
PH YSICAL REVIEW VOLUME 185, NUMBER 2 10 SEPTEM BER 1960
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A theoretical study of the polarization dependence of stimulated Rayleigh-wing scattering and the
optical-frequency Kerr effect has been undertaken. When the incident light is circularly polarized, a striking
difference in gain is found for the co- and counter-rotating senses of polarization of the scattered light-
the former being suppressed and the latter being exceptionally favored. The analysis begins with a model
for the Kerr eBect, which involves the alignment of anisotropic molecules in an electric Geld, but the re-
sults can be immediately generalized to any light scattering process of tensor symmetry. The nonlinear
problem of the propagation of an intense elliptically polarized light wave in a Kerr-active medium is shown
to have a solution in which the vibrational ellipse undergoes self-precession and self-retardation. The
stimulated scatterings or instabilities of such a self-precessing and self-retarding light wave are obtained
for the backward and forward directions. Birefringence, optical activity, and linear and circular dichroisms
are some of the phenomena which result, but the forward direction yields substantially different results
from the backward direction because of Stokes —anti-Stokes coupling.

I. INTRODUCTION

''T has been observed by Foltz, Cho, Rank, and
~ - jiggins that stimulated Rayleigh-wing scattering
behaves quite differently when the incident light is

linearly or circularly polarized. They found that excita-
tion with linearly polarized light results in a digttse

Stokes wing of the same polarization, whereas circularly

polarized light excites a sharp Stokes line with an

opposite sense of circular polarization. Ke wish to
point out that these phenomena are intimately connected

with the existence or absence of an anti-Stokes channel

in the forward direction due to the tensor nature of the

scattering process.
The case of parallel linear polarizations for incident

and scattered light has already been treated by Chiao,

Kelley, and Garmire. ' As a result of Stokes —anti-Stokes

coupling, scattering in the near-forward direction was

shown to be dominated by the degenerate light-by-light

interaction involving no shift in scattered light fre-

quency, up to an angle of

where esI hvI' is the time-averaged dielectric change

arising from the intensity of the light, and 6p is the
linear dielectric constant of the scattering medium.

Beyond that angle, however, the maximum gain occurs

for light of a shifted frequency

1 20' —30

r 20' —H.vzs )

which starts at zero and gradually approaches v
' at

large angles (r is the orientation relaxation time).
Therefore, the collection of light from angles near the
forward direction, as was actually done under the ex-
perimental conditions of Foltz et u/. , would have given
rise to the observed diffuse wing. '

The observations with circularly polarized light can
be explained heuristically on the following basis: %e
assume that the molecules are cigar shaped and that
the field-dependent index change arises from the
average alignment of these molecules parallel to the
time-averaged 6eld direction. 4' lf the scattered light
has the same sense of circular polarization as that of the
incident light, the molecules, being slow in response,
tend to align themselves randomly in the plane swept
out by the rapidly rotating electric fields of incident
and scattered light. The total intensity goes through a
maximum periodically with a frequency equal to the
beat frequency between the incident and scattered light.
The resulting periodic modulation of the molecular
alignment gives rise to a symmetric production of
Stokes and anti-Stokes, implying that the gain in the
forward direction is zero, according to arguments
similar to those in Ref. 2.
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However, if the scattered light has the opposite sense
of polarization relative to that of the incident light, the
situation is quite different. In this case, if we describe
the incident and scattered fields, respectively, as

Ep= Bo(s cosa&pt+ j sinropt),

Er ——B,(s cosrort j—slnoort),

where Mp ls the incident frequency, ar& is the scattered
Stokes frequency (coo&a»), and s, j, and k are unit
vectors in the x, y, and s directions, respectively. The
sum of these fields is

Et&&g= Ep+ Er= (Bp+ By) cos-', (~p+~r)t
X [s coso (cop —~r) t+j sin-,'(pop —cur)t$

+ (h p
—Br) sin-,' (pop+(or) t

X[—s sin-,'(~o —&ur)t+ j coss.(cup —cur)t]. (3)

These terms describe slowly precessing linearly polarized
fields, whose directions of polarization precesses at half
of the beat frequency Q= orp —co~ and in the same sense
as that of the light at the higher of the two frequencies
cop and ~~. Provided Q&g ', where 7 is the relaxation
time of the molecular alignment, the molecular axes
tend to follow this slow precession and, thus, rotate
along with the time-averaged field directions, except for
some phase lag. The induced dipole moments which
produce scattering can be gotten by projecting a rapidly
rotating Ep on the slowly precessing molecular axes.
This gives rise to linearly polarized but precessing
dipole moments, which when resolved into counter-
rotating components will yield only a Stokes com-
ponent in the same sense as K&, without any anti-Stokes
component. Moreover, if co~ were an anti-Stokes fre-
quency cup:%cop then the sense of precession would be
the reverse of when co& is a Stokes frequency co&&Gop.

