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A procedure for the measurement of intensity correlations of the type CIx,)I(xt+7):) and (T(x,0)
XI(x,t+71) I (x,t+72):) with the use of a time-to-amplitude converter is developed. The procedure is used
to measure second- and third-order intensity fluctuation correlation functions of the optical field produced
by a gas laser operated at various levels near its threshold of oscillation. The results are shown to be in

agreement with the predictions of laser theories.

I. INTRODUCTION

HE correlation functions of a stationary optical
field contain information about the nature of the
radiation field, and, indirectly, about the nature of the
source.”™ The most elementary correlation function
that can be measured is one in which the optical field
strength is sampled at two space-time points and the
mean value of the product is formed. This type of corre-
lation function is referred to as a second-order corre-
lation function and is usually measured with the use of
an interferometer.

Higher-order correlation functions of optical fields
are also of interest and are experimentally measured
with the use of photoelectric detectors. The second-
order intensity correlation function, or fourth-order field
amplitude correlation function, is defined® as the trace
of the product of a diagonal density operator and nor-
mally ordered operators corresponding to the negative-
and positive-frequency components of the operator that
represents the second quantized description of the
electromagnetic field at two space-time points. An
arbitrary nth-order intensity correlation function, or
2nth field amplitude correlation function, is similarly
defined as the trace of the product of a diagonal density
operator with appropriate normally ordered operators
representing the positive- and negative-frequency
components of the electromagnetic field at # space-time
points.

Glauber®” has shown, with the aid of a heuristic
argument, that the joint probability of two photode-
tectors, one located at xi, the other at xz, absorbing one
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photon at point X; at time #; within Af#;, and another
photon at point X, at time £+ 7 within A7 is proportional
to the second-order intensity correlation function of
the optical field incident on the detectors. This second-
order intensity correlation function is denoted by
(:I(x1,t) I (x2,t1+7): ), where the symbol :: means the
operators that represent the field intensity appear in
normal order, and the angular brackets denote that a
trace of the product of the density operator and the
normally ordered operatorsis to be taken. Later work®—10
indicated that the results of Glauber’s argument were
correct and that the twofold joint probability of two
photodetectors absorbing a photon at the space-time
points Xy, 1, Xs, {47 within time intervals Af; and Ar
was given by aicS1ALascSsAT(: I(x1,t1)1(xs, 1t 7) 1),
where a; and a3 are the dimensionless quantum efficien-

" cies of the photodetectors, and .S; and S, are their

surface areas.

Second-order intensity correlation functions of the
type (:f(x1,t)I(xs, ti+7):) have been measured with
the use of analog photomultiplier signal-correlation
apparatus, as in the Hanbury Brown-Twiss experi-
ments,!! and also with the use of a coincidence counter,!?
that measured the twofold joint probability of photon
absorption at two different space-time points. Analog
signal-correlation techniques do not directly yield the
correlation function (:f(xy,t:)[(xs, Hi+7):) but give
a related quantity’® and are best suited to situations
where the optical field is strong enough to produce high
photomultiplier counting rates. The use of a coincidence
counter requires the use of calibrated lengths of delay
cable to study (:1(xy,t1)I(xs, t47):) as a function of r,
and requires a separate measurement for each value of
7 considered.

Measurements of the probability P(#,7) of one
photodetector registering # counts in a counting time 7"
have also been made to obtain information about
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185 PHOTON
second-order intensity correlation functions.'* The
fluctuation in the square of the number of counts ob-
served in a counting time 7', ((Anr)?) is related to the
correlation properties of the optical field incident on the
photodetector.1®

Analysis of the frequency spectrum of the fluctu-
ations in the output current of a photomultiplier has
also been used as a means of experimentally measuring
second-order intensity correlation functions.16:17 If
the optical field is stationary, the Fourier transform of
the square of the frequency spectrum of the photo-
multiplier output current fluctuations can be related
to the second-order intensity fluctuation correlation
function.*18

