response function

1
S =E§ (@] 8" (D ax(Dar'd]3) (6)

thereby circumventing the problem of fixing the final
states. If we use |7)=b"|4,) and introduce H; and H;,
we can get rid of the b,b" and have

(6")

~ 1
S(t) =eriBot—73%" (iy] eiflitare=Hrtay T 4,).
N ww

The transition rate is connected with this quantity by

1: 0

W abs (w) = 27w0? Im(—— / et @tEOLS (t)dt) .
T Jo

S is defined similarly to S without the phase factor e+iZe,

The calculation of S(¢) is a highly technical procedure

which will be performed in Sec. III, and is not very
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illuminating as to the physical idea behind the effect.
The following discussion should help us to gain a little
more insight into the problem. It was, so to speak,
buried when the final states were thrown out, by
introducing the correlation function. There is, however,
an essential difficully connected with the final states.
Anderson” has pointed out that the overlap of the
N-particle ground states of the two systems, the one
described by H; and the other by Hy, tends to zero as
the volume (or the number of particles N) goes to
infinity:

kg ky
lim (0|11 ax, 2 cro'| 0)~ N-1/2G/m)2, (8)
N—w k1 3]

The ¢i refers to the eigenstates of Hy, and 6 is the
phase shift at the Fermi energy. The orthogonality of
the ground statés of H; and H; implies that the final
states appearing in the transition-rate formula cannot
be constructed by applying a finite number of electron-
hole pair operators ¢;' and ¢ on the ground state of
H;. So the final states are practically inacessible to
calculation.

Taking time into consideration, we find that by using
the relationship

lim e Hite=iHitq,t|0) =, 1| 0), )

t—00

the expression

ky kg
(OlTT areite ™ I ] ary'|0) (10a)
k1 ko

is Anderson’s overlap function for #= = ; therefore, it is
equal to zero for infinite volume. Of course, for /=0 it
is equal to one. What we would like to know is the inter-
mediate time behavior of (10) or at least its asymptotic
expression for large .

A simple calculation helps us to guess how the
relevant response functions should behave as { —.
Consider the hierarchyv of correlation functions

So(§) = (o X st |4y, (10b)
S1(t) = (o e+ W (1) H ¥ (1) [14o) (10c)
Sa(f) = (io] e ¥ (1)W (2)e 7y (21 (1) 40), (10d)

etc. The ¥'(4) represent s-wave packets of spinless
electrons. If we put V=0, we can easily calculate these
correlation functions.

For this purpose we change over to an energy
representation

a.,.

(11)

7P. W. Anderson, Phys. Rev. Letters 18, 1049 (1967); Phys.
Rev. 164, 352 (1967).

n\I,’r ) = PRED € -
D=y 2

en)aqf AP
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For s-wave scattering it is possible to take the energy
as the only variable in the (antisymmetric) wave func-
tion f. In the general case, a decomposition with respect
to spin and angular momentum is necessary, but then
again each component can be considered a function of
energy alone. The momentum can be expressed in terms
of the energy, since there will be a dependence on its
magnitude only. Therefore, in the case of s waves, we
have to calculate

Sn(t) =/ dey- - / denlf(el. . Gn)lze_i(‘l‘*‘""f“fn)t‘
0 0

(12)
To find the asymptotic time behavior of .S, (f) we need
to know f(e - - - €,) for small arguments. The first non-

vanishing term of the Taylor expansion near e;=ex=- - -
=e¢,=0 is proportional to the Vandermonde determi-
nant, or, equivalently,

fle-- 'Gn)“’ﬁ (ei—¢)).