Hence, the molecular motion involved in anti-Stokes
scattering is orthogonal to that involved for Stokes
scattering. This decoupling of the anti-Stokes channel
from the Stokes channel implies an unsuppressed gain
in forward scattering. A more explicit demonstration
of this decoupling starts with the intensity-dependent
susceptibility tensor associated with the molecular
alignment

EtotE~ ~ EoEo+(EpEr+ErEp) s Bo (&&+jj)
+BoB [(N jj) cosnt+(sj+js—) sinnt), (4)

where Q= cop —co~. We neglect terms at second-harmonic

frequencies and terms of the order h~', since we shall

assume henceforth that 8~((8p. The induced dipole
moment per unit volume is

aP= A2(, (Eo+ Er) —', Bo'Br(s cos(art —j sin(v, t)

+ Bo'B&[s;', (cos&or t+ cosset) —j-', (sin~&t+ sinoost)

+j~s( —sinoort+ sin~st)+s-', (cos&ort —cos&ust) $, (5)

where cps=—pop+0 is the anti-Stokes frequency. Note,
however, that all terms at co2 cancel and we are left

II. MOLECULAR-ORIENTATION KERR EFFECT

Let us consider the field-induced susceptibility change
(or Kerr efrect) associated with molecular alignment
in more detail. We shall restrict our attention to the
term in the Kerr effect which is quadratic in the electric
field, since this is the lowest-order term responsible for
stimulated light scattering. Furthermore, let us assume
that the alignment has a single relaxation time r (one-
third the Debye time)' so that the susceptibility change
AX;& satisfies the dynamical equation

~~& k ~x'a
+ =E(E;Eo+rJh—,sE,E—;) . (7)

Here, E; is the total electric field, which is the vector
sum of the incident and scattered fields (Einstein's
summation convention will be used henceforth). The
driving term is the most general possible second-rank
tensor which can be formed from terms quadratic in the
field in an isotropic medium. Specific model calculations
to be carried out below will determine E and 0-. These
quadratic terms contain sum and difference frequencies,
but Eq. (7) filters out the sum frequencies and allows
the susceptibility to respond only to those difference
frequencies of the order of v. '.

Now for our model, let us start with a single cigar-
shaped nonpolar symmetric-top molecule oriented, as

6 See Ref. 4, p. 286; V. N. Zwetkov, Acta Physicochim. URSS
10, S55 (&939).

r R. M. Herman, Phys. Rev. 164, 200 (1967).

with only a Stokes component

hP s B,'B,(s cosa»t j—sinoo, t) . (6)

These dipole moments are rotating at the same fre-
quency and in the same sense as the scattered field E&,
and with some phase lag they can feed energy back
into Er and amplify it without hindrance from anti-
Stokes production. This implies that the gain curve
peaks at Q=r ' even in the forward direction, and
explains the presence of the sharp Stokes line of the
opposite sense of circular polarization in the observa-
tions of Foltz et ut. An immediate consequence of such
a scattering process is that an appreciable amount of
angular momentum is transferred to the liquid, since
each scattered photon imparts 2k to the molecular
rotation, which, because of the collisional torque exerted
on the surrounding Quid, must ultimately manifest
itself in a slight general rotation or vorticity of the
liquid in the same sense as that of the laser polarization. '

Herman~ has suggested another explanation of the
polarization dependence of Rayleigh-wing scattering.
His theory examines the behavior of the saturation of
molecular alignment for different polarizations and the
consequent inhuence on the gain. We believe that these
effects are of higher order and are not as powerful as
the ones which are discussed in this paper.
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averages:

(cosH;COSH')= e ~'" p @id& ~
—W1(kTdQ

kT
ln e ~' "rdQ (13)

BE,BEp All —Gg

where I;=COSH;, and Wi= —,'(wt —«)(Eiu;)' » th
particular case when the 6eld E is pointing along the
x axis, (cosH; COSH') is diagonal, and expanding the
Boltzmann factor into a series, we get

FIG. i. Anisotropic molecule in an electric field.

2 Q« —(Xg

(cos Hi)——+— E
3 45 kT

1 1 o« —e~
(cos'Hs) = (cos'Hs) ———— -E'.

