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Nuclear acoustic resonance (NAR) and nuclear magnetic resonance (NMR) are used to study the line-

widths, second moments, and line shapes of nuclear-spin systems of InAs, InSb, GaAs, GaSb, and A1Sb.
These cw measurements are made at frequencies of 8—10 MHz and at 300'K in single crystals with intrinsic
or near intrinsic concentrations of impurities. Different NAR and NMR linewidths for the same nuclear-spin
system are explained by the different interaction Hamiltonians for spin-phonon and spin-photon couplings
to the nuclear-spin system. When the magnetic Geld is along (001) directions, the resonance line shapes are
broadened by dipole-dipole and isotropic nuclear-exchange interactions. When the magnetic field is rotated
from (001) directions, increased broadening of the resonance line shapes is explained by small anisotropic
dipole-dipole and much larger anisotropic quadrupole interactions. The measured like-spin and unlike-spin
exchange constants agree with an exchange-constant dependence on the inverse fourth power of the inter-
nuclear distance. Like-spin and unlike-spin exchange constants are determined at the nuclear positions in
each compound and used with a theory for indirect nuclear-spin exchange to predict the s-character elec-
tronic wave-function density. The strongly anisotropic quadrupole broadening is explained by electric Geld

gradients produced by the electric fields associated with ionized substitutional impurities. From the measured
field gradients, antishielding constants at the In, Sb, Ga, and As nuclear positions are determined relative
to each other.

I. INTRODUCTION

"UCLEAR magnetic resonance (NMR) linewidth
and line-shape studies have given a wealth of

information about the interactions between a nucleus
and its environment. In particular, NMR techniques
have been applied to analyze the resonance line broaden-

ing mechanisms in the 2"IB compounds. For low

concentrations of impurities in these compounds,
broadening of NMR linewidths beyond calculated
dipole-dipole widths has been explained'' as due to
nuclear exchange between unlike-spin systems. This
nuclear-exchange interaction involves an indirect
nuclear-spin coupling'4 via the hyperfine interaction
between electronic and nuclear spins. The theory of
Anderson' ' for indirect exchange in semiconductors
has been used with the experimental linewidths in
order to estimate' ' the product of the s character part
of the electronic wave-function densities at the 3 and
9 nuclear positions.

For large concentrations of substitutional impurities,
additional broadening of the NMR line shapes in the
3"Bv compounds has been explained' as due to
quadrupole broadening from electric field gradients
associa. ted with the substitutional impurities. Neutral,
donor, and acceptor impurities have produced quad-
rupole broadening for an estimated 10' nuclei surround-

* Work sponsored by the National Science Foundation under
XSF Grant No. 9278.' R. G. Shulman, J. M. Mays, and D. W. McCall, Phys. Rev.
100, 692 (1955).' R. G. Shulman, B. J. Wyluda, and H. R. Hrostowski, Phys.
Rev. 109, 808 (1958).' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

4N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679
{1955).' P. W. Anderson, Phys. Rev. 99, 623 (1955).

6 E. H. Rhoderick, Phil. Mag. 3, 545 (1958).' E. H. Rhoderick, J. Phys. Chem. Solids 8, 498 (1958).
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ing an impurity. In order to explain on the basis of a
continuum model the effects of the field gradients
associated with the ionized donor and acceptor impuri-
ties, it has been necessary to introduce antishielding
factors' of 10' for In"'Sb.

Nuclear-spin acoustic-phonon resonant coupling can
be used to study and to characterize in much more
detail exchange and quadrupole broadening processes
in the A"'B compounds. Because of the difference
of the spin-phonon and spin-photon perturbation of
the nuclear-spin system, the resonance line shapes and
linewidths may differ depending on whether a spin-
phonon or spin-photon experiment is used. I.oudpn'"
has computed the spin-phonon second and fourth
moments in the case of like spins for dipole-dipole
and exchange interactipns. Kplpskpva and Kopvjllem" '
have used the method of Kubo and Tomita" to compute
the second and fourth moments also in the case of
like spins for dipole-dipole, exchange, and a specific
quadrupole interaction. The work of Van Vleck'4

gives the spin-photon second and fourth moments in
the case of like- and unlike-spin systems for dipole-
dipole and exchange interactions. Finally, Sersohn"
gives second-moment expressions for spin-photon
quadrupole broadening.

In the 2' B compounds, nuclear-spin acoustic-
phonon coupling occurs via the dynamic electric

9 R. M. Sternheimer, Phys. Rev. 146, 140 (1966).
' R. Loudon, Phys. Rev. 119, 919 (1960).
' N. G. Koloskova and U. Kh. Kopvillem, Zh. Eksperim i.

Teor. Fiz. 38, 1351 (1960) (English transl. : Soviet Phys. —JETP
11, 973 (1960)3.

~N. G. Koloskova and U. Kh. Kopvillem, Fiz. Tverd. Tela.
4, 697 (1962) /English transl. : Soviet Phys. —Solid State 4,
508 (1963)g.

'3 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).

"R.Bersohn, J. Chem. Phys. 20, 1505 (1952).
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quadrupole interaction. " We call the cw resonance
experiment, which measures the ultrasonic attenuation
due to absorption of elastic strain energy by the nuclear-
spin system, nuclear acoustic resonance'r (NAR).

In this paper we report the experimental measure-
ments of the NAR and NMR line shapes and linewidths
of the nuclear-spin systems in single crystals of InAs,
InSb, GaAs, GaSb, and AlSb. We also discuss in detail
the determination of the broadening mechanisms, the
like-spin and unlike-spin exchange broadening, and the
source of the quadrupole broadening.

In Sec. II, we consider the theory for the broadening
of NAR line shapes. In Sec. III, the experimental
linewidth and line-shape data are presented. In
Sec. IV, we analyze the experimental data. In Sec. V,
there is a brief summary of the important points
developed in Secs. II and IV.

II. THEORY

We demonstrate in Sec. IV that NAR and NMR line-
widths for nuclear-spin systems in A'"8+ compounds
can be explained as due to contributions from several
different interactions. These are the anisotropic dipole-
dipole interaction between like and unlike spins, the
isotropic exchange interaction between like and unlike
spins, and an anisotropic quadrupole interaction. We
extend the second-moment calculations of other
authors' —u, s to cover spin-phonon coupling for dipole-
dipole and exchange interactions between unlike spins
and for quadrupole interactions. The quadrupole
interaction second moment is computed without
reference to a specific model for field gradient generation.

We consider a system of lV nuclear spins per unit
volume in an external magnetic field H, which is
directed along the s axis. We assume two diferent
nuclear-spin systems, whose nuclei have spin angular
momenta AI and AS. The two nuclear-spin systems
have resonances which do not overlap. The resonance
experiment is performed with the nuclear spins I. It is
further assumed that the separation between Zeeman
levels is very large compared to the energy splittings
produced by dipole-dipole, exchange, or quadrupole
interactions. The energy splittings of these interactions
have similar magnitudes.

Following the work of Van Vleckw and of Loudon'0
we calculate the second moment from the expression

(h'(o') = —TrLX e$'/Tr(e'j

The system Hamiltonian K is defined by

+or++os+ LCD z++Ds+ LCD zs
+~zz+df'-zs+df'-zzs+dz'-9, (2)

where Xo~ is the Zeeman term for resonant spins J,
"R. K. Snndfors, Phys. Rev. 177, 1221 (1969).In this reference,

the theoretical ratio of the ionic part of (S11—SI~)/S44 should be—3.0."D. I. Bolef, Physical Acoustics (Academic Press Inc. , New
York, 1966), Vol. 4A, Chap. 3.

Xp8 is the Zeeman term for spins 5, X&z is the dipole-
dipole term for like spins I, X~q is the dipole-dipole
term for like spins 5, XD~q is the dipole-dipole term for
unlike spins J and 5,

X~z= Q A, gI,"I(„
j&k

ass ——P A, A' S,"S„,
j'(k

(3a,)

(3l)

Kzzs =Q A, a I,"S„, (3c)

X,=P E,[3I„—I, (I,+1)], (3d)

where
+I+zlV s,+I,'V~s, j, (5)

Vgg= Vxy~i Vyz

Vps ———,
' (V„—V„„)&sV.v

(6a)

(6b)

It is evident that the spin-phonon interaction Hamil-
tonian is bilinear in the spin operators and divers from
the interaction Hamiltonian for NMR,

u'~P I„.
NAR transitions of interest are centered at the fre-
quencies cv~=y~H and cu~= 2y~H. If m is defined as the
magnetic quantum number labeling the orientation of
nuclear spin I, then coi corresponds to Am= ~1 transi-
tions and co2 to Dm= &2 transitions. To simplify
future expressions, we define NAR 1 and NAR 2 to be
spin-phonon resonances for Am=&1 and Am=~2
transitions, respectively.