It was the purpose of this investigation to develop a
method for the measurement of second- and third-
order intensity correlation functions, and to apply it to
the study of a gas laser beam. It was found that the
desired measurements could be made with the use of a
time-to-amplitude converter (TAC), and that this
method would have the following advantages over the
other possible methods: (1) While the TAC output
data are not as directly related to the desired intensity
correlation functions as the data obtained from a co-
incidence counter, the TAC accumulates data at a
much higher rate and does not require separate measure-
ments for each 7 value considered; (2) since the TAC
processes individual photoelectron pulses, measure-
ments can be made on very weak optical fields. Both
analog signal correlation measurements and frequency
spectrum measurements on photomultiplier current
fluctuations require high photomultiplier counting
rates and work well only on optical fields intense
enough to produce high photodetector counting rates;
(3) while detailed information about intensity corre-
lation functions is obtainable from P(#,7) measure-
ments, it was found that less data and computation
were necessary to determine the behavior of second-
and third-order intensity correlation functions with the
use of TAC. Some preliminary results of measurements
made with TAC techniques of intensity correlation
functions of a gas laser beam have already been
reported.%:20

Section II gives a brief outline of the method used to
make measurements of second- and third-order inten-
sity correlation functions with the use of a TAC.
Section ITI describes the experimental apparatus used
to measure these correlation functions of a gas laser
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operating near its threshold of oscillation. Section IV
compares the experimental results with the theoreti-

cally expected behavior of a gas laser operated near
threshold.

II. THEORY OF CORRELATION
MEASUREMENTS WITH TAC

The correlation function {:I(xy,t1)f(xz, ti4-7):) can
be found from a measurement of the joint probability
of photoelectric detection of two photons, one at space-
time point Xy,f; within time Af; and the other at space-
time point X, {47 within time A7. A TAC is a device
which measures a quantity closely related to this joint
probability, Pa(xy, t, Xs, Li+7)AlLiA7. It operates as
follows: Photoelectron pulses from one photodetector
are fed to the “start” channel of the TAC, and photo-
electron pulses from a second photodetector are fed
to the “stop” channel of the TAC. Once a start pulse
has been received, the unit begins charging a conversion
capacitor linearly with time. With the next stop pulse
the charging process stops. The voltage accumulated
on the conversion capacitor is transformed into an
output pulse whose height is linearly proportional to
the time interval between the start and stop pulses. The
output pulse is then fed to a pulse-height analyzer for
storage. Once the TAC starts, all other start pulses are
ignored until the unit has either made a conversion or
has fully charged the conversion capacitor and reset it
to zero volts. No stop pulses are accepted until a start
pulse has initiated the conversion process. Once a stop
pulse has been accepted and a conversion made, all
other stop pulses are ignored until the unit has been
completely reset and a valid start pulse has again
initiated the conversion process. If no stop pulse arrives
to stop the charging process before the conversion
capacitor is fully charged, the unit produces no output
pulse, and resets as soon as the capacitor is fully
discharged.

A detailed mathematical analysis of the operation of
the TAC has already been presented.?! The results of
that analysis are as follows. The rate R(7) at which
TAC conversions corresponding to start and stop
pulses spaced 7 seconds apart are stored in one channel
of width Ar of a pulse-height analyzer is given by a
modified twofold joint probability, Ps(xy, ts, Xs, l+7;
no stops in #—71<t;<ti+7; no starts in H41—Tw
<1, <t)Ar. Twis the conversion range in seconds of the
TAC, and T, is the delay introduced in the TAC stop
channel, so that conversions corresponding to the simul-
taneous arrival of start and stop pulses are not recorded
in channel O of the pulse-height analyzer. Some TAC
conversions will not be recorded because of dead time
losses of the TAC. With the inclusion of dead time losses
and a quantitative expression for the modified twofold

21 F. Davidson and L. Mandel, J. Appl. Phys. 39, 62 (1968).
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joint probability, R(r) can be expressed as

R(T) =a1(¥26251S2AT< : j(X1,Z‘1)f(X2, t1+T)

ti+7 R
Xexp( —a20Ss / I(xZ,t')dt’>
t

7L

t1
Xexp(—alc& / f(xl,t’)dt’) : >
t

1—Tw

Xexp[ —(TAC conversion rate) X (dead time)]. (1)

If the stationary optical field incident on the photo-
detectors contains no correlated intensity fluctuations,
Eq. (1) reduces to

R(T) = RleAT CXPE—RQ(TL+ T) —Rlij
X exp[ — (TAC conversion rate) X (dead time) ], (2)

where R; and R; are the photodetector average counting
rates, given by acSi(:1(x1):) and a6Ss(:I(xz):),
respectively. If the average counting rates are kept
sufficiently low, and beam splitters are used so that
both photodetectors view the same point of the optical
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field, Eq. (1) can be expanded to yield the following
integral equation for A(r), a second-order intensity
fluctuation correlation function:

1 +Tw
A(r) =——&(r)+Rs / A=)

1U2

@, 7L 6, rIw
+Ro— / N7")dr' +Ri— / N7)d+'
01/ 2 Jo

+R. / Nr)dr', (3a)
—Ty

where 6; is the phototube dark-current correction factor
and is calculated by subtracting from the photodetector
average counting rate the photodetector average back-
ground counting rate and then dividing by the photo-
detector average counting rate. \(7) is defined as

_ <: Aj(x,h)Aj(X, ll+7') . >
CCI I

and £(r) is the normalized excess rate at which the con-
versions are made for photons spaced 7 sec apart;

A(r)

(3b)

R(7) —RiR:A7 exp[ —Re(T'+7) —RiTw] exp[ — (TAC conversion rate) X (dead time)] 30
S . c
g RiR>A7 exp[ —Re(T'.+7) —RiTw] exp[ —(TAC conversion rate) X (dead time)]

Equation (3a) can be solved by iteration, with the zeroth-order solution for \(r) taken to be the measured quantity
&(7). The convergence of the equation will be illustrated in Sec. IV. Equation (3a) is accurate only if Ry7w and
R,T1, are kept very small compared to unity.

Third-order intensity correlation functions can also be measured with TAC, by starting the TAC with the output
of a coincidence unit fed by two photodetectors. The rate at which TAC conversions are made, R(r1,72), is given
by a modified threefold joint probability that a photon is absorbed at the space-time points xy,¢; within a time
Aty Xo, L1+ 71 within a time A7y, and X3, /17, within a time A7s;

1+7
R(r,m2) = Py(xy, 1, Xo, 1471, X3, li+72; DO stops in 1 —T<t;<ti+72;
1—T
no coincidences in t — 7w <t <t)dri'Ars.

T is the width of the pulses fed to the coincidence unit and 7; is a delay created with a cable inserted between one
photodetector and the coincidence logic unit. With the substitution of a quantitative expression for P; and the
approximation that 27" is much less than the time over which second-order intensity correlations persist, the ex-
pression for R(r1,72), the rate at which conversions are stored in one channel of width Ar, of the pulse-height
analyzer, becomes

t1+7e

R(TI’TQ) =a1a2a3635152532TA7'2<:j(Xl,ll)j(Xz, 11+T1)f(X3, i1+72)€Xp< ——a3CS 3/ j(X;;,h’)dh’)

4a—-Tp,

1

X exp( — 01050251892 T / I(xi,t") I (xe, t1/ +71)dty : > exp[ —(TAC conversion rate) X (dead time)]. (4)

H—Tw

If the quantities R37';, and RiR:2TT'w are kept small compared to unity, and if beam splitters are used so that all
three photodetectors view the same point of the optical field, then Eq. (4) can be expanded to yield the following
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integral equation for the third-order intensity fluctuation correlation function A(71, 72):

1 1 1 1 R3 T2 _R3 72
Mr1,72) =——&(71,72) —N(11) ——AN(—T1F72) —5—?\(72) —I-o— / MN—=71+7)dr+—

10203 3 01 2 1J-1p, 2

A7)dr'

T

65 72 T2 R393 T2 R303 T2
+R3—0~/ )\(TQ,T/)dT"‘l‘Rs/ N, 7)dr'+ / )\(‘—TZ—I“T/)dT,"‘——‘/ M —=r1+72, —71+7")d7", (Sa)
T _ _

—TL 102 T 1 TL

where

(:AT(x,t) AL(x, i) AL(X, li+72): >
(:I(x):)

&(r1,72) 1s the normalized excess rate at which conversions are made that correspond to detection of photons at
the space-time points;

Nr1,72) =

(5b)

R(71,72) —R1R2R32TA7s exp[ —R1Rs2TTw—R3(T .+73) — (TAC conversion rate) X (dead time) |
RiRsR32TA7s exp —RiR:2TTw —R3(T1+72) —(TAC conversion rate) X (dead time) ]

E(ryTe)=

(5¢)

A rigorous solution of the integral Eq. (5a) would require detailed knowledge of the normalized measured excess
£(71,72) as a function of both 7; and 7. Detailed information about £(71,7,) as a function of 7, was available from the
data in the pulse-height analyzer that stored the TAC conversions. Information about £(r1,75) as a function of 7,
could only be obtained with the use of calibrated lengths of delay cable inserted between one photodetector and
the coincidence logic unit. Since equally detailed information about the 7; and 7, dependence of #(r1,75) was
unavailable, 7; was treated as a constant in Eq. (5a), which then was reduced to an integral equation containing

only one variable.