3 45 kT

(14)

where n« is the polarizability of the molecule along the
symmetry axis, and n& is the polarizability along the
two other axes. Projecting them along the three
space-fixed axes (see Fig. 1), we get

pz nlIE cos 81+niE sill 81

= (n„—ni)E cos'81+niE,

Pp n//E cosHI cosHQ niE sinHI cos81 cosg
= (nii ni)E Cos81 cos89

& (9)

pg Ql/E cos81 cosHs niE sin81 cos81 sing
= (nlrb ni)E COSHi COSHp. —

The energy of alignment for this molecule is

W=-,'n, E'—-', (n, (
—ni)E' cos'Hi= Wp+W'i. (10)

Taking a dilute ensemble of these molecules at a tem-
perature T, the susceptibility tensor of the system is

X,p ——(-,'n„+-', n, )1Ag,+&V(n„—ni) s;p

(11)

where E is the number of molecules per unit volume,
and s;& is the anisotropy tensor

s;s= (cosH; COSHI, ) isH;s. ——(12)

When E=O, clearly s;&=0, so that Xp=cV(sn„+-'sni) is
the zero-field or linear optical susceptibility. The second
term of s;I. makes it traceless, since p; cos'8;= 1.
Hence, P;AX;;=0, implying that o= —s in Kq. (7).
The brackets in (12) denote statistical mechanical

shown in I'ig. 1, with respect to a static electric field
which is pointed along the x axis. The induced dipole
moments along the syrrimetry axis of the molecule and
perpendicular to it (in the plane determined by E and
the symmetry axis) are, respectively,

p~«= n~ ~E cos81,

pi= niE SII181

Fvaluating (7) for this case and for a static field, we get
+&yi = 3EVE and 6+22 6~33 3ErE', so that
identifying with (14) we get

(nl I ni)
Er=—E

45 kT
(15)

To include the local-held correction, one multiplies the
right-hand side of (15) by Ls (ep+2)$'. s The third-order
nonlinear susceptibility X&'&, is ~E7-, and the nonlinear
index of refraction coefficient nr is ssm. (Kr/np).

III. SELF-PRECESSION AND SELF-RETARDATION
OF INCIDENT WAVE

8 One could also include the reactive field of Onsager, in which
case see Ref. 4, p. 274.

9 P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev.
Letters 12, 507 (1964).Their A is j 2KT and their B is -', K7.' We shall use complex notation throughout this paper. One
useful rule is that if [xg is the complex representation of a real
quantity x then [xy]=-,'([x][y]+[xj[yg ).

We wish to solve the general problem of stimulated
Rayleigh-wing scattering when the incident laser light
is elliptically polarized with an eccentricity e. Before
going on to the scattering problem, however, we must
first treat the problem of the propagation of the intense
elliptically polarized incident light through a Kerr-
active medium in the absence of scattering. As we shall
see presently, this nonlinear propagation problem can
be solved in closed form, and solution implies that the
vibrational ellipse undergoes a self-precession of its
major axis without any change of eccentricity, o and that
the wave experiences a self-retardation. Let us assume
that the incident light is propagating along the s axis
and is described by the transverse wave"

Eps= h»(s)e'"" ""' J= (*y) (16)

where 8&»(s) is assumed to be a slowly varying ampli-
tude with

~
hpt I(d~ hpt/ds)&&kp. The light enters the
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medium at s= 0 with

(
h„(0)q 1q

ho„(0)J ie/
(17)

where Bp,'=R ', l, hpl, is the electric field as viewed in
the rotating frame, and where F=kC&/Cs is the instan-
taneous rate of precession of this frame.

Our ansatz can now be stated as follows:

This describes an initial state of elliptical polarization
with the principal axes along the x and y directions. The
nonlinear wave equation reduces to

~

~
ho. '(s) q 1 q

!
= h !e'"'

h,„'(.)/
(26)

( ~2 +02
&
—i(kpz —apt)l

(as' c2 aP

dbpi
=2ikp

COp= —4~ X;p'hoI„(18)
C2

0

, ,)
(2 —e~

(I' -') = —:gol
4 0

(27)

It states that the vibrational ellipse as viewed in the
rotating frame is unchanged from that at a=0, except
for a phase factor e'"' arising from some nonlinear self-
retardation. Evaluating I', ' from (26) and the primed
version of (19),

I ik RilRkm~lm Rill lm R mk )

where R;l, is the orthogonal matrix

(21)

where, because the molecules cannot respond to the
second harmonic of the optical frequency,

X;g' ———,'E7 (ho;*hog —~38;I h„*ho;+c.c.), (19)

which is the susceptibility change deduced from (7).
Let us define a propagation tensor

I';I,—— 2'�(ko—/no') X;„', (2o)

where ko=no«o/c. Since I',I, is a tensor, in another
coordinate system (x',y') rotated at an angle p with
respect to the original system (x,y), its components I';I,'

are given by

where
ko eulh«I' 2m (Am) 1

—',go=-', Er
l ho»! '=ko =— x—, (28)

p' 4n0 ~p np

which is also equal to half the maximum stimulated
Rayleigh-wing gain for linear polarization. Note that
I'; ' is independent of z and is equal to I'; (s=0).
Substitution of (26) and (27) into (25) yields the self-
consistency condition (or nonlinear eigenvalue
equation)"

~1 q p 2 —~' i (2/go)Cy/C—sq (1
I . I=-:gol . !I. , (29)
kill ki (2/go)cp/ch 2e' —1 f Kit

the solution of which is

(cosQ —sing)
!(R*')=l .