The second moments for the computed resonance
lines of NAR 1 and NAR2 are given in Eqs. (7) and (8):
(~ +~ )av NAB 1

=2I(I+1)Q A;„'+2I(I+1)PA, ,I3,„

+3I(I+1)ga,, + 'sS(SO+1)P A,s-
—-'S(S+1)Q A, 8, +;S(S+1)Q8,„'-

+ (9/7)$12I(I+1)—17/X ' Q g' (7)

' M. H. Cohen and F. Reif, Solid State Physics (Academic
Press Inc., New York, 1957), Vol. 5, p. 322,

3;~ is the exchange term for like spins I, A;A,
' is the

exchange term for like spin 5, A;I, is the exchange term
for unlike spins J and 5, and

eQ O'V
Ej= =AV„;.

4I(2I—1) Bs'

The interaction Hamiltonian for nuclear-spin-phonon
coupling 8 can be written"

8=A +$(I~,I„+I„I+,) V g,+(I,I„+I„I,) V~r,



460 R. K. SUN DFORS

{~+4O )ev NAR 2

=2I(I+1)g ~,,2 —4I(I+1)g &;,B;.

+6I(I+1)Q B; '+-,'5(5+1)Q 2, '

—(16/3)5(5+1)Q A;i,Bjt.+(16/3)5(5+1)Q B,l,'

+(144/7)t I(I+1)—21Ã ' Q E' (8)

where

compounds. We make use of the definitions introduced
by Van Vleck' for a crystal with cubic symmetry and
write

2 Bjt'=gP+b(&i'+&t4+44)j

» Eq. (11), 4, 4, and 4 are the direction cosines of
the applied magnetic field relative to the principal
cubic axes. The constants a and b have the values

a =g rjt 'P7 —9(ji—j„4+ij,4+&;„4)g, (12a)
Bjt="ji ft rjk (2 cos Hj& g) )

BI@=VI'Ysll rj& (2 cos Hj& 2),

(9a)

(9b)
b=/ rja 'L —9+1&(jt.e'+ .4'+k.t') j, (12b)

8;~ is the angle between the s axis, and r,.A, is the vector
from the jto k nucleus. In Eqs. (7) and (8), the like-spin
dipole-dipole and exchange second moments agree with
the results of Loudon. "The quadrupole second moments
differ in form from the results of Koloskova and
Kopvillem, "who use a particular model for the source
of the electric field gradients. For a comparison between
NAR and NMR second moments, we write in Eq. (10)
the second moment for the spin-photon resonance
centered at coq and calculated by Bersohn" and Van
Vleck":

{O'Ace'), NMR ——3I(I+1)Q Bj +4-', 5(5+1)QSjk'

+eS(5+1)Z A~B, t.+35(5+1)QB,t'

+(9/5)$4I(I+1) —3jÃ 'Q E'. (10)

We now list a series of comparisons of properties of
the second moments given in Eqs. (7), (8), and (10)
for resonance lines observed at the same frequency. In
these comparisons, we neglect the cross terms contain-
ing 2;I,B;I, and A;I,B;I,. Such cross terms will be shown
in Sec. IV to be small in the 3"'8~ compounds.

(a) Dipole-dipole second moments for NMR and
NAR 1 are identical.

(b) The ratio of NAR 1 and NAR 2 second moments
for dipole-dipole interactions is two for like spins and
one for unlike spins.

(c) Exchange second moments for NMR are nonzero
only for the case of unlike-spin coupling.

(d) Exchange second moments for NAR are nonzero
for both like- and unlike-spin coupling.

(e) The ratio of NAR 1 and NAR 2 second moments
for exchange interactions is four for like spins and one
for unlike spins.

(f) The quadrupole second moments for NAR and
NMR obey the following inequality: WAR 1&5AR 2
&XMR.

A. Dipole-Dipole Contributions

The dipole-dipole second moments involving 8,~'
and B;i2 in Eqs. (7), (8), and (10) can be calculated for
the zinc-blende lattice characteristic of the 3 '8~

where jijt, tj7„and pji, are the direction cosines of rj~
relative to the principal cubic axes. We compute for
the resonant nuclear-spin system on the fcc lattice of
the zinc-blende structure that a= 256 ap ' and b= —118
ap ', where ap is the lattice constant. For the other
lattice points, we compute a'= 2491 ap ' and b'= —2390
ap '. These values are found by determining the lattice
sums out to the 25th shell and integrating from the
25th shell to infinity. An independent calculation" of
a and b for the fcc lattice gives a= 256 ap ' and b = —120
ap '.

B. Exchange Broadening

Exchange broadening due to indirect exchange
coupling between unlike nuclear spins has been used to
explain XMR linewidths in InAs, InSb, GaAs, and
GaSb." Anderson' has proposed that isotropic
indirect nuclear-spin exchange in semiconductors takes
place via nondegenerate electrons of s character with
high-momentum states. The dominant term for this
exchange can be written for either like or unlike
exchange as

A jk ——(8/9lr)y. 'yjyl, h'0'1 g4%", (0)+4'(0)m*rj4—', (13)

where 0 is the atomic volume,

fj = L Pj(0)hole +j(0)electron jsolid/f Pj (0)jatom &

+I'(0) is probability of finding outer s electrons of atom
j at the nucleus,

m*= 4(m,*)'"(mA*)'"(m,*+mA*)

and m,* and mj,* are the electron and hole effective
masses, respectively. Anderson's expression for the
exchange constant divers principally from another
calculation4 for semiconductors, where low-momentum
states of the electron predominate by not having a
negative exponential dependence on r, j,.

C. Quadrupole Broadening

The &AR 1 line shapes in several of the 3~"8
compounds show 6rst-order quadrupole splittings. In
order to analyze these line shapes, it is useful to have

"E.Andrew, K. Swanson, and 3. Williams, Proc. Phys. Soc.
(London) 77, 36 (1961).



185 BROADENING OF NUCLEAR ACOUSTIC RESONANCE LINE SHAPES 461

TABLE I. High-Geld transition frequencies and transition
probabilities in NMR and NAR for I= ~.

NMR
Trans.

+I+ +3
——~ +—1

3 1
2

NAR 1 NAR 2

Freq. ' Prob. Freq. ' Prob. Trans.

cep+6A 3 cop+6h 3
cop 4
cop —6A 3 cvp 6l L 3

——~ +—1 3
2 2

——~ +—3 1

Freq. ' Prob.

2' p+ 6A 3

2' o—6~ 3

a These frequencies are incorrectly given in Ref. 17.

the theoretical first-order quadrupole energy splittings
due to a uniform Geld gradient V„and the relative
transition probabilities between the quadrupole split
energy levels for NAR 1, NAR 2, and NMR. We
consider only the high-field case, where the quadrupole
energy splittings are small compared to the Zeeman
levels. In this high-field limit, the nuclear energy
levels can be written"

E~= —m7AII+AL3m' —I(I+1)jV.. (14)

The transition probability dependence on spin can be

written'~ as (2m+1)'(I&m+1)(I&m) for NAR 1,
(I&m) (I&m—1)(I+m+1) (I&m+2) for NAR 2, and
(I&m+1) (I&m) for NMR. In Tables I-IV, we show
the quadrupole splitting of the energy levels in units of
frequency, A=A V„/A, for I= 2, —',, 2, and $. In these
tables, the resonance frequency for no quadrupole
broadening is coo. We observe in Tables II—IV that the
relative transition probabilities for NAR 1 are larger
for quadrupole transitions between energy levels with
larger ~mj values. On theotherhand, NMRandNAR2
transition probabilities are larger for transitions between
energy levels with smaller ~m~ values.

For a uniform Geld gradient at each nuclear position
in the crystal, a particular transition between Grst-
order quadrupole split energy levels will have a second
moment determined by the linewidth broadening
mechanisms present in the absence of the Geld gradients.
Using the method of Kambe and Ollom, " we have
computed the second moments for NAR 1 and NAR 2
transitions for the cases of like and unlike spins. Our
results show no change in the second moment of any

TABLE II. High-field transition frequencies and transition probabilities in NMR and 5AR for I= 2.