ANr,me) =

1V2U3

72

63 71
+Rs— / )\(T1,T’)dT’+R3 / >\(T1,T/)dT’+
02 Ty

—-Ty 01 2

Equation (6) was solved by iteration. The zeroth-
order solution was computed from the normalized
measured excess and the terms involving the known
second-order intensity fluctuation correlation functions
A\(7). The convergence of the iteration process will be
discussed in Sec. IV.

III. EXPERIMENTAL APPARATUS
AND PROCEDURES

Figure 1 is a block diagram of the apparatus used to
make measurements of second-order intensity corre-
lation functions of the optical field produced by a laser
operated near its threshold of oscillation. The laser
used was a Spectra Physics 119, single-mode He-Ne
laser that had one mirror of the optical resonant cavity
mounted on a piezoelectric cylinder. The plasma tube
was slightly misaligned in the optical cavity so that only
certain positions of the movable mirror would provide
enough cavity gain for oscillation to occur.?? The laser
was operated at an arbitrary intensity in the threshold
region with the use of an amplitude stabilization feed-

22 H. Gamo, R. Grace, and T. Walters, in Proceedings of the

Second Rochester Conference on Coherence and Quantum
Optics, 1966, p. 183 (unpublished).

1 1 1 R; rm R; rm
E(r1y72) ——A\(rs) ——N(—71-F 1) ——A(79) F— / N(=ridr)dr 4 —
03 01 02

R303
Sl

N7)dr

1J-71yp 2 J-Tg,

T2 0

03
N —7e+7")dr'+Rs—

T 0

M =71, —m1+7)dr. (6)

-7L

back control circuit that sensed the laser’s average
intensity and applied a control voltage across the piezo-
electric cylinder that determined the position of the
mirror attached to it. The control circuit consisted of
an integrator with a 0.1-sec time constant, a dc bias and
a pentode dc amplifier. The laser’s average intensity was
varied by changes in the dc bias in the input to the
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DISCRIMDNATOR
GENERATOR
SCALER 77777777

T SCALER — —
B - _—

PULSE HEIGHT
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Fic. 1. Block diagram of the apparatus used to measure second-
order intensity correlation functions.
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F16. 2. Block diagram of the apparatus used to measure third-
order intensity correlation functions.

dc amplifier. The interference filter, polarizer, and
"1-mm pinhole isolated the 6328-A emission line and ex-
posed the photodetectors P1, P2, and P3 to spatially
coherent light of one degree of polarization.

Individual photoelectron pulses from the photo-
multiplier tubes (type RCA 4459) P1 and P2 were
amplified, shaped by fast discriminators, and fed to the
start and stop inputs of the TAC. The TAC output
pulses were stored in the channels of a 100-channel
pulse-height analyzer.

The laser control circuit was unable to prevent slow
variations in the laser average intensity due to acoustic
vibrations of the movable mirror in the laser resonant
cavity. A window discriminator gating unit was con-
structed that sensed the laser average intensity and
gated on the pulse-height analyzer only when the laser
average intensity was within 4239, of a preset value.
This permitted measurements of {:7(xi,t:)/(x1 ti+7):)
as a function of average laser intensity to be made in
the threshold region of oscillation. The integrator pre-
ceding the input to the window discriminator had a
time constant of 20 msec, so that only the slow varia-
tions in intensity due to acoustic vibration, and not
the fast intensity fluctuations intrinsic to a laser
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The window discriminator gating unit was also used
to gate a timing arrangement that recorded the length
of time that the pulse-height analyzer was allowed to
accumulate data, and also could be used to monitor
the average photomultiplier tube counting rates. The
timing circuit consisted of a stable 100 kc/sec pulse
generator, fast discriminators, and fast scalers.

The apparatus used to make measurements of third-
order intensity correlation functions is substantially the
same, and a block diagram of it is shown in Fig. 2. It
differs from that of Fig. 1 in that the output from a
coincidence logic unit is used to start the TAC.