>7

(13)

This product consists of $7(z—1) factors which, when
inserted into (12), shows that

Sn()~t". (14)

The .S, describes the overlap between a wave function
with # localized electrons being inserted into the con-
duction band and the development of this same wave
function with time. Physically, they describe the spread
of the » electron wave packets with time, or in a hydro-
dynamic picture the spread of a portion of fermion
fluid equivalent to 7 electrons. Indeed, such a picture,
in which the electron system behaves approximately as
a fluid with density waves of boson character as its
low-lying excitations, is very convenient and helpful
to find out what happens if V0. In a previous paper,®
we used the Tomonaga model, which is characterized
by these features and showed that for small V' (i.e., in
Born approximation) one correctly derives the essential
features of the asymptotic time behavior of .S1(). This
experience guides us in including V into the discussion
of S, (¢) and makes it natural to reinterpret the electron
number 7. The spread of the electrons injected into the
band has to be taken into account as before, but now
there is an additional amount of fermion liquid to be
moved about to shield the potential, namely, §/= for
s-wave scattering, so that this amount has to be sub-
tracted from 7. A special case is So(¢), where only the
potential acts to gather §/7 electrons in the vicinity of
the potential source, so that simply # — no=4/7. This
provides the asymptotic time behavior of the overlap
considered by Anderson; it behaves as ¢=¢/™?,

For our x-ray problem .S1(¢) is the response function
we need to calculate the transition rate. When an x ray
is absorbed, one electron is elevated into the band, and

8 K. D; Schotte and U. Schotte, Phys. Rev. 182, 479 (1969).
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at the same time V is switched on. Therefore, we
expect that

S1(f) ~t=G=d/m?
or, using (7), (15)
W aps~ (w0 E)2/ ™= @1m?,

It is easy to extend the arguments to the emission
case. If we start out with a quiescent Fermi sea and a
screened hole, and by emitting an x-ray photon an
electron drops into the core hole, a band hole spreads,
and the band has also to take up with the §/x electrons
“freed” in this process. The number of particles appear-
ing in the exponent of ¢ is then §/7—1, which imglies,
of course, the same asymptotic time behavior of .S;(f)
for emission and absorption.

The plausible derivation of (15) will be backed up by
an exact calculation for the absorption case in Sec. III.
For a generalization to include spin and higher-order
phase shifts, we refer the reader to Sec. VI.

III. CALCULATION OF RESPONSE
FUNCTION

A. General Formulation

We wish to give an exact derivation of the threshold
behavior. Let us go back to the response function (7).
It is convenient to replace |7,)(Zo| by its finite-tempera-
ture expression

e BH:
[0y (o] = ——.
Tr (e #H7)
Then
1 Tr(etHigtiHitg el tg,,T)

S()=—
@ N kzk’ Tr(e8H1)

(16)

We introduce the notation
Tr (e—ﬂHie+iHite——iII/tA)

Tr (e—,.’iHie+iH¢ te—z‘H/t)

=(4) an

and
(18)

. (T) =e+1'Hj'rake—iHj'r =Z Gk]c’ (T)ak’ ,
k’

where G (7) is a unitary transformation
Gkk'(_T)=Gk’k*(T) . (19)

For mathematical reasons, which will soon be apparent,
we make use of the quantities

Tr (e fHig+iHitg—itl sty
c(=1a( )
Tr(ePH:)
and
<(lk(T)dle+dk:Tdk (T)>=Gkkl (T) . (21)

This Green’s function no longer depends upon 8 and ¢.
Of course this is not true for the quantities of interest
(awtar(r)) or {(ar(r)aw'). To calculate them, we shift
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operators under the trace, and, using (18), we have
(ar(n)apt) =2 et DGy () (aw-tar(r)), (22)
P

(@tau(r) = (au(r)ae et S®G., (). (23)
kll

Combining this with the above Green’s function, we
finally get the following integral equations:

(@u 10 (7)) ten D
>

XGui* () aw ar(r))=GCiw (), (24)
(dk(T)dk'T>+Z <ak(T)ak,,T>e+ieku(t+iﬂ)
XGkuk: (l) =Gkk’ (T) . (25)

What we have given so far is an adaptation of
Zubarev’s method for temperature-dependent Green’s
functions applicable to the x-ray problem. Here ¢ and
B are the inverse ‘‘temperatures.”