Trans.

——~ +—12 2
3 1
2 2
5 3
2 2

Freq.

cop+ 126
Gap+ 6A

Q)p

Np —6A

cop —126

Prob.
NAR 1

Freq.

cdp+ 126
cop+ 6A

cvp —6A

Gd p
—126

Prob.
NAR 2

Trans.

+2 ~+4
——~ +—1 3

2 2

—2~+y
5 1
2 2

Freq.

2cop+ 186
2G)p+ 6A

2Np —6A

2cop —186

Prob.

TABLE III. High-field transition frequencies and transition probabilities in NMR and NAR for I=—,.

NMR
Trans.

3

5
2
7

3
2
5

——+-+ +—1 1

Freq.

cop+ 184
cop+ 126
cop+6A
COp

cop —6A

cop —126
cop —186

Prob.

7

12
15
16
15
12

7

NAR 1

Freq.

Cop+ 186
cop+ 126
40p+6A

cop —6A

cop —126
cop —186

Prob.

21
16
5

5
16
21

NAR 2
Trans.

——~ +—1 3
2 2

——~ +—2 2
5

2
7 3
2 2

Freq.

2&p+306
2' p+ 186
2coo+6~

2Ggp —6A

2' p —186
2' p

—306

Prob.

7
15
20

20
15

7

TABLE IV. High-Geld transition frequencies and transition probabilities in NMR and NAR for I=—,.

Trans.

——~ +—2
3 1
2
5 3

2
7 5

2
9 7

2

Freq.

Gl p+ 246
cop+ 18+
cop+ 126
cop+6A
Glp

cdp —64
Q) p

—126
co p 186
cop —24~

Prob.

9
16
21
24
25
24
21
16
9

NAR 1
Freq.

c0p+ 245
Lop+ 186
0)p+ 126
a]p+6A

cop
—64

oip —126
cop —185
cep —245

Prob.

12
12

7
2

2
7

12
12

NAR 2
Trans.

——~ +—1 3
2

——~ +—3

5 1
2 2
7 3
2 2
9 5

2

Freq.

24)p+42A
2' p+ 306
2cop+ 186
2cop+66

2M p
—6'

2Glp —186
24) p

—306
2M p

—426

Prob.

6
14
21
25

25
21
14
6

'P K. Kambe and J.K. Ollom, J. Phys. Soc. Japan 11, 50 (1956).
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TABLE V. Experimental A 8 single-crystal samples vrith physical properties determined by the supplier.

Compound

InAsb

InSbb (1)
InSbb (2)
InSbb (3)
GaAsb

GaSbb
AlSbd

Type

2V

p
Ã
E
P
p

Dopant

intrinsic
intrinsic

Ge
Te

intrinsic
intrinsic
intrinsic

Average carrier
concentration

(cm ')

1.4)& ipi6

1 8X1014c

].7X 10&7&

1.4X 1016

1.7X10"
1 8X10ie

Average
mobility

(cm'iV sec)

18 000
000e

4500e

5 pppo
3800
570
265

Average
resistivity
(ohm cm)

0.024
0.070o

0.112c
0.00080'
0.012
0.066
1.27

Etch
pit density'

(cm-'l

1100
3000

100
600

1200
5000

a Etch pit count is on the A (111)face.
b Supplied by Monsanto Chemical Co.
e These values are determined at 78'K, the remainder at 300 K.
d Obtained from Bell and Howell Research Laboratories.

transition for unlike spins when compared with the
second moments due to dipole-dipole and exchange
interactions, given by Eq. (7) and (8). For the case of
like nuclear spins, our results are given in Eqs. (15)
and (16). For NAR 1,

(6 AM )av 1/2 ~ 3/2

4$2I'(I+ 1)'—SI(I+1)+ (61/8) )
C;I,'

and for MAR 2

(~ 21a1 )av 3/2 +-+ —1/2

L2I'(I+ 1) —9I(I+] )+ (125/8) )
2I+1

4I(I+1)
XQ C,,'+ Q D,,', (16a)

2(2I+1) 1

(2I—1)(2I+3)
+3I(I+1)Z D/~'

2 (2I+1)
XQ C,aD,7„(15a)

(A Aa1 )av 3/2+-+ 3/2

452I2 (I+1)' —17I(I+1)+ (421/'8) ]2 C,a'
2(2I+1)

(2I—3) (2I+5)
+3I(I+1)ED7~'

2 (2I+1)
XQ C,7,D,7„(15b)

(17 A(d )av 3/2 ~ 7/2

4L 2I'(I+1)' —37I(I+1)+ (1661/8))
Q C,g'

2 (2I+1)
(2I—5) (2I+7)

+-',I(I+1)P D;g'—
2 (2I+1)

XQ C,7,D,7, , (15c)

t 2I'(I+1)' —33I(I+1)+(2189/8))
(k Aa1 )av 7/2+-+ 3/2 =

2I+1
4I (I+1)

XP C,.'+ — P D,,',

t 2I'(I+1)'—57I(I+1)+(5405/8))
(~ +~ )av 9/2 ~ 3/2 =

2I+1
4I (I+1)

XQ C,1,'+ Q D,,', (16d)

where

C~~= 2 ( &;~+/1,~), — (17a)

D7~ = 2&,7,+&,~. (17b)

L2I'(I+1)'—17I(I+1)+(685/8) )
(17 +a1 )av 3/2 ~ 1/2 =

2I+1

4I (I+1)
XQ C,1."+ P D,„', (16b)

(17 +~ )av 7/2 ~ 9/2

4L2I'(I+1) ' —65I (I+1)+ (4741/8) )
2(2I+1)

(2I—7) (2I+9)+—',I(I+1)P&D,7,
'—

2 (2I+1)

From Eqs. (15) and (16) for the condition that iA,7, i) i&;~i, we observe that the second moments for
transitions between energy levels with the larger

i 772i

are less than the zero-field-gradient values. With knowl-
edge of the shape of the transitions given by Eqs.
(15) and (16) and the relative transition probabilities
given in Tables I—IV, it is possible to construct the

XP C,„D,„, (15d) composite resonance line shape under the condition of a
uniform field gradient.
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B. Experimental Method

Experimental line shapes were studied by XAR and
%MR using the experimental technique and equipment
previously described. " Each nuclear-spin system was
.studied using XAR 1, NAR 2, and NMR at a constant

TABLE VI. Relevant nuclear properties. '

Natural
abundance

Nucleus (%)

Magnetic Electric quadrupole
moment moment

(p,p7) (].0—24 cm )

Al2'

Ga"
As'~
gn113

'In 115

Sbl21

Sb123

100.0
60,2

100.0
4.16

95.84
57.25
42.75

3.6385
2.0108
1.4349
5.4960
5.5073
3.3417
2.5334

0.149&0.002b

0.190&0.001'
0.32 %0.05d

0.820~0.001c
0.834+0.001'

—0.53 +0.08'
—0.68 &0.10'

III. EXPERIMENTAL CONDITIONS AND DATA

A. QT"g~ Samples

Some important properties of the samples used in
this investigation are shown in Table V. The suppliers
of the crystals prepared InSb, InAs, GaSb, and AlSb
by the Czochralski technique with growth along a
L111j direction. The crystal of GaAs was prepared by
the horizontal gradient-free method. Hall coefficient,
resistivity, and etch pit measurements were made by
the supplier on slices with (111) faces taken from the
initial ingots. Emission spectra investigations for
impurities were made by the supplier for crystals
similar to those used in this experiment. These investiga-
tions indicate impurity content exclusive of dopants for
all of the samples is at least a factor of 10 less than
measured hole or electron concentrations of Table V,
-except for InSb. The impurity content for the InSb
samples exclusive of dopants is less than one part in 10'.

For the NAR investigations, crystals were prepared
with a pa, ir of (110) and (111) faces. The shape of the
samples is an approximate cube with 1.7-cm side. Such
preparation involved slow cutting of the crystals with
a diamond slicing wheel and slow grinding of the
crystal faces with 50- to 1-p, A1~03 grit on cast iron and
lead laps. Etch pit counts made after our preparation
showed no change from the etch pit count made by the
supplier. Since the original impurity concentration
determinations, the samples have not been heated
above 150'C. The sample faces were determined with
x-ray diffractometer techniques to be within ~10 min
of arc of the desired crystal plane. The prepared faces
are estimated to be within &20 min of arc of the
desired crystal plane.