The response of the apparatus shown in Figs. 1 and 2
to a source with no observable correlated intensity
fluctuations was measured. The photodetectors viewed
an incandescent lamp (it had a correlation time of 10~13
sec) driven by a stable dc current, instead of the laser
source. At the same time, the laser was operated near
threshold and the window discriminator gating unit
used to gate the pulse-height analyzer and timing
circuits was driven by the output of the laser. The
response of the apparatus was observed to be that
predicted by Egs. (3¢) and (5¢). &(7) and &(r1,72) were
observed to be 0.004=0.02 for all values of 7 and 74,7,
measured.

IV. EXPERIMENTAL RESULTS
A. Second-Order Intensity Correlation Functions

A relatively small digital computer (IBM 1130) was
used to solve Eq. (3a) for the second-order intensity
fluctuation correlation function. The computer first
calculated 60 values of £(7) from data points taken from
a smooth curve drawn through the raw data accumu-
lated in the pulse-height analyzer (see Fig. 3).28 Since
some of the integrals in Eq. (3) required values of the
integrand not directly measurable, an approximation
was made.

The normalized measured excess £(r) was linearly
extrapolated for an additional 30 increments of 7, and

s
operated near its threshold of oscillation, acted on the . o
window discriminator. F---'::::_.:_. ................ A%z, arprox. A
' 3 '
2000 : L
= Q)
1900f- ‘e o N <I> = 2.9 X 10° COUNTS / SEC. “E T " e
1eool- \\ .
£ 1700} E(x)
3 1s00}
o Nl I Il L L L 1
& 15004 (o] 10 20 30 40 50 60
< 400! CHANNEL NUMBER
2 ool 0 238 476 714 9.52 1190 1428
DELAY, 7, IN usec
12001 . .
ool F1c. 4. Plot of the computed solutions to the integral
. equation for N\(7) as a function of 7.
1000
o 0 20 30 40 50 60 70 80 90 - . .
CHANNEL NO. 23 Figure 3 is a plot of the number of counts in each channel of

F16. 3. Plot of the number of counts in each channel of the pulse-
height analyzer as a function of channel number.

the pulse-height analyzer as a function of channel number. The
lower solid curve represents the number in each channel expected
from a source with no correlated intensity fluctuations.
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then set to equal either zero or its last computed value.
These values of £(7) were then used to calculate the
first-order solution A(7) to the integral Eq. (3a).
AD(7) was used to compute the second-order solution
to A(7), and so on until the successive computed solu-
tions to A(r) differed by less than 0.0001. Fewer than
10 iterations were needed to achieve this. The functions
A\(7) were approximated by A(90) or by 0 for arguments
in excess of the first 90 values considered. Figure 4
illustrates the rapid convergence of the iterated solu-
tions for A(7) and the negligible difference between the
two approximations used in solving the integral
equation. Approximation A4, which treats A?)(7) as a
constant after the first 90 values, clearly overestimates
the true solution, and approximation B, which sets
A (7)=0 after the first 90 values, underestimates the
final result. In any case, the difference between the two
procedures is negligible. The example illustrated is for
the worst possible case where A\(r) remains appreciable
over the entire range of values considered. The final
solution was considered accurate only for the first 60
values of the computed function.

Measurements to determine A(7) were made for 18
different laser average intensities about, and including,
the threshold of oscillation. Figure 5 is a plot of the value
of N(r) at 7=0, \(0), as a function of laser average
intensity. Well below threshold, the laser behaves as a
thermal source, with N(0)=1.0. As threshold is ap-
proached and exceeded, N(0) decreases and reaches 0.0
well above the threshold. A(0) is also the counting excess
and has been measured by Arecchi ef al.,?* Chang et al.,?®
Armstrong and Smith,* and Freed and Haus.l” The
solid curve is the theoretically expected behavior of A(0)
as calculated by Lax and co-workers?6=2% and by other
authors as well.2%-3¢ The mean laser intensity is ex-

RELATIVE EXCESS FLUCTUATION X(0)

1.0 ——i—i—i—i—fﬁ!\
[N

2T s
\i
S S SN N S B 1 [ | 1 1\‘1]
10* 2 4 6 810° 2 4 6 8 10° 2 4 6 810

MEAN LIGHT INTENSITY IN COUNTS/sec

F1c. S. Plot of the values of A(7) at r7=0 as a
function of average laser intensity.
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F1c. 6. Plot of the computed values of A\(7) as a function
of 7 on a logarithmic scale.