In principle, we can now calculate S(f). To shorten
the notation, we introduce

1
— 2 (a(r=tav’)=L(0), (26)
N kw
1
g :;k, <a1cfak’ (r=0))=N(@). (27)
So we can write
SH=L()e®, (28)
or, taking into account that
dC()/dt=—iVN (), C(0)=0, (29)
SO =LQ) exp(—iV / N(t)dt) . (30)

B. Derivation of Asymptotically Valid
Integral Equations

In order to achieve an asymptotic expansion of S(f),
we have to study the integral equations (24) and (25).
Introducing the auxiliary quantities

% <dkfak' (T=0)>=1’L(k) y 31)
% (aw (r=0)ai")=1(k), (32)

we find
n(k)Fe a8 3 G *(On (k) =1, (33)
ePaetiat](k)+> G *(DIR) =1. (34)
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The Laplace transform of the Green’s function
Grr (1), namely,

cw@=fcwwww, (35)
0
is well known. It has-the form
1 Orrr
—'Gkk' (w) = } lkkf (w) . (36)
1 W—€r W—E€LW—E€)
Inverting the transformation,
1 ) )
Gkk’ (t) =2— / Gkk' (w—l-m)e—""‘dw y (37)
T J -

where the -4y indicates that we take that part of
Gri(w) which is analytic in the upper half-plane, we
have for large ¢

hm Gkk’ (t) = 6kk'e_iekt
t—o0

b (ep i) e skt —tip (e H-1n) e ekt
|
T

(38)

€ — €k’

For V =const, ;. is independent of & and %’. Extended
throughout the complex plane, it is given by

tw (2)=1t(2)=V/[1-VF(2)], (39)
where
F(z2)= @dx (40)
o X—2

is the Hilbert transform of the density of states p(x).

The asymptotic expression for G (f) with (39) for
£(z) will be used as kernel of the integral equations (33)
and (34). The terms neglected behave as ¢2¢ for large
times, where D is of the order of the conduction band-
width. Going over from sums to integrals, the integral
equations we have to deal with are

p(@)[1—f(x)Je = =p(x)l(x)+p(x)[1— f(x)]

0 f— — x/ —1(z—z’)¢t
X/ A ),e o(x)i(x")dx', (41)
e x—x
p(x) f(x) =p(@)n(x)+p(x)[1—f(x)]
© —(x) — ’ e——z‘(z—x’)t
x/t(>l%“ P!, (42)
o x—x

where f(x)=(14¢%)"1 and ¢ (x)=t(x—1p).

C. Asymptotic Solutions for L(f) and N(¢)

The two integral equations just derived differ only
by the inhomogeneous term; therefore, we shall demon-
strate how to handle one of them (42) and give the
result for the other (41).
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Let us first sketch the procedure. We are only
interested in

] T @i =NQ), 3)

so what we do is transform (42) into an integral equa-
tion for NV (¢), which for the asymptotic value of N (¢)
turns out to be exactly soluble. Equation (42) has a
nonsingular kernel, but we break up the kernel into
two singular ones and start an iteration procedure with
the following ansatz:

n(x) =no(x)+71(x)e**t+n1(x)
+7a(x)e =t ng(x)+- - - . (44)

The idea is to separately collect oscillatory and non-
oscillatory terms. In order to achieve this, infinitesimal
quantities n have to be introduced in the denominator
of the kernels. The contribution due to this change
cancel out when everything is put together to obtain
the original equation (42).

The iteration procedure starts with

* pnedx’
fo=pttot-(1— ot~ / : 45)
o X— & —17
For »=1, 2, ---, one has
) © (i1t iy
(1~ f ittt
. X—x'—in
' ] © pfttdx’
=g wtpff,—e @t (1—flp | ———, (46)
—w Xx—2x'F17
0 pﬁve—-iz'tdx’
—(QA=1et~ / —_—
o X—x'+1in
*® on,dx’
== [ T @)
o X—%'— 17

It has been tacitly assumed that the argument of the
functions appearing under the integral sign is «’. All the
other functions depend on «.