(c)

FIG. 1. In"'As NAR 1 line shapes: (a) experimental Grst
derivative for H along (001), (b) integrated experimental line
shape for H along (001), (c) integrated experimental line shape'
for H along (110).

frequency between 8 and 10 MHz. The sample temper-
ature for these measurements was 300'K. Acoustic
waves were propagated along L1107 and L111j direc-
tions, and the magnetic 6eld was rotated in either a
(001) or a (110)plane for NAR. For the NMR measure-
ments, the rf magnetic-field component H~ was along a
(110]direction, and the plane of magnetic-field rotation
was the (110).Saturation levels of NAR and NMR for
a particular nuclear-spin system were determined, and
the linewidth and line-shape Ineasurements were made
under conditions of less than 1% saturation. The
magnetic-Geld modulation was 100 cps, and the ampli-
tude of the field modulation was chosen to be no larger
than one-eighth of the measured peak-to-peak resonance
line-shape first derivative.

Relevant nuclear properties for the corn.pounds
investigated by NAR and NMR are given in Table VI.
We did not observe that Al' Sb NAR, and the Ga 'As
and Ga7'Sb NAR line shapes had too small signal-to-
noise ratios to be useful. Because of small signal-to-
noise ratios, we observed bulk crystal %MR only for
In'" "'As In'" "'Sb Ga"As ' Ga"Sb"' and Al' Sb"'.

a F. Bovey and A. Tiers, ¹MR Tables {Wiley-Interscience, Inc. , New
York, 1967), 5th ed.

b H. Lew and G. Wessel, Phys. Rev. 90, 1 (1953).
o G. F. Koster, Phys. Rev. 86, 148 (1952).
d K. Murakawa, Phys. Rev. 110, 393 (1958).
& K. Murakawa, Phys. Rev. 100, 1369 (1955').

C. Experimental Data

In the remainder of this paper, we refer to linewidths
measured with the magnetic field along (001) directions
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TAszz VII. Experimental linewidths and second moments for NAR 1, NMR, and NAR 2 when the
external magnetic field is along (001) crystal directions.

Nucleus

In'"As
In"'As
In As'~

In'"Sb (2)
In"'Sb (2)
In Sb"' (2)
In Sb"' (2)
Ga' As
GaAs"
Ga"Sb
GaSb121

GaSb»&

AP'Sb
AISb»I
AlSb»'

NAR 1
Sa„(G)
4.0 &0.3
8.2 ~0.2
8.0 ~0.2

11.9 ~1.0
13.6 ~0.3
17.5 ~0.3

1.73&0.06
1.96&0.06
4.6 ~0.2
5.3 ~0.1

2.09+0.05

52 (G')

4.0 &0.6
17.2 ~0.4
16.0 +0.4
33.5 &6
40.2 ~0.8
74.9 &2

0.75&0.02
0.96&0.02
5.3 ~0.3
5.6 +0.1

1.21&0.1

NMR
sa„(G)
2.0 ~0.5
1.9 +0.1
8.4 &0.3'

9.2 +0.2
17.5 ~ib

1.64~0.05
1.96~0.06
4.9 ~0.2
4.1 ~0.1

2.21~0.05
1.29+0.03

S2 (G')

1.0 ~0.5
2.8 ~0.2

17.6 ~2a

24 ~1
65 &4b

0.56~0.02
0.90+0.02
6.0 ~0.4
3.9 ~0.1

0.73&0.02
0,42+0.03

NAR 2
~a„, (G)

3.7 ~0.3
4.85&0.10
8.0 &0.2

11.6 ~0.3
17.0 ~0.4
17.3 ~0.4
1.53~0.04
1.82&0.04
4.1 +0.1
4.2 &O.i
4.2 ~0.1

1.26~0.03
1.32+0.03

S2 (Gs)

3.4 &0.6
5.86+0.10

16.0 &0.8

30.8 a0.6
72.5 +2
73,0 +2
0.59+0.02
0.83&0.04
4.2 +0.2
3.9 +0.2
4.4 &0.1

0.46~0.01
0.54&0.06

' Reference 2.
b Reference 1.

as (001) linewidths. A similar meaning is given to the
phrase (110) linewidths.

The experimental NAR and NMR linewidths and
generally the line shapes exhibit large anisotropic
behavior as the direction of the external magnetic
6eld is varied with respect to the crystalline axes. All

(001) linewidths for a given nuclear-spin system
observed by a particular resonance transition have
the same minimum magnitudes, and the line shapes
are close to Gaussian functions. Away from the
resonance center, the experimental line shapes may
have slightly smaller amplitudes than a Gaussian

|h
ih bP—
U

I i I i I

20 30 40 50 60 20 80 90

e (deg. )

FIG. 2. GaSb'" NAR 2 experimental peak-to-peak linewidths,
BHpp as a function of O~, .the angle measured in the (110) plane
from the L110] crystal direction to the direction oi H.

function. Such linewidths are in all cases larger than
calculated dipole-dipole widths. The NAR 1 linewidths
are greater or equal to the NAR 2 linewidths, which
are greater or equal to the NMR linewidths.

When the magnetic field is rotated from (001)
directions, the linewidths broaden and the line shapes
generally depart from Gaussian functions. In particular,
all (110) linewidths for a given nuclear-spin system
observed by a particular resonance transition have the
same magnitudes, and the line shapes are identical
and depart from Gaussian functions. Away from the
resonance center the experimental linewidths decrease
in amplitude more slowly than a Gaussian function.
Also, for the NAR 1 of In"'As, GaSb"' and AlSb"' a
symmetric splitting of the resonance line shape occurs.
The magnitudes of the NAR 1 linewidths are larger
than the NAR 2 linewidths, which are generally larger
than the NMR linewidths.

To illustrate typical measured linewidths and line
shapes, the In"'As NAR 1 is shown in Fig. 1. The
experimental first derivative of the (001) resonance
line shape is shown in Fig. 1(a). Figures 1(b) and 1(c)
show the integrated experimental first derivative
(001) and (110)line shapes, respectively. The line shape
of Fig. 1(c) is the most striking example of an anisotropy
that is a common property of each of the nuclear-spin
systems. In Fig. 2, the peak-to-peak linewidth of
GaSb"' NAR 2 is plotted as a function of the angle O~

in the (110) plane between the direction of the external

magnetic field and the (110jcrystal direction. In Fig. 3,
the peak-to-peak linewidth of A1Sb"' NAR 2 is plotted
as a function of the angle C' in the (001) plane between
the direction of the magnetic field and the (110$ axis.
We notice in both Figs. (2) and (3) the very sharp mini-
mum in the (001) linewidths.

In Table VII, we list the measured (001)peak-to-peak
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TABLE VIII. Experimental NAR 1 and NAR 2 linewidths and second moments and NMR linewidths when the
external magnetic field is along (110) crystal directions.

Nucleus

In"'As
InAs'~

n115Sb (2}
InSb"'(2)
Ga"As
GaAs"
Ga"Sb
Ga Sb121

AI27Sb

AlSb»&

NAR 1
SH„(G)

13.4 +0.3
12.2 ~0.3
16.0 ~0.4
19.4 &0.4
3.34~0.08
6.60+0.10
5.7 +O.i

10,0 +0.3

4.95+0.10

Sg (G')

37.2 &0.8
56.0 &1.0
94.2 ~0.9
2.79+0.10

13.6 &0.4
8.1 +0.4

61.5 &1.0

15.4 +0.4

NMR
bH p„(G)
2.5 ~0.2

9.8 &0.2

2.18~0.06
2.41~0.04
5.6 ~0.2
4.2 ~0.2
3.23&0.08
2.40&0.06

NAR 2
sH„(G)
5.80~0.1

10.1 +0.3
12.2 +0.3
18.4 ~0.4

3.90+0.09

5.75w0.20

3.01+0.08

S, (G2)

8.40~0.3
25.2 a0.5
33.9 &0.8
84.7 &2.0

4.73&0.10

22.4 w0.6

5.9 &0.2

linewidths, bh», and second moments, S2, determined
from the experimental line shapes. The second moments
are computed using the formula"

OG dI
Ss ——(&H'), =— (H —Hp)' dH

3 da
dI

(H —Hp) dH, (18)
dH

where dI/dH is the experimental amplitude for the
resonance line-shape first derivative, and Bf) is the
magnetic field at the resonance line center. The NMR
line shapes that we measure have an asymmetry
characteristic of a mixture of the real and imaginary
parts of the nuclear-spin susceptibihty. 22 The amount of
asymmetry, however, is small because of skin depths
for 10-MHz rf fields of approximately 0.2—2.0 cm for
our samples. The NMR linewidths that we report are
the peak-to-peak separation of such asymmetric line
shapes.