(sing cos$/
(22)

S2
~=go(1+a') =kox Cl ho. (0) l'+l how(0) l'7

2np

iCho;/Ch=R;iI'~ 'R '-r, bol, . (23)

transforming a vector from the primed to the unprimed
system. For complete generality, let us allow p(s) to be
an arbitrary function of s, except for the boundary
condition @(s=0) =0. It is convenient to transform (18)
into this rotating coordinate system, because our ansatz
will describe a uniform precession of the vibrational
ellipse. Substituting (21) into (18) we obtain

kp
=-,x Er Sp,*80; )

1$p

3S2
I'=-,'go =kox- —

l
ho. (0) l l h, „(0)l

no

kp
E !Ime „ho*hoA,. ! .

np2

(30a)

(30b)

Multiplying on both sides by R;i and using the relation

CR—', ;/Cs = e; „R 'p;(Cy/Cs),
— (24)

where

is the unit antisymmetric tensor, we deduce that

Chp,
'

d@
i — ——~,A:&pI,

' =I', 'hp '

ds

=i —'+(1X~o'); I, (25)
cs

These quantities represent the retardation and the rate
of precession (both of which are constant) of the
incident light and its vibrational ellipse, respectively.
The sense of the precession is the same as that of the
polarization of the light and the retardation produces
an actual slowing down of the wave provided n2&0, as
is the case for the molecular-orientation Kerr effect.
Furthermore, these quantities are to be considered
small compared with kp, since we have assumed
n2! h, !'«no in order to restrict our attention to the
lowest-order (quadratic) Kerr effect.

"Cf.R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Letters 13, 479 (1964}.
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It shouM be remarked that photon angular momen-
tum conservation forbids any change in the ect.'entricity
of the vibrational ellipse, since the medium is isotropic
and the propagation involves no inelastic scattering.
These". ",considerations are still valid for the case of
nonlinear propagation. "

Let us assume co~—cop and k~—kp, since Q(&orp. Then the
last term on the left-hand side can be subtracted from

the first term of the right-hand side of this equation by
introducing

x;k"= kz«(&o''&ok+&o;&ok*-2tt;k&ot*&ot) (3g)

IV. BACKWARD SCATTERING

Let us proceed to treat stimulated Rayleigh-wing
scattering in the backward direction first, since this case
does not involve an anti-Stokes channel, due to
momentum-conservation restrictions. ' The intense
incident laser wave was shown in Sec. III to propagate
as

cosI's —sinI"s 1 )
E —g ei(kpz+gz —ep t) !. (31)

sin Fz cosI'z ~c)

in place of X;J, . This eliminates the contribution to
"strong-wave retardation"' due to the isotropic index

change caused by the strong incident wave from the
propagation of the weak scattered wave. %hat is left
describes birefringent effects of the strong wave upon
the weak wave. Hence we shall refer to X;~'0 as the
"strong-wave susceptibility tensor. "

To express (37) as a differential equation for the
scattered field 8~I, we need to rewrite the last term on

the right-hand side as

Let us assume that the back scattered wave has the form X~ls EPk —Xi' Elk
&

(39)

(s)et( ktz KZ tdtt)

where 81(s) is slowly varying in the sense

1 d[h1[

dz

X; "=DX-,'It (&o;*Rk—-'&ok"&o'+ ~ k«o, *&o,), (4o)

which is a known quantity determinable from (31).The
real part of this susceptibility causes "weak-wave

retardation, '" and the imaginary part causes stimulated

light scattering by reacting the scattered field back upon
itself via the molecular alignment. Hence, we shall refer

to X;~" as the "self-coupling susceptibility tensor. "
The wave equation becomes

and [81[«[hp[, i.e., the scattered wave is much
weaker than the incident wave. The sum of these fields
will produce a susceptibility change obeying Eq. (7).
Neglecting sum frequencies and terms of the order 8~',
we obtain the solution (in complex form)

Axik ox.z p(+pi +pk p ftik+02' +pt')

+(1+ a )-'(Z„*Z„+Z„*Z„,'~;,Z„"Z„)J, (33) dhi; ko
z =22r (X kzp+X k") h k

dz
(41)

where Q=cop —My. The first two terms are constant in
time and the last three terms vary as e+'"'. It is con-
venient to define a molecular response function as Note. that X;&' and X;I," are slowly varying functions

of s due to the precession of (31), and hence this

diGerential equation in its present form is not solvable

by the conventional linear-eigenvalue method, How-

ever, let„us introduce the quantities X, y and

through

D= (1+iQr) ' (34)