pressed in terms of the counting rate which the photo-
multiplier P2 would have shown had there been no
attenuating neutral density filters between it and the
source. Comparison of experimental and theoretical
results was made with the use of one scaling parameter
that matched the dimensionless mean intensity of the
theoretical laser to the mean intensity of the laser
studied at one point, near N(0)=0.5. The errors in the
experimental values N\(0) are estimated as #+0.02 and
result from the statistical uncertainty of the best
smooth curve to draw through the raw data points
stored on the pulse-height analyzer. These results are
in agreement with other experimental determinations
of NO) from photoelectric counting distribution
measurements. 142425

All of the experimentally observed correlation func-
tions A(r) were observed to be roughly of the form
N7)=N(0) exp(—|7|/T.) as shown by the example in
Tig. 6. Figure 7 is a plot of the decay constants T, as a
function of mean laser intensity. The solid curve is the
theoretically expected behavior of the 7', as a function of
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F16. 7. Plot of the values of the decay constant T, as a function of
average laser intensity on a logarithmic scale.

32 H. Risken and D. Vollmer, Z. Physik 210, 323 (1967).
( 33 V§7 Weidlich, H. Risken, and H. Haken, Z. Physik 201, 396
1967). .

3 W. Lamb and M. Scully, Phys. Rev. 159, 208 (1967).
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Fic. 8. Plot of the values of N(0,0) as a function of
mean laser intensity.

mean laser intensity.?6=%3. Comparison of experimental
and theoretical values of 7', was made with the use of
the same mean intensity scale factor as in Fig. 4 and
one additional scaling parameter that matched the
theoretical dimensionless decay constants to the experi-
mentally observed values at one point near 7°,= 20 usec.
The experimental results are in agreement with those
obtained from a spectrum analysis of fluctuations in the
output current of a photomultiplier.”

The errors in T, the value of the decay constant,
were obtained by variation of the slopes of the best
straight line that could reasonably be drawn through the
computed values of N\(r) plotted on semilogarithmic
graph paper as a function of 7. They were found to be
+59%, for mean intensities below the peak in Fig. 5.
Because of the low values of A\() and fixed uncertainty
of £=0.02 in them, the errors in T'; were =4=109,, for mean
intensities above the peak in Fig. 5.

2.001

Te = 9lpustOus
(7= Ops)

.80
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'. = 585us)
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10 1 Al | ’ J
o 770 154 231

T, IN psec

F16. 9. Plot of the values of A(r1,72) as a function of 72 for a
fixed value of 71 on a logarithmic scale.
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Tasre I. Experimental results for second- and third-order
intensity correlation function decay constants.

Mean
light Time constant
intensity Time constant for decay of
(108 fordecay of  A(71,72) with Time constant for
counts/ A7) with 7110 u sec decay of A (71,72)
sec) 7in usec (r2=0) with 79 in u sec
6.440.6(r;=0)
1.3 6.2+0.6 6.440.6 6.640.6(71=2.73 u sec)
7.340.6(r1=5.85 usec)
9.1£1.0(r,=0)
24 10.7+£1.2 9.5+1.0 10.341.0(71="5.85 p sec)
11.541.0(r;=11.7 u sec)
16 +1.6(r1=0)

5.6 27.640.2 18 =+1.5 14.241.4(r1=8.55 usec)
17 £2 (11=0)

9.6 36 +1.8 16 +£2 19 £2 (r1=8.55pusec)

B. Third-Order Intensity Correlation Functions

A digital computer was used to solve Eq. (6) for the
desired intensity correlation function \(71,75) by iter-
ation. The zeroth-order solution to Eq. (6) was com-
puted from £(71,72) and measurements made to de-
termine A\(r) immediately preceding those made to
determine \(71,72). The values of 7; used were not large
enough to require extrapolation procedures to determine
measured values of the integrands in Eq. (6). The
computed solutions A (71,75) again converged rapidly
(less than 10 iterations).