In Table VIII, we list the peak-to-pea, k (110) experi-
mental NAR and NMR linewidths 5H», and the (110)
NAR second moments, Ss. By integrating the (110)
and (001) line shapes for each nuclear-spin system, we
find that within an experimental error of &3% the
same number of nuclear spins contributes to both line
shapes, except for In"'As. The In"'As, (110) line shape

contains contributions from only 85% of the nuclear
spins contributing to the (001) line shape.

In Table IX, we list a comparison of the InSb"'
NAR 1 (001) and (110) linewidths and second moments
for three samples having carrier concentrations over a
range of 10'4 to 10'~ carriers cm '. Ke notice that the
(001) second moments are identical and the (110)
second moments increase with increasing carrier
concentrations.

In Table X, we list the computed (001) an.d (110)
dipole-dipole NAR 1 and NAR 2 second moments.
These values were determined using the 8;~' and B;~2
terms in Eqs. (7) and (8) and the values of the zinc-
blende lattice sums given in Sec. II. The NAR 1
dipole-dipole second moments are also equal to the
NMR dipole-dipole second moments, as we have noted
in Sec. II.

I
i

I
I

I
I

J
I .

I
I

~010] [010J
3~".—

TABLE IX. Experimental NAR 1 linewidths and second
moments of InSb"' in InSb crystals with different charge carrier
concentrations.

Sample

InSb (1)
InSb(2)
InSb(3)

H along (001)
SHE~ S2
(G) (G2)

17.5&0.4 75&2
17.5&0.4 75&2
17.5W0.4 77a2

H along (110)
aH,„S2
(G) (G2)

18.6&0.4 83%2
19.4a0.4 94&2
26.6a0.6 198W4 l i I i l i I i I

0 10 20 30 40 50

e (~off.)

"G. E. Pake and K. M. Purcell, Phys. Rev. 74, 1184 (1948).
"A. C. Chapman, P. Rhodes, and E. F. Seymour, Proc. Phys.

Soc. (London) 310, 345 (1957).

FzG. 3. AISb~g NAR 2 experimental peak-to-peak linewidths,
BIIpp as a function of C, the angle measured in the (001) plane
from~ the [110)crystal direction to the direction of H.
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Nucleus

In'"As
In"'As
InAs"
In»'Sb
In"'Sb
In Sb121

In$b123

Ga'9As

GaAs"
Ga"Sb
GaSb121

GaSb"'
A12'Sb

A1Sb"'
A1Sb'"

NAR 1
S2 (G2)
(001)

0.491
0.994
0.412
0.381
0.717
0.402

0.286
0.248
0.258
0.340

0.558
0.408

S2 (G2)
(110)

1.042
1.761
4.259

1.851
3.028

0.924
1.613
1.560
1.287

1.943
2.285

NAR 2
S2 (G2)
(001)

0.471
0.521
0.366

0.401
0.322
0.317
0.204
0.179
0.206
0.225
0.217

0.298
0.290

S2 (G )
(110)

1.085
4.193

1.401
2.915
2.907
0.807
1.514
1.485
1.123
1.111

2.127
2.116

TABLE X. Calculated relevant dipole-dipole NAR 1 and NAR 2
second moments for If along (001) and along (110).

nuclear-spin systems. First, we consider the (001) line
broadening mechanisms and then the source of the
anisotropic broadening.

By studying the NAR 1, NAR 2, and NMR (001)
second moments of In'""'As and In'""" Sb, it is
possible to make use of the second-moment analysis of'

Sec. II to determine which broadening mechanisms
are dominant. Broadening of the (001) second moments
beyond the dipole-dipole second moments must be due-

to interactions independent of the magnetic-held
magnitude. Likely possibilities in such large atomic-
number atom solids are the quadrupole, " pseudo-
dipolar, 4 and nuclear exchange"' interactions. Expres-
sions for the quadrupole and exchange second moments
have already been given in Eqs. (7), (8), and (10).
The Hamiltonian for the pseudodipolar interaction can
be written4

Xp~ ——p D, I,[I; II.—3r;I, '(I; r;~)(I~ r, I,)], (19)

The NAR linewidths and line shapes that we list in
Tables VII—IX are independent of the acoustic wave
propagation and the polarization directions that we
have used. Therefore, the only effect of the nonsaturat-
ing acoustic wave is to allow observation of the resonant
spin-phonon interaction, and the line broadening is
determined by the nuclear environment. We also have
found that the NAR linewidth and line shapes are
independent of resonance frequency between 8.2 and
10.7 MHz. Therefore, the linewidth broadening
mechanisms are magnetic-6eld-independent.

IV. ANALYSIS OF RESONANCE LINE SHAPES
AND LINEWIDTHS

A. Determination of Dominant Broadening M echanisms

The five A"'8 compounds that we have investigated
have similar lattice constants and similar chemical
bonding. "For the five samples of Tables VII and VIII,
the charge carrier concentrations listed in Table V are
all within an order of magnitude of each other. There-
fore, the impurity concentrations are very small and
approximately equal in the five compounds. It is
reasonable to expect that the nuclear environments will
be similar at 8 nuclear positions and at 3 nuclear
positions in the Ave compounds. Tables VII, VIII, and
X show that the differences between either the (001)
or (110) experimental second moments and the com-
puted dipole-dipole second moments are largest for
those nuclear-spin systems with largest atomic numbers
and largest quadrupole moments. We make use of
these large atomic numbers, large quadrupole moment
nuclear-spin systems in the following analysis of the
line broadening. We then generalize these results for
the smaller atomic number, smaller quadrupole moment

'30. Madelung, Physics of III-U Compounds (John Wiley R
Son, Inc. , New York, 1964).

where D;~ is the interaction constant. The pseudo-
dipolar interaction has the same nuclear-spin operator
dependence as the ordinary dipole-dipole interaction
and should produce the same second-moment depend-
ence on the angle between the external magnetic field
and the crystal axes. Therefore, the comparisons of'

Sec. II for the dipole-dipole second moments can be
used for expected pseudodipolar second moments.

From Table VII, the ratio of NAR 1 to NMR In"'
(001) second moments for InAs is 17.2/2. 8=6.2, and
for InSb is 40.2/24. 0= 1.8. These ratios are in disagree-
ment with the ratio of 1.00 predicted by the comparisons
of Sec. II for dipole-dipole and, therefore, pseudodipolar-
second moments. The ratio of In"' to In'" NAR 1

second moments for InAs is 17.2/4. 0=4.3 and for
InSb 40.2/33. 5= 1.2. Because In'" and In"' have the
same spin and very similar nuclear properties, the
predicted quadrupole second-moment ratio is 1.0. We
conclude that the quadrupole or the pseudodipolar
interactions ca,nnot alone explain the In'" "' resonance
second moments.

Nl iclear exchange can explain the In'" "" second
moments. The larger NAR 1 than NMR In"' second
rnornent can be understood as due to contributions
from both like-spin and unlike-spin exchange interac-
tions for NAR 1, and due to a contribution from only
unlike-spin exchange interactions for NMR. The larger-
In"' than In'" second moment. can be understood as
due to a larger like-spin than unlike-spin exchange for
the In nucleus, and by more neighboring like spins for
In"5 than for In'". Because of the greatly different
In"' '" natural abundances, each In"'As nucleus has
four unlike As nuclei as nearest neighbors and approxi-
rnately 12 Eke In"' nuclei as next nearest neighbors.
Each In'"As nucleus has four unlike As nuclei as
nearest neighbors and approximately 12 unlike In"~

nuclei as next nearest neighbors.
Similar comparisons can also be made for the other
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nuclear-spin systems in Table VII. The conclusion is
that exchange interactions are dominant over quad-
rupole and pseudodipolar interactions in the broadening
of (001) second moments. We show below that exchange
and dipole-dipole interactions alone quantitatively
explain (001) second moments.