The induced nonlinear polarization, again neglecting
terms of the order 8~' and neglecting anti-Stokes terms
varying with frequency cop+ 0, is

QPt= o (QxikEk+Dx, k*8k)
= X;k'(&Pk+ Rk)+Xtk'&ok,

X;A,.
M ——R;;Rp)X;)"'

X;I,"——E;,EI,)X;)'",
(42)

(35)

(32) where, by juggling the order of the tensor product of

the fields, we determine that

where

X'k'= k &r (&o;*&ok+&p«ok" p&'k&ot*&o, ), —
(36)

Xik D k+7 (+pi +1k++ok +li p oik+pj +12) ~

where
(cosl's —sinl's)

!(~')=[ .
ksinl's cosl's)

(43)

Substituting into the wave equation and remembering
that B~e '"' is slowly varying, we get

d Sg,.—2tk,
l

t)E„—
(81; dS

GOy= —4~ (x;k'~1k+X;k'~ok) . (37)
C2

~~ This argument can be generalized to any order of the Kerr
eBect, as can be seen by writing (18}in covariant form.

so that X,~"' and X;~'" are the strong-wave and self-

coupling susceptibilities, respectively, as viewed in the
rotating frame or, equivalently, these tensors evaluated

at z=0

x;,'"= —,'«L Bp;*(0)Spk(0)

'
(44)

+&ok*(0)hp;(0) —2&*'62*(0)~pt(0) 3,
X;k"'——D&&4«L Sp,*(0)Sok(0)

—-'hok*(0) hp'(0)+tt'khan~ (0) &p (0)1
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or evaluated using (17)

—2c~ 0
(X' "')=l«l @ppl'

0 —2

s+e xmas

(x;I,"')=Dx-', «I hppl' —xN -', e'+1

Let us introduce
@x =~ ';ai~.

Then (41) becomes, in the rotating frame,

d
i —8~ —1 e;I,BiI' ——y;p'8~I',

(46)

(47)

whose two corresponding eigenpolarizations are

e'y1( SD)

3/
16es

X (1+-',D)a 1+', Dl 1-+-

The gain of these roots is gotten from

g&~&= —2 Imp&+&. (53a)

where p;I,
' is s-independent and given by

y;s'= 2s.(kp/np') (Xg,'"+X;s'") .

We now introduce our ansatz

(48)

kh, „'(s)& Es~

or

(Zt, (z) (cosl'z —sin rz

(Et„(z) ksinl'z cosI's i5/

(49a)

X hMg& i ( &I ~V)& &&i] (49b)

where y is a complex propagative eigenvalue of the
scattered wave, whose imaginary part gives gain and
whose real part gives the (weak-wave) retardation of
the scattered wave; 8 is also in general a complex
number indicating that the vibrational ellipse of the
scattered light need not coincide with that of the laser.
Substituting (49) in (47), we obtain the linear-
eigenvalue equation

(1)
E. ai

~

~ ~

~

—3s'+D(2+s, ") 3i.+DX si s q (1 ~

3is DX ',—ie —3+D-(2e'+-'—)I Ei,o/

where gp is given by (28). We shall refer to the matrix
on the right-hand side of (50) as the net propagation
tensor A;p= (y;s'+il'e, p)(2/gp). The two eigenroots are

7"'=-'go(1+")

7D 16c'
X —1+ ~ 1+sD 1+

6 (1+ps) 2

D2 96es )- 1/2

+—1+ I, (»)
36 (1+e')'I

Let us also define a gain normalized to unit intensity
(except for a constant factor) as

G"'= (g"'/go)(1+") '. (53b)

TABLE I. Backward gain versus e and Qv. for major and minor
roots. The gain is normalized with respect to incident intensity
(53b) and is expxessed in units of —,'gp. [See (51).]

n~~ 0.97
A. Major root

0.98 0.99 1.00 1.01

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Qv.—+

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.33271
1.36660
1.45618
1.57394
1.69320
1.79713
1.87859
1.93671
1.97377
1.99333
1.99907

0.98
0.99980
0.96596
0.87648
0.75877
0.63948
0.53547
0.45391
0.39572
0.35860
0.33902
0.33327

1.33306
1,36689
1.45638
1.57408
1.69338
1.79739
1.87895
1.93714
1.97426
1.99384
1.99959

B. Minor
1.00

1.00000
0.96628
0.87703
0.75945
0.64013
0.53599
0.45428
0.39595
0.35874
0.33910
0.33333

1.33327
1.36704
1.45641
1.57406
1.69338
1.79746
1.87910
1.93736
1.97453
1.99414
1.99990

root
1.02

0.99980
0.96622
0.87723
0.75983
0.64052
0.53629
0.45446
0.39602
0.35873
0.33905
0.33327