Equation (45) is a special type of singular integral
equation which can be solved by a standard procedure.®
One puts

pro=y¢" () —y¥o5 (%), (48)
where Yot (2) and ¥o(z) are analytic, in the upper and

lower complex plane, respectively.
Then (45) goes over into

Jo=¢¢" =Y [142mip(1— ) ]. (49)
With
X+/X—=142mip(1— )t (50)
9 N. T. Muskhelishvili, Singular Integral Equations (P. Noord-
hoff Ltd., Groningen, The Netherlands, 1953).
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or

FXH/X-=1—2mipftt, (51)

where use has been made of 14-2mipi—==/t+ [see (39)],
we have

1 © In[1427ip(1— )t~
X(z)=exp(;/ nit i(z D ]dx> (52)
o
' o v 1 ln(l—-27ripft+)d )
2 _l(z) exp(;; /_w —————————x_z x> (53)
From
171 1\ %t ¥ ,
Zr;<X+ﬁ X~z—>_; x-’ (49
we solve for
Yo(2)=[1—t(2)X (2)/V]/2rit(3). (54)

Corresponding to the ansatz (44), there will be a de-
composition of

N@)=No@+N1&)+No()+---, (55)

the first term of which is to be calculated from (53)
and (54):

No= | [¥ot(x)—¢i (x)]dx

1 70 6(x)
=—— / —dx for
14

o T

T=0, (56)

where 1—2riptt =€ has been used. Clearly, N, is the
only t-independent contribution in N (¢), so that N,
gives rise to an energy shift of the deep hole state;
that is, with (30), the threshold is shifted by

0 8(x)
AE= / —dx.
o T

Equations (46) and (47) are solved in principle as
(45). As before, we introduce sectional holomorphic
functions

(7
(58)

P = ot —o” 3
Py = ¢v+ -

To simplify the notation, we need, in addition, two
other functions:

1 * ofl, e tdx

X,(5) =— / == (59)
21t s X—23
1 pntetietdy

6(5)—— / == (60)
211 J — x—2
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We find that
1 1 0 E,,_]_—dx
o(2)=—— (X+t—X7) , (61)
21 X (2) J x—3
X(z) r~ /1 1 \X,tdx
¥(2)=——— / (——~> . (62)
2t J_o \ X+ X~/ x—z

We have to calculate

0

N()= | (ofe=t+pm,)dx

= | L[OFr=x7)+tr—¢)Jds.  (63)

Inserting (62), one obtains, after some simple manipula-
tions,

© 1
N, ()= —Xt—=Xx")dx. (64)
o X
In view of (59) and (57), this reads
0 p—iwt
N.()= / ot 63)
o X
To proceed further, we introduce the functionals
) © p=iTT iy (66)
57'5901'_'—:/‘ oy ax,
( X
Sr; )= / Xtreringds,  (67)

and study how they are related. To this end we express
o, in terms of ¥,_;~, using Egs. (58), (60), and (61),
and ¢,~, in terms of ¢,*, using Eqgs. (57), (59), and (62).
Inserting these expressions in the right-hand sides of
(66) and (67), we find

F(r; ot W1))

=—i/ L1(7'+T1*15)9(7'1;¢v—1—)d71, (68)

g('r;l//f(sﬂu’k)):i/ MI(T_,—Tl—t)‘J(TI; ‘Pv+>d7'1) (69)

where

1 =) e—-'iz‘r
Li(r)=—— dz, (70)
21t J_ T XTX—
1 © .
My (T) =— / X+t Xetterdy, (71)
T J e
Defining .
() =5(r L ), (1)
r=1
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and using (55), we see that
N()=No+9(r=1). (73)

Thus, inserting (69) into (68) and summing over », one
obtains an integral equation for 9t(+), the solution of
which we need at the point r=¢:

N(r) =N1(7')+/ K(r, 7)o (+")d+", (74)
where

K(rr)=+ / La(rri—) Ma(ridr'—dre. (75)