Next we consider the source of the additional
broadening which results for each of the nuclear-spin
systems when the magnetic field is rotated from (001)
directions. As noted in Sec. III, In"'As, GaSb"' and
AlSb"' all show a symmetric (110) line-shape splitting.
The In"' As NAR 1 line shape begins to split at angles
as small as 5' between the direction of the magnetic
field and (001) directions. Furthermore, the In"'As
line-shape splitting agrees qualitatively with the peak-
to-peak linewidths plotted in Figs. 2 and 3 for different
nuclear-spin systems. The In"'As NAR 2 and NMR
(110) line shapes are broadened over the (001) line
shapes, but they show no signs of splitting. Such a
splitting of the NAR 1 but not of the NAR 2 and NMR
line shapes is understood from the discussion in Sec. II
relating to the quadrupole interaction. We conclude
that the broadening of the NAR and NMR linewidths
in directions for the magnetic field other than the (001)
directions is due to an anisotropic quadrupole interac-
tion and a generally smaller anisotropic dipole-dipole
interaction. Such identification of the anisotropic
broadening allows us to say that the dominant exchange
broadening for (001) second moments is isotropic. We
show below that isotropic exchange, anisotropic dipole-
dipole, and anisotropic quadrupole interactions quanti-
tatively explain the (110) second moments.

A InIn i'i.%.'(0)= (Vr-/Vsb), (&/&')"
+Insb fsb+sb (0)

(20)

where u is the distance to the first shell of neighbors,
and u' is the distance to the second shell of neighbors.
By subtracting the computed dipole-dipole second
moments from the experimental In"'Sb NAR 1 and
NAR 2 (001) second moments, we obtain exchange
second moments. These values are set equal to the

B. Nuclear Exchange

In Sec. IV A, nuclear isotropic exchange between
like and unlike spins has been shown to qualitatively
explain the In"'"' NAR and NMR (001) second
moments. The fact that both like and unlike exchange
interactions are present indicates that the exchange
interaction is large enough to cause linewidth changes
from as far as the second shell of nearest neighbors from
the resonant nuclear spin. Such an observation means
that we can investigate the dependence of the exchange
constant on distance from the resonant nuclear spin.
I,et us assume that an exchange constant is as given in
Eq. (13), except that the dependence on r, ~ is r, I,

"
rather than r;~ 4. Then, the ratio of like to unlike
exchange constants for In"'Sb can be written

exchange contributions in Eqs. (7) and (8). The sum
for like neighbors in these equations is computed for
the 12 second neighbors at a distance a'= (4+8) uo,

and the sum for unlike neighbors is computed over the
Sb and Sb 3 nuclei that are 6rst neighbors
distance u= ~%3 uo. The exchange constants AI I„and
AI Sb can then be determined. Gueron'4 has measured
the wave-function density ratio for electrons at the
bottom of the conduction band in InSb as 4sb'/Ni„~
=1.70. With this wave-function density ratio and the
exchange constants, Eq. (20) is solved for the value of
e= 4.4~0.5.

Ke can follow a similar procedure to calculate
~rnid/Ai x.. In this case, no measured values of the
s-character electronic wave-function densities are known
for the In and As nuclear positions. To estimate the
ratio of wave-function densities at the nuclear positions
of In and As, we choose the ratio of atomic numbers.
Such a choice is not unreasonable on the basis of the
Fermi-Segre~' formula for wave-function densities. The
value of m=4 is found from an equation for In"'As
similar to Eq. (20). We conclude that the dependence
of the experimentally derived exchange constants on
internuclear distance agrees with that of Anderson's
exchange constant, Eq. (13), and therefore supports
his theory' ' for indirect nuclear exchange in semi-
conductors.

Additional support for the Anderson theory is seen
in the identical NAR 1 (001) InSb"' second moments
shown in Table IX. The three InSb samples have hole
and electron carrier concentrations that vary from 10'4

to 10'7 cm '. There is no dependence of the measured
second moment on hole or electron carrier concentra-
tion. This observation is in agreement with the theory
of Anderson, ' which states that the excited states of
biedieg etectrorls in semiconductors interact with the
nuclear spins via the hyperfine interaction.

The exchange constant of Anderson is now used to
analyze the (001) second moments. The second-moment
expressions in Eqs. (7), (8), and (10) involve sums of
the square of the exchange constants over the nuclear
positions around the resonant nuclear spin. It is easy
to show for such a compound as InAs that 98% of the
sum for the unlike-spin exchange constant comes from
the shell of first neighbors, and 96% of the sum for the
like-spin exchange constant comes from the shell of
second neighbors. Therefore, in the analysis described
below, we consider only sums over first and second
nearest neighbors.

We now consider the cross term sums involving
A, ~B,i, and A, i87, in Eqs. (7) and (8). Because of the
r, j, ' dependence of the cross products, the major
contribution to the sum involving 2;I,B,I, comes from
the first shell of neighbors, and to the sum over A, ~B,~
from the second shell of neighbors. If the nuclear spins

~ M. Gueron, Phys. Rev. 135, A200 (1964)."E. Femi and E. Segre, Z. Physik 82, 729 (1933).
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TABLE XI. Values of the exchange term a;&' computed from the
experimental (001) second moments.

Compound

InAs

InSb

GaAs

GaSb

Alsb

a'&2($0 14 cm2)

a2ZnZn ——0.76&0.08
a I~As Do 29&0@03
a znzn = 1.3~0.1
a2znsb =2.2+0.2
a G,G, =0.026+0.003
a2G, A, =0.026a0.003
a'As As =0 026~0 003
a2G sb=0.25+0.04
a2sbsb =0.48~0.08
a Azsb —0
a2sbsb =0.20+0.05

of either shell are identical, then the sum of the cross
terms over that shell is zero. If two nuclear isotopes
are present in the first or second shell of neighbors, the
sums of the cross terms may not be zero for a particular
resonant nuclear position. Because of the —,

' cos'0, 1,
——,

'
terms in 8,7, and B,~, the measured average second-
moment contribution from all of the resonant nuclear
spins will involve an average zero contribution from
the cross terms.

Previous determinations of the exchange constant
for NMR exchange broadened line shapes' ' have been
carried out by constructing theoretical line shapes from
numerically determined exchange interactions to nearest
unlike neighbors. Because we consider not only exchange
interactions between first but also second neighbors,
we use a direct comparison between the experimentally
determined (001) second moments and the theoretical
expressions given by Eqs. (7) and (8).

For convenience in analyzing the exchange contribu-
tions to the (001) second moments, we write Anderson's
exchange constant, Eq. (13), as

(21)
where

a,„=(8/9x.)y,'0't;4, '(0)fI+q'(0) m*. (22)

The (001) second moments due to exchange can be
written explicitly from Eqs. (7) and (8) as

Ss Nxa t = sS(S+1)P ajar ps' &rjI, "

to determine u, l,
' and a;I,'. In such computations for

the five compounds of Table VII, there is good agree-
ment for a;I,' determined for a given compound at A.

and 8 nuclear positions. The computed values of a, I,
'

and ct, A,
' are given in Table XI. In this Table, some

like-spin values of a,.I,' are missing because of the
inability to determine them accurately from the (001)
second moments.

The exchange constants which are computed from
the NAR second moments and shown in Table XI also
predict the measured NMR (001) exchange second
moments within experimental error. However, for
several nuclear-spin systems, the NMR peak-to-peak
linewidth is narrower than that computed from the
measured second moment assuming a Gaussian function
for the line shape. This effect is most evident for the
In"'As (001) NMR where the peak-to-peak width is
1.90 G, and the second moment is 2.80 G'. An explana-
tion of this small peak-to-peak width is that like-spin
exchange, while not affecting the second moment, does
increase the fourth moment of the line shape. Van
Vleck" predicts such an "exchange narrowing" due to
terms of the form A, I,2$;q' in the NMR fourth moment.

The s-character electronic wave-function density in
the solid i,+zs(0) at both A and 8 nuclear positions of
a given compound can be determined if an assumption
about the effective mass is made. We assume that the
effective mass for these large momentum electrons is
the free-electron mass. The wave-function densities are
easily computed from Eq. (22) and the values of Table
XI. Such computed wave-function densities are listed
in Table XII. The magnitudes of the wave-function
densities for InSb from Table XII can be compared
with the magnitudes measured by Gueron'4 for conduc-
tion electrons. Gueron finds values of 0 sb'=15.9)&10"
cm ' and 0'i„'=9.3&(10 ' cm 3, which are between
three and four times larger than the computed larger
momentum electron values of Table XII. Also in
Table XII, we notice that the ratio between the wave-
function density at 2 and 8 nuclear positions in the
same compound is quite close the ratio of atomic
numbers, except of InSb. Such a proportionality is
again expected on the basis of the Fermi-Segre" formula
for wave-function densities.