1.33333
1.36705
1.45630
1.57388
1.69320
1.79735
1.87906
1.93738
1.97460
1.99423
2.00000

1.04
0.99923
0.96579
0.87709
0.75991
0.64067
0.53640
0.45447
0.39595
0.35859
0.33887
0.33308

1.33327
1.36692
1.45605
1.57354
1.69286
1.79705
1.87883
1.93721
1.97447
1.99413
1.99990

1.06
0.99830
0.96501
0.87663
0.75972
0.64059
0.53631
0.45432
0.39573
0.35832
0.33857
0.33277

Since the gain of the (+) root turns out to be greater
than the (—) root, we shall refer to these solutions as
the "major" and "minor" eigenmodes, respectively.
A table of G&+~ for various values of e and Qr is given
in Table I. For a given eccentricity c of the incident
vibrational ellipse, there is a frequency shift Q,~&&+' of
the scattered light, which wi11 maximize the gain for the
two roots. This optimum frequency shift is found by
computation from (51) and is plotted against e in Fig. 2
as the dashed curves. The maximized gain per unit
intensity G(Q,n, &"') is plotted against e in Fig. 3 as the
dashed curves. If we express 8= pe'&, then the angle gt
that the major axis of the vibrational ellipse of the
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FxG. 2. Frequency shift which maximizes the gain of stimulated
Rayleigh-wing scattering for various elliptical polarizations. r is
the molecular-alignment relaxation time. The limiting value of
the frequency shift for linear polarization (B=0) in forward scat-
tering is (Qr),RB=3 ~Is. (In this 6gure and all following figures,
dots represent computed points. )

2p cosf

]+p'+(I —2p' cos2$+p')'E'

(54)

gr(Q, nest+&) and e~(&,D, &+&) are plotted against e as the
dashed curves in Figs. 4 and 5, respectively. (Note that
since A;~ is non-Hermitian, the eigenpolarizations need
not be orthogonal. ) Since the eigenroot with the highest
gain exponentially dominates the scattering which
starts from zero point or thermal fluctuations, a fre-

scattered light makes with respect to that of the
incident light and the eccentricity e1 of this ellipse are

—
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FIG. 4. Angle of tilt between the major axis of incident and the
major axis of scattered elliptical polarizations. The limiting value
for circular polarization (A=1) of this angle for the backward
scattered light is +-,' arctan(24/113), whereas that for the
forward scattered light is —

~ arctani. Note that the forward
Stokes and anti-Stokes ellipses are tilted the same amount.
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FIG. 3. Maximized normalized gain LKqs. (52), (53), and (93)g.
The unit of gain is go given by (28) and is the maximum stimulated-
Rayleigh-wing scattering gain for linear polarization in the back-
ward direction. The limiting value of the gain for linear polariza-
tion (B=O) in forward scattering is A@2.
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Fzo. 5. Eccentricity of the scattered elliptical polarization.
Positive and negative eccentricities denote, respectively, co- and
counter-rotating senses of polarization relative to that of the
incident light. Note that in forward scattering the Stokes is more
elongated than the incident polarization, whereas the anti-Stokes
is rounder than the incident polarization.
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2D 0

0 —3+-;D)
(55)

which has the obvious eigenvalues and eigenpolariza-
tions [also obtainable from (51) and (52)],

the scattering region must be analyzed as a boundary-
value problem involving mixtures of the eigenmodes
of propagation. "

To obtain a physical insight into these solutions, let
us first consider the special cases when «=0 (linearly
polarized laser) and «=1 (circularly polarized laser).
When «=0, the net propagation tensor t&&.,&, of (50)
becomes

spontaneous cross sections for the same polarizations. "
Since the eigenpolarization of highest gain switches
from parallel linear to counter-rotating circular in the
extreme limits of &=0 and 1, one expects that for the
in-between cases, the elliptical eigenpolarizations are
neither the same as nor orthogonal to that of the laser,
but somewhere in between, as is verified from Figs. 4
and 5.

An important special case of backward scattering
occurs when Q= 0 (i.e., the weak wave is introduced into
the medium with an unshifted frequency). Although
there is no exponential growth in this case, since D= 1

and y(+) is pure real, there is a weak-wave retardation
which affects all backward-going unshifted waves:

p (+) —gpD and
&'~&+&) 0)

'

(56)

8~2 —1/27 2

v'+& =-',go(1+«') -~ — +
6 6 (1+«')'

~ (61)