The inhomogeneous term on the right-hand side of
(74) is equal to F(r,¢s), which can be calculated with
the use of (68) and (54), and we find

Ni(r)=iK(r,0)/ V. (76)
Now without much additional work one can transform
the integral equation (41) for /(x) into a corresponding
one for

£(‘r)=ff<7-; > sofr) )

r=1

(7

e(r=0)= p(x)é[Z,(x)e—"x‘—l-l,,(x)]dxzL(t) (78)

—00

is needed to calculate the response function (28). The
integral equations for /(x) and z(x) differ only by their
inhomogeneous terms, which appear explicitly only in
the first step of the iteration procedure. The solution of
these first integral equations fixes F(7;¢1). In the case of

1@) =h(@)e =+ 1 () Ha(@e =4+, (79)
one finds : .
o1(2)=1/2ri[1—1/X ()], (80)
where )
o1t — o1 =pt7I;. (81)
Inserting (80) into (66) and using (70), one finds
F(r,01") =La(r) (82)

for the inhomogeneous terms of the integral equation
for £(7), so that

£(T)=L1(T)+/ K(r,7)L(r)dr . (83)

To obtain the behavior of Li(f) and M;(/) for large ¢,
one expands X (z) defined by (51) for small arguments.
For T'=0, the asymptotic expressions for L; and M,
become very simple:

Ly~ g/o-i,
ORI

(84)
(85)
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where
g=—(A4/7iV)e® sind T'(1—26/x), (86)
h=—(V/riA)e % sind T'(14-28/x) , 87N
with
1 p dd(x)
A =exp<—~ / sgn(x)(In|x|) dx)
T Jw dx
=q2%Im (88)

where d is of the order of the bandwidth. §=46(0) is the
phase shift at the Fermi edge. In deducing these equa-
tions, it has been assumed that the density-of-states
function is smooth and well behaved near the Fermi
energy. With (84), (85), and (75), one calculates

wgh 1 F\28/7 v
By [<—> ”1} NEO)
25 7-——7-/ 7./
With the substitutions
T=1e* (90)
and
v(x) =41V (te?)te V28 m2 1)
(74) goes over into
tand sinh (6/m)x
(%) =— ————
2r  sinhix
tand ,* sinh(8/7)(x—x")
/ v(x')dx’, (92)
2r Jo  sinh}(x—a’)

which is of the Wiener-Hopf type and can be solved
exactly.” One finds that

v(0)=(/7), (93)

the demonstration of which will be given in the Appen-
dix so that

1r(0) 1 /8\21
; N(t)=f)l('r=t)=—————=——~—<—> -
Vi V\n/

(94)

In the same way, one transforms (83) into a Wiener-
Hopf integral equation

}\(x) =g6—(1/2—5/7r)a:

tané ,* sinh(8/7) (x—x’)
— [ T T N@)d,  (95)
2r Jo  sinhi(x—2a)
with
N (&) = (1207 A12=31m)2g (1g7) (96)
We require that
2(1—6/m)
AO=g—— . oD
r(1—25/=)

0P, M. Morse, H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953).
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Then, using (86) and (88), we finally have
£ (0)
L(i)=£(r—t)=tl_26/1r . (98)

We can now proceed to calculate the response function
S(t); making use of Egs. (29), (56), (73), and .(94),

we have
i dC AE 1 /8\%1
I T SR
V dt V V\a/ ¢

Since one knows N () only asymptotically, C(¢) can be

calculated up to an unknown real constant d’,

C(t) =iAEt— (5/m)* In(itd") . (100)

The ¢ in the argument of the logarithm has been in-
troduced because C(f) =C*(—¢) must hold.