+2I(I+1)Q a;~'yz'It'r, g s) (23)
2

Ss N~a s =-s,S(S+1)Q a,g'ys'h'r, I,
'

TABLE XII. Values of the electronic wave-function density in the
solid, g,+P(0), computed from the exchange constants.

+sI(I+1)Q a,p'yz'0'r, 7, s, (24)

where the sum which includes a;I,' is for the four first
neighbors, and the sum which includes a;~' is for the
12 second neighbors. By subtracting the computed
dipole-dipole second moments from the experimentally
determined (001) second moments, we can use these
exchange second moments with Eqs. (23) and (24)

Compound

InAs

InSb

GaAs

GaSb

A1Sb

Nucleus

In
As
In
Sb
Ga
As
Ga
Sb
Al
Sb

3.7&0.2
2.3&0.2
3.5&0.2
4.5~0.4
2.0~0.2
2.0~0.2
2.3~0.3
3.5&0.6

~0
2.6&0.8
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C. Quadrupole Broadening

In this section, we first show that the quadrupole
broadening is due to a distribution of 6eld gradients.
We then characterize the broadening in terms of a
root-mean-square field gradient for each of the nuclear-
spin systems except AP'Sb. Finally, we determine the
probable source of the 6eM gradients and estimate the
ratios of antishielding constants between In, As, Ga,
and Sb.

It is possible to construct a quadrupole broadened
resonance line shape for a given nuclear-spin system by
using the quadrupole splittings and transition probabil-
ities of Tables I—IV and the second moments for these
transitions determined from Eqs. (15) and (16). Such
a computed resonance line shape is for a particular
resonant spin or for a sample of resonant spins under
a uniform field gradient. An assumption must also be
made about the shape of the resonance line shape of a
particular transition.

We have programlned an IBM 7072 computer to
determine the NAR (110) line shapes as a function of
the 6eld gradient producing quadrupole splittings. In
such a program, we have assumed that the NAR
transitions are Gaussian functions and have used

computed values of (110)dipole-dipole second moments
and isotropic exchange second moments. We compare
the experimental line shape with the particular com-
puted 6rst derivative of the quadrupole broadened
line shape which agrees with the experimental peak-to-
peak width. Such comparisons are made in Figs. 4(a)
and 4(b). We notice in Fig. 4(a) that the ( aAsr'
NAR 1 (110) experimental line shape has a different
shape and is much broader than the predicted theoret-
ical line shape for a uniform field gradient. We conclude
that a distribution of field gradients must be present.
In Fig. 4(b), the In"'As NAR 1 (110) experimental line
shape is qualitatively explained by the theoretical
shape for a uniform field gradient, except that the
experimental shape is broader, indicating some distribu-
tion of field gradients. It is interesting to note that the
splitting of the In"'As NAR 1 (110) line shape occurs
at a, ratio of the (110) to (001) peak-to-peak linewidths
of only 1.6. It is not possible to produce a theoretical
quadrupole splitting of the over-all (110) line shape for
such a ratio of split-to-unsplit linewidths except if the
2
—

2 and —,
'—,' transitions have line shapes with second

moments appreciably narrower than the (001) second
moment. Such a narrowing is predicted by the second
moments for these transitions that we compute in
Eqs. (15).

In order to characterize the distribution of field
gradients at the nuclear positions, we choose to use
the mean-square field gradient,

This field-gradient expression is computed from the

(110)NAR second moments of Table VIII by subtract-
ing the (110) dipole-dipole and exchange second
moments from the experimental second moments.
Consistent with this analysis, we find that NAR 1 and
NAR 2 second moments for the same nuclear-spin
system give the same mean-square 6eld gradient. In
Table XIII, we list the root-mean-square field gradients
determined for the five samples of Table VIII and the
two additional InSb samples of Table IX. We notice
that the magnitudes of the root-mean-square 6eld
gradients are approximately equal for the five samples
of Table VIII with approximately equal carrier con-.
centrations. We notice too that the field gradients
increase with increasing carrier concentration for the
three InSb samples.

The electric field gradients that produce quadrupole
broadening in the Qiiigv compounds ai.e chaiacterized
by magnitudes of the order of 10" esu cm ' for carrier
concentrations of 10' cm '. Another feature of the
field gradients is the strongly anisotropic quadrupole
broadening that they produce, as shown in Figs. 2 and
3. Simple considerations for the field gradients that

TABLE XIII. Root-mean-square 6eld gradients at A and 8 nuclear
positions computed from (110) quadrupole second moments.

Nucleus

In"'As
InAs75

InsbI» (1)
In»5sb(2)
InSb'" (2)
InSb"'(3)
Ga"As
GaAs"
Ga"Sb
GaSb"'
AlSb'"

(Ar-1 P. P' .2)lgr

(10"esu/cm')

2.9&0,1

1.3~0.1
2.2~0.1
4.4+0.2
4.8a0.3

11.0+0.5
1.8+0,2

2.2~0.1

2.6~0.1
7.3+0.2
3.4+0.2

134 gauss

FiG. 4. Comparison of experimental and theoretical quadrupole
broadened line shapes: (a) GaAs" NAR 1 (110) line shapes,
(b) inn'As NAR 1 (110) line shapes.
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I I I I I I I I From known transformation properties of third-order
tensors, we write Eq. (25) in the experimental reference
frame, where x' is along L110J, y' is along t 110$, and
s' is along 1 001j. We then compute the field gradient
component V„ for magnetic-field rotation in the (110)
plane and the (001) plane, which are given in Eqs.
(26) and (27), respectively. The angles 0~ and 4 have
the meanings given in Sec. III:

FiG. 5. Comparison with theory of the In"5As NAR 2 quadrupole
second moment as the magnetic field is rotated in the (110) plane.

produce such anisotropic broadening indicate that the
field gradients could be explained by strains along (111)
directions. The root-mean-square field gradient ratio
from Table XIII at the A and 8 nuclear positions in
the same compound can be compared with the ratio of
S-tensor components" at the same 2 and 8 nuclear
positions. These S-tensor components characterize
the field gradient produced by strain. The appropriate
S tensor component" to associate with a strain in the
(111) direction is 544. We compare the ratio of the
experimentally determined S44 components with the
ratio of the root-mean-square field gradient at the same
2 and 8 nuclear positions. Unequal ratios for InAs,
InSb, and GaAs and approximately equal ratios for
GaSb are found. Our conclusion is that the common
source of field gradients for all four of these compounds
is not strain.

It is difficult to understand the anisotropy of the
quadrupole broadening from any model which reduces
the lattice to a continuum. Cohen and Reif" consider
the electric fieM gradients produced by ions at large
distances from the ion by replacing the actual lattice
with a continuum approximation. Even to produce the
magnitude of the measured field gradients of Table XIII
on the basis of the continuum model would require ion
concentrations two to three orders of magnitude
larger than our measured carrier concentrations in the
samples.

An explanation that agrees with the experimental
data is that the electric field gradients are due to the
electric fields of the ionized substitutional impurities.
The strong anisotropy of the quadrupole broadening
relative to the crystal axes can be explained by a general
tensor relationship between electric field gradient
components V,, and the electric field components Eq

Vgg +14(E cos'0'+E, sin20),

U„=Rq4E, cos24 .

(26)

(27)

V '= 3Ri4'e'r (cos40~+sin'20~)

U~«~2 ——3+~42@y~ cos22@ .

(28)

(29)

2.5

N
al I5
O

C4

tD
1.0

We notice in Eqs. (26) and (27) that the field gradients
are zero for the magnetic field along (001) directions,
in agreement with no experimental quadrupole broaden-
ing in such directions.

Equations (26) and (27) can be used to develop
field-gradient expressions to compare with the measured
quadrupole broadening anisotropy. In the second
moment expressions of Eqs. (7) and (8) the field
gradient enters as the sum of the squares of the field
gradient component U„at each resonant nuclear spin.
We assume that each resonant nucleus is affected by
the electric field of no more than one ionic charge. The
values of the square of the field gradient expressions in
Eqs. (26) and (27) are computed for all nuclear spins
in a spherical shell a distance r from a point charge e.
We assume here that the appropriate electric field in
a III-V semiconductor for electronic' polarization is
eir' Such a c.alculation gives the average square field-
gradient dependence on angles 0' or 4 for all nuclear
spins in the field of the point charge. Equation (28)
gives the average square field-gradient expression for
rotation in a (110) plane and Eq. (29) for rotation in a
(001) plane:

Ug= &'~.I &I, (25)

~here E;,A is a third-order tensor whose nonzero
components are determined by the symmetry of the
zinc-blende structure. It can be shown'7 that E,;I, has
three identical nonzero components which we call 8~4.