1 q Oq
y&

—
& =go-,'(—2+D) and

i&&-&) 1i

which correspond to parallel and perpendicular orienta-
tions of the scattered polarization relative to that of the
laser, respectively. Taking the imaginary part of p(+)
and hence of D gives a frequency response factor of
Qt(1+Q'r') ', which has a maximum at Q,&44i+&z = 1 for
both roots. This also implies that Stokes shifts yield
gain and anti-Stokes shifts yield loss. For a Stokes shift
of Q,p&'+' =7. ', we therefore have gains of

g(+) =go and g(—) =-,'g, .
When c = 1, the net propagation tensor becomes

3+,'D z(3—+-,'D—)

k —i(3+-',D) 3+-',D—
(57)

(58)

which has the eigenmodes [also obtainable from (51)
and (52)]

7 (+) —3goD

(59)

v' '=go( —3+zD)
4+ii

g(+)=3g g(—)= gp (60)

Thus, the ratio of the gains per unit intensity of
incident light [i.e., G= (g/go) (1+«') '] are 4:3:6:1 for
parallel-linear, perpendicular-linear, counter-rotating-
circular, and co-rotating —circular scattered polariza-
tions, respectively. This ratio is the same as that of

'3 R. L. Carman, R. Y. Chiao, and P. L. Kelley, Phys. Rev.
Letters 17, 1281 (1966).

which correspond to counter-rotating and co-rotating
scattered polarizations relative to that of the laser,
respectively. As was the case when a=0, the gain is
optimized at Q,~~(+)x=1 with

The eigenpolarizations corresponding to these eigen-
values are

8~2 - 1/23 «'+1 7 «' —1 (7)'~ I-I+
11 «6 «2+1 (6) (1+«2)z

(62)

'4 L. D. Landau and E. M. Lifahitz, Etectrodynamtcs of Con
tinlogs Acedia (Pergamon Publishing Corp. , New York, 1960),
p. 383.This ratio was also obtained by R. W. Minck, K. E.Hagen-
locker, and W. G. Rado, Phys. Rev. Letters 17, 229 (1966) for
stimulated pure rotational Raman scattering, which is also a trace-
less symmetric tensor scattering process."This birefringence implies angular momentum transfer
between the forward-going strong wave and the backward-going
weak wave and produces small modification of eccentricity of the
vibrational ellipse of the strong wave as a function of s.

In addition, it must be remembered that these eigen-
modes of propagation undergo strong-wave retardation
and precession (49b). Since the net propagation tensor
(50) with D= 1 is Hermitian, the eigenpolarizations are
orthogonal, as can be verified directly from (62). In
general, an arbitrarily polarized backward-going wave
must be decomposed into a linear combination of these
orthogonal eigenpolarizations, and since these eigen-
polarizations travel with different speeds, a combination
of birefringence and optical activity results. When the
forward-going strong wave is linearly polarized (« =0),
y(+) =gp, and p( ) = —4gp, which produces bi-
refringence"; when the incident wave is circularly
polarized («= 1), pi+&=3go, and y& &= —cage, which

produces optical activity. The corresponding eigen-
polarizations are given by (56) and (59).For the circular
eigenpolarizations, the over-all precession of (49b)
becomes a retardative effect and combines with the
eigenroots y(+) to give total propagation constants
n+y&+& —I'=-,'go and K+y& &+I'=go for the major and
minor eigenmodes, respectively. Hence, the ratio of

speeds relative to that of the strong wave and nor-

malized to unit intensity of the incident wave is
4:—3:6:1 for parallel-linear, perpendicular-linear,
counter-rotating —circular, and co-rotating —circular
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polarizations of the weak backward-going unshifted
wave, respectively.

Another simple special case occurs when 0= ~, or
more precisely Qr)&1, in which case the molecular align-
ment fails to respond to the weak backward wave (i.e.,
x;k"= 0 and there is no self-coupling). Again y &+& is pure
real, since now D=O, and we expect no weak-wave
retardation:

+(+)= O g (+)—

V' '=2@(1+"), ~' '=+1/0 (63)

is nonzero not because of weak-wave retardation,
but simply from the birefringence induced solely by the
strong wave. Note that the eigenpolarization corre-
sponding to the zero root describes a vibrational ellipse
identical to that of the strong forward wave, except it
is of the opposite sense, and the other eigenpolarization
is orthogonal. Further discussion of this case will be
deferred to the end of Sec. V.

F —g jS)ei(k1Z+ZZZ )Zzlji
1 ly

E —g (S)jzi(koz+gg zzpi)—
where coi= 010—0, io2= &00+0, ki= no&01/c, and k2= noo12/&

(we neglect dispersion); ii is given by (30a) and ii((kp,'

II((ado
~

h1,2l«~0,' and 81,2(s) are slowly varying over
distances of the order of a wavelength. The intense
incident laser wave Ep is given previously by (31).The
sum field E= Ep+Ei+E2 interacts with the medium
through Eq. (7) to produce a susceptibility change:

~x'k= 2Kr[(EQ' Epk —p kEO] Epj)

+D(Eoi E1k+Epk E1i pgkEoj E1j)
+D(EoiE2k +EokE2i otj kEoqE2;*)], (65)'

where D is given by (34), and where we have neglected
terms of the order of 8&', b2', and 8&82. All time-varying
terms in (65) vary as e+'"'.