IV. THRESHOLD BEHAVIOR OF
TRANSITION RATE

The behavior of the response function for large times
is finally given by

S (£) ~ et B (jf)=a=dIm2 (101)

With (7) and

1: 0
1m|:~ / ei(m+Eo+AE)t<it)—1+adl}
T Jo

=TI'(a) sinra (0+E+AE)™
for w+Eo+AE>0

=0 for w+EH+AE<0, (102)

we find the important result

D 26/ 7m—(6/7)2
> R (103)

W aps~ (—
wt+Ey+AE

where D is a “bandwidth energy.”t

We note that the mathematical procedure might seem
too technical and heavy, as, in view of the possibility
of the “plausible” explanation in Sec. II, it seems un-
natural to break up the response function into two parts
calculated separately:

S(t)=L()-e¢®
or
[0/ m)2 = y—1428 /7, j—(8/m)2

1 The proportionality factor as we found it (up to the dipole
matrix element) is  @2/7d'=G/m*12(1—§/m)T'[ (26/7) — (8/m)2]
Xsina[ (28 /7) — (8/m)%] (sind/ —=V) is of no great use for a quanti-
tative calculation, as d’ is unknown. It makes sense insofar as the
first two terms provide the correct dimensionality for Waps, and
the others make sure that Waps>0, and that the whole expression
tends toward the density of states p as § — 0 (and 8 —» —#Vp).
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as we have done. This procedure also has the dis-
agreeable consequence that our method works only
for 0<|8] <37 and has to be modified to include
37<|8| <w. While this is feasible and also desirable
from a mathematical point of view, fortunately it is not
necessary for physical reasons. As one can see easily
from Friedel’s sum rule, which for our problem reads

)
1=3 2(241)—, (104)
i T

8§ can never be larger than 7. However, this breaking
up of the response function and the separate treatment
of the “hole propagator” e¢® might be of advantage
if lifetime effects for the hole have to be taken into
account.

Without further calculations, we can complete the
result to include spin and higher-order phase shifts by

going back to the arguments of Sec. II. It was ex-

plained there that the general proportionality
Sa(@)~t*

should hold, where % is the amount of particles (not
necessarily an integer number) shifted within the band.
Now the real process is not only s wave scattering, but
the other partial waves also take part in shielding the
hole potential according to Friedel’s sum rule. Let us
assume that an electron of angular momentum /, m, and
spin s has been created in the absorption process. As
there is no interference between different channels,
but only within the {/ms} channel, where the effects of
shielding and electron injection interfere, the exponent
#? has to be substituted by the sum over all channels »:

n—y n?, (105)

which for an electron characterized by {I,m,s} is
given by

or\? 01\?
Sw-(1-2)+ % (%)
v T {Vm’s"}={lms} \ T

5 Su\?
=1—2—+ 3% 2(21’+1)<—>. (106)

T all v/

This has the important consequence that the exponent
in the transition rate can either be positive or negative
even if all §; are positive. This could explain that, for
example, the K spectrum of Li goes smoothly to zero
while there is a spike in the L3 spectrum of Na,
probably due to the divergence.*®
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APPENDIX: SOLUTION OF WIENER-HOPF
EQUATIONS (92) AND (95)

To solve (92) we make the ansatz!

v(x)=w1(x) x>0

=pe(x) x<0, (A1)
and introduce the Fourier transforms
v(y)= / e () d,
0
(A2)

0
v (y)= / ey, (x)dx ,

which are analytic functions in the upper or lower half-
plane of the complex variable y. Then Eq. (92) reads

tand sinh(8/7)x

v1(%) +r2(x) =—
2r  sinhix
tand * sinh(§/7)(x—=x")
— —— i (x)dx’. (A3)
2r J_, sinh}(x—x’)
Using
* %y ginh(§/7)x sin2é
/ aAxX = 27r 5 (A4)
o sinh3x cosh2wy4-cos2s

Eq. (A3) can be written in the Fourier transformed
form as an inhomogeneous Hilbert problem

Y0/ Y0+ () =T+()/Y(y)—1, (AS)
with the auxiliary functions
16 N/ 5§ _
O ) o) Ll RS
2 2 T
Imy>0
(A6)
19 1 96
=F”l<~+-+iy>1'_1<———+iy>f‘2 (G+iy),
2 2 7
Imy<0
which solve the homogeneous Hilbert problem
Y+(y) tand sin2é
—14 : (A7)
Y=(y) cos2ry-+cos2é