"D. Gill and N. Bloembergen, Phys. Rev. 129, 2398 (1963)."E, Brun, R. J. Mahler, H. Mahon, and W. L. Pierce, Phys.
Rev. 129, 1965 (1963).

20 25

4 («II.)

Fro. 6. Comparison with theory of the GaAs'~ WAR 2 quadrupole
second moment as the magnetic field is rotated in the (001) plane.

'8 H. D. Brodsky and E. Burnstein, Bull. Am. Phys. Soc. 7,
214 (1962).
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In Fig. 5, we plot the experimentally determined In"'As
NAR 2 quadrupole second moments and the angular
dependence of Eq. (28) matched with the experimental
value at 0~=35'. In Fig. 6, we plot the GaAs~' WAR 2
quadrupole second moments and the angular depend-
ence of Eq. (29) matched to the experimental value at
C =O'. Considering the assumptions made to compute
Eqs. (28) and (29), we conclude that the tensor relation-
ship between electric field gradients and electric fields
is in good agreement with the anisotropy of the experi-
mental data.

The component R~4 has been determined experi-
mentally for GaAs by two different methods. ' ' The
static values' of 8~4 are 1.05X10" cm ' at the Ga '
nuclear position and 1.55X10"cm ' at the As" nuclear
position. We compare these values of 8~4 with those
estimated using the computed mean-square field
gradients, the carrier concentration, and the following
model. We assume that the charge carrier concentration
is the ionized impurity concentration and that these
ions are uniformally distributed, each with charge e.
The inter-ion separation is taken to be 2~0. We also
assume that the root-mean-square field gradients that
we compute in Table XIII characterize the held
gradients at the nuclei in a shell at a radius ro from an
ion. Most of the nuclear spins are in such shells around
each ion. With the assumptions of this model, we set
0=0' in Eq. (28) and compute R&4 Ga"As to be
0.4X10' cm ' and E&4 GaAs~' to be 0.5X10' cm '
Therefore, this model with the computed values of the
mean-square field gradients and impurity concentra-
tions equal to the carrier concentrations gives agreement
within a factor of 3 with the previous static values26

of E]4.
The results of a similar computation for the values

of 8~4 for InSb"' in the three InSb samples are shown
in Table XIV. We see that the intrinsic concentration
sample, InSb(1), has a value of R~4 larger than for the
other two InSb samples. It is possible that for the
intrinsic samples some degree of impurity compensation
takes place so that the actual ionized impurity con-
centration is larger than the charge carrier concentration

TAaz.E XV. Antishielding constants, 1—y„, computed from
root-mean-square Geld gradients. For Sb, 1—p„ is taken equal
to 1.00 and other values of 1—y„are computed relative to that
of Sb.

Nucleus

Sb
In
As
Ga

1.00
0.92
0.41
0.36

measured. In Table XIV, we give results of application
of the above model for 8~4 at the nuclear positions in
each of the compounds except at Al' Sb. We estimate
these values are within an order of magnitude of the
correct values. .

'

The explanation of electric Geld gradients arising
from the electric fields of the ionized substitutional
impurities appears consistent with this linewidth study
from the points of view of angular dependence and
magnitude. It is likely that the electric fields produce
increased electronic polarization of the chemical bonds.
The measured 6eld gradients can then be expected to
be due to charge eGects. The distribution of field

gradients should be identical at the A and 8 nuclear
positions in the same compound. Therefore, the ratio
of the measured fieM gradients in the same compound
at 3 and 8 nuclear positions should be equal to the ratio
of antishielding constants' at the same nuclear positions.
We assume that the antishielding constant is approxi-
mately equal g.t the same nuclear position in different
compounds. Since there are common nuclear-spin
systems in the compounds of Table VII, we can
determine the values of the antishielding constants for
In, Sb, As, and Ga relative to each other. In Table XV,
we list the values of these antishielding constants, where
the value for Sb is taken as 1.0. We compare the ratios
of antishielding factors from Table XV and the ratios
of the magnitudes of antishielding factors found
previously" from the separated ionic contributions to
the 5-tensor components. There is agreement for the
Ga/Sb and AsjSb ratios and approximate agreement
for the In/Sb ratios.

Nucleus

In"~As
InAs"
InSb»1(1)
In"~sb (2)
InSb»&(2)
InSb»'(3)
Ga'f'As

GaAs"
Ga'9Sb
GaSb»'
AlSb»'

R14 (10 cm )

0.7
0.3
9.0
1.0
1.0
0.5
0.4
0.5
0.1
0.3
0.7

TAsx,z XIV. Values of R&4 computed from measured mean-square
Geld gradients and measured carrier concentrations.

V. SUMMARY

(1) Nuclear acoustic resonance and. NMR applied
to the same nuclear-spin system simplifies the identifica-
tion of the linewidth broadening mechanisms. In
particular, study of NAR 1 and NAR 2 second moments
due to exchange allows the evaluation of both like-spin
and unlike-spin exchange constants if the exchange
constant dependence on interaction distance is known.
Linewidths observed by NAR 1 are much more sensitive
to quadrupole broadening than linewidths observed by
NMR. There are two reasons:

(a) The largest transition probabilities between
quadrupole split energy levels are associated with the
energy values with the largest values of ~m~.
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(b) The transitions between energy levels of largest
values of ~nt~ have second moments due to like-spin
exchange and like-spin dipole-dipole interactions, which
are smaller than the second moment of the line shape
without quadrupole broadening.

(2) We And experimental agreement with the
interaction distance dependence in the exchange
constant derived by Anderson. The electronic wave-
function densities at A and 8 nuclear positions are
determined using Anderson's exchange constant, an
assumed effective mass equal to the free-electron mass,
and the experimental exchange second moments.

(3) The broadening of the resonance line shapes of
each nuclear spin-system as the magnetic field is
rotated from (001) directions. is explained as due to
anisotropic dipole-dipole and anisotropic quadrupole

interactions. The quadrupole second moments are due to
a distribution of 6eld gradients, which are characterized
by a root-mean-square field gradient. The experimental
quadrupole second-moment anisotropy and the magni-
tude of the mean-square Geld gradient agree with an
explanation that the electric field gradients are due to
the electric fields of the ionized impurities. The tensor
component 814 is estimated at the nuclear positions,
and the ratios of the antishielding factors between In,
Sb, Ga, and As nuclear positions are determined.
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Mossbauer studies of antiferromagnetic FeCO3 below and above the Noel temperature show an asym-
metric line broadening, and a constant value of 184 kOe of the magnetic hyperhne field from 0 to —', T~.
These phenomena are explained using an Ising model with slow electron relaxation. The relaxation rate
decreases with decreasing temperature, suggesting a spin-lattice relaxation. The Neel temperature was
found to be (38.3+0.3)'K, which is 3.3'K higher than that measured by neutron diffraction.

INTRODUCTION

ECENTLY, electron-spin relaxation phenomena
have been observed by many investigators' '

using Mossbauer technique. However, most of these
studies in iron compounds were restricted to the Fe'+
ions, and to my knowledge no relaxation effects in the
Fe2+ ions in an antiferromagnetic material have been
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*Present address: Department of Physics, Yonsei University,
Seoul, Korea.
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observed. The purpose of this paper is to present the
Mossbauer spectra of antiferromagnetic FeCO3 at low
temperatures, and to explain the observed phenomena in
terms of slow electron relaxation between two lowest
states of the Fe'+ ions.

Ferrous carbonate, occurring naturally as the mineral
siderite, has a rhombohedral (calcite) structures with
a bimolecular unit cell which has the dimensions
@0=5.795 A n= 47'45'. Its structure may be visualized
as an NaC1-type lattice contracted along a body diag-
onal, and, therefore, we may expect the ferrous ion to
be under the inliuence of a crystalline electric 6eld of
cubic symmetry in the first approximation, and of the
trigonal field in the second approximation. Magnetic
susceptibility'~' and neutron diffraction' measure-
ments have established antiferromagnetic behavior at
low temperatures with the Fe'+ spins pointing along the
trigonal c axis, in alternating (0 0 0 1) ferromagnetic

'R. W. G. Wyckoff, Crystal Strnctnres (Wiley-Interscience,
Inc. , New York, 1964), Vol. 2.
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