Measurements were made to determine A(71,72) as a
function of 7; and 7, at several laser average intensities
in the threshold region. Figure 8 is a plot of M(0,0) as
a function of mean laser intensity. A(0,0) is closely
related to the third moment of counting distribution,
and has been measured by Chang et al.?® The solid
curve is the theoretically expected behavior of X(0,0)
in the threshold region as computed from the work in
Ref. 28. The errors in A(0,0) are estimated at 40.06
and result from the dependence of A(r,72) on three
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F1c. 10. Plot of the values of T, as a
function of mean laser intensity.
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experimentally determined functions of the type \(7),
each of which can be determined to an accuracy of
+0.02.

All of the experimentally observed correlation func-
tions \(71,72) were observed to be approximately of the
form N(r1,72)=X(0,0) exp(—|71|/T"') exp(—|72|/T")
as shown by the example in Fig. 9. Well below threshold
T, was observed to be equal to T, the second-order in-
tensity fluctuation correlation decay constant. As the
threshold of oscillation was approached, 7", was ob-
served to depart increasingly from 7. [Table I lists the

CORRELATIONS IN A LASER BEAM
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decay constants T, and T/ of the correlation function
A7) and A(71,72) with respect to 7, 71, and 4.

Figure 10 is a plot of 7';’ as a function of mean laser
intensity. The solid curve represents the behavior of T,
in the threshold region. The values of T that resulted
from measurements made to determine the function
A(7) to be used in calculating A(r1,72) from Eq. (6) were
in agreement with the solid curve. No theoretical decay
constants 7°,” for the third-order intensity fluctuation
correlation functions as a function of mean laser inten-
sity in the threshold region have been calculated so far.
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Dielectric Relaxation in Alkaline-Earth Fluoride Crystals*
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Dielectric absorption has been investigated over a temperature range from —34 to 450°C and a frequency
range from 1 to 105 cps for doped CaFs, BaF,, and SrF. crystals. The activation and association energies
for the dipolar complexes have been determined. The activation energy for CaF; doped with 0.01-mole?%,

Y3 was found to be 1.17 eV.

I. INTRODUCTION

HE effects produced by the doping of ionic crystals

with known concentrations of aliovalent cations

can be investigated using various techniques. Several
investigations have shown that the predominant in-
trinsic defects in CaFs-type crystals are Frenkel anion
pairs.'* When a trivalent ion replaces a positive
divalent ion in the lattice of an alkaline-earth fluoride
crystal, a singly charged negative ion interstitial may be
introduced into a next-nearest-neighbor position as a
charge compensator. A dipolar complex results from the
cation impurity possessing an extra positive charge, and
the interstitial possessing an effective negative charge.
Both Zintl and Udgard® and Short and Roy? have
shown that a dissolved trivalent yttrium ion is ac-
companied by an interstitial fluorine ion. With the aid of
conductivity experiments, Ure® has shown that a
trivalent yttrium ion is associated with an interstitial
fluorine ion, and a sodium ion is associated with a
fluorine vacancy. Also, electron paramagnetic studies of
rare-earth-doped alkaline-earth fluoride crystals have
demonstrated that the rare-earth site has tetragonal
symmetry which may be explained by the presence of a

* Work supported in part by the National Science Foundation.

t Present address: Panametrics, Inc., Waltham, Mass.

1 Based in part on work submitted by M.S.M. as a thesisin par-
tial fulfillment of the requirements for the doctoral degree at
Boston College.
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charge compensating fluorine interstitial at a nearest-
neighbor position.*

Dielectric measurements on the alkaline-earth fluo-
rides have been previously reported.®~? Our investiga-
tions have been principally concerned with dielectric
relaxation in doped CaF,, BaF,, and SrF..8 The phe-
nomena observed can be described in terms of the
relaxation mechanisms originated by Debye® and later
applied to crystal imperfections by Breckenridge.?
Using the method described by Lidiard" the expression
for an alkaline-earth fluoride crystal of the loss tangent,
for a single loss mechanism possessing a unique relaxa-
tion time is

tand= (4ra?e?N ;p/3kTe)wr/ (1+w?72),

where ¢ is the anion-cation separation, e is the electronic
charge, V; is the concentration of the impurity ion, p
is the degree of association, & is Boltzmann’s constant,
T is the absolute temperature, € is the static dielectric
constant of the crystal, w is the angular frequency of the
applied electric field, and 7 is the relaxation time. The

4 B. Bleaney, P. M. Llewellyn, and D. A. Jones, Proc. Phys. Soc.
(London) 6913, 858 (1956).
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