We solve for »*(y) taking into account the asymptotic
behavior of ¥ (y):

lirg VH(y)=1+i(5/7)*1/y, (A8)
and get ‘
() =1-1/Y*(), (A9)

v (y)=—1+1/Y(y).
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Inverting the Fourier transform, we have finally
1 0
== [ ry=@mr. A1)
T J o
Integral equation (95) can be solved in exactly the same
way, by introducing A\; and \; for x>0 or x< 0, as before.
We have then, instead of (94),

A1 () N2 (x) = ge= A12—8l@)zg ()

M (x’)dx’ 5

® tand sinh(d/7) (x—x")
-~ / (A11)

—w 2w sinh}(x—x")
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where 6 is the step function. Its Fourier-transformed
version is

Y=(y)
NOTOROT =, (A1)
giving for A (y), ’ Y
Y=(—i(3—o/n
>\+(y)=n (=iG=9/m)) (A13)

G—8/m—in)V*()
For A(0*) one finds

>\(o+)=7—1r /_ i A*(y)dy=gY‘<—i<%—£>). (A14)
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Propagation of Light Pulses in a Laser Amplifier*
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The problem of a light pulse propagating in a nonlinear laser medium is investigated. The electromagnetic
field is treated classically and the active medium consists of thermally moving atoms which have two elec-
tronic states with independent decay constants v, and s in addition to the decay constant ~as describing the
phase memory. The self-consistency requirement that the field sustained by the polarized medium be equal to
the field inducing the polarization leads to coupled equations of motion for the density matrix, and equations
of propagation for the electromagnetic field. Although the theory is developed for a Doppler-broadened
gaseous medium, it may also be applied to a solid medium with inhomogeneous broadening. A unified treat-
ment is given encompassing a wide range of pulse durations from cw signals to psec pulses. Continuous pump-
ing is allowed, as well as any amount of detuning of the carrier frequency of the pulse from the atomic reso-
nance frequency. The three independent decay constants va, vs, and v,s provide greater flexibility than that
obtained by using 1/7; and 1/T,. The equations are solved analytically in a few specialized cases and nu-
merically in the general case. Flow charts for accomplishing the numerical integration are given. Among the
special problems considered is the apparent paradox of pulses propagating faster than the velocity of light
under circumstances described by Basov ef al. It is shown that this contradiction with relativity arises from

the use of an unphysical initial condition.

I. INTRODUCTION

E present a theoretical investigation of the be-
havior of light pulses traveling in an amplifying

laser medium. A semiclassical description of the inter-
action between matter and radiation will be used, treat-
ing the medium quantum mechanically and the radia-
tion field according to Maxwell’s theory. The basic ideas
are derived from Lamb’s theory of optical masers.!
However, some of his original assumptions and restric-
tions are relaxed in order to properly apply the theory
to the problem at hand. Since there are differences
between the problems of a self-sustained oscillator and of

* Research sponsored by Yale University, the Air Force Office
of Scientific Research under AFOSR Grant No. 1324-67, and the
NASA under Grant No. NASA-NGR 07-004-035.

t This paper is based on material submitted by A. Icsevgi in
partial fulfillment of the requirements for the degree of Doctor
ofjPhilosophy at Yale University.

1W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

an amplifier, it is desirable to develop the theory from
first principles.

The medium shall be considered to be a collection of
two-level “atoms” (Fig. 1) coupled only through their
interaction with the over-all radiation field. If a popula-
tion inversion between the levels @ and b is established,
such a medium is capable of amplifying light in a fre-
quency band around the separation of the levels.

In order to carry out necessary statistical summa-
tions, it is convenient to represent the state of a two-
level atom by means of a 2X2 density matrix p. This
is related to the wave function description in the follow-

F1c. 1. Energy diagram
of the two-level atom. The %
levels have a resonance
transition frequency w>0.