The induced polarization, again neglecting terms of
the order b~', b2', and B~h2, is

hP; =
2 (hx;kEk+ Dx;k*Ek)

= x'k'(Eok+ Eik+ Eok*)

+ (X;k'+x;„")(Epk+ Epk*), (66)

where X,k' and X,ki are given by (36) and X;kii is given by

Xik =DkKr(EQiE2k +EokE2i OtjikEojE2j ). (67)

V. FORWARD SCATTERING

In the case of forward scattering, we must allow for
the possibility of an anti-Stokes channel as well as a
Stokes channel, since momentum conservation permits
the simultaneous coupling into both channels. ' We take
this consideration into account by introducing the two
weak"scattered waves

Substituting into the wave equation, we get

dSg;
2zk +z )Ez;

Bg; ds

COy

42I (Xik Elk+Xik Eok+Xik Epk) y

Q2

t' 1 dh2, *
—2zkzi —zz)B;

kh„* dh

cop'
= —4~ (XikpE2k*+XikrEok*+Xi "Eok*)

G

(68)

Xjk +Ok ~jk ~1k y

&;k"~ok*=I;k22~2k*,

X k"Epk=x k"& k*

&;k'&ok*= X;k"&~k,

where it can be shown that

Xik" D,'Kr(Eo'*——Eok-,'Eok'Eo'+—&ikEo;*Eoj)1

X;k" D,'Kr(EO, Eo——k*—-'EokEQ;*+ &;kE-Q Eoj*),

Xik DkKr(3EozEok+~ikEojEoj) p

Xik21= D4«(2EO'*Eok*+ t'1ikEO, *Eog*) ~

(69)

(70)

We shall refer to X k" and X;k" as "self-coupling" and
X;k" and X;k" as "cross-coupling" susceptibilities
since they self-couple and cross-couple the Stokes and
anti-Stokes waves, respectively. Since I;k" and I;k"
vary as e ""0' and e+""",respectively, it is convenient
to define the time-independent quantities as

X,„"=X;"exp[—22(kps+iis —idpt)],

X,k"——X;k" exp[+ 2z(kps+ its —coot) ]. (71)

The quantities X;k", X;k ', &;k', and I;k" are now all
s-independent as well as time-independent, except for
a slowly varying dependence on s due to the precession
of the incident vibrational ellipse. The wave equation,
in terms of these susceptibilities, is

d8g, kp
[(X.k"+X k")hik+Xik12@k*],

ds sp

d Bg;* kp
+2 — =2~ [(X;k"+Xik")@2k*+Xik"&1k].

SQ

(72)

Let us assume ~~—cop—a&2 and k~—kp—k2. Then the last
term on the left-hand side can be subtracted from the
first term of the right-hand side of both equations in

(64) by introducing X;k"=X;k" given by (38) in place
of X;k . This eliminates the isotropic contribution of
strong-wave retardation from the propagation of both
scattered waves.

To express (68) as differential equations for the
scattered fields E~k and 82k*, we juggle the order of the
tensor products of the last two terms so that
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(h'1') &(h'-)= !=(R '-ph~).
(hs/s)s )jX;~"=E;,EpI,X;~'", etc.,

To express these equations in terms of a conventional and the 4-dimensional column vector
linear-eigenvalue problem, let us transform these
equations into the rotating frame by introducing

(80)

and
Then the coupled wave equations (72) in the rotating
coordinate frame become the single equation

where R;, is given by (43). Since in the rotating frame
the strong-wave, self-coupling, and cross-coupling
susceptibility tensors all involve tensor products of the
primed incident field (26) which are s-independent,
these susceptibilities are constants evaluated at s=-0

~ —h'„—I"e p8'p ——y' p8'p,
ds

where 1' is given by (30b), and

(81)

x;„"'-——x;)2"——~1ETI hp, *(0)hp2(0)

+ hp, *(0)hp, (0) —2bg, hp, *(0)hp, (0)),
12~D—1 —y. 21~CD—1+

gk xk

= —,'ETL—;hp, (0) hp2(0)+ )lg. hp, (0) hp, (0)),
x,i,

"'——xk,"'——D4ET[hp;*(0) hp2(0)
—-', hp), *(0)Sp,(0)+h g, hp, (0) hp, (0)),

or, evaluated using (17),

(x. )p7) (x. 2pi)

—2e2 0
ET! hp))!

2'
0 —2

(X 127)D—1 (X, 2))ps)D—)ps

=-,'EV bp, 2 —' '+I) (76)

y' p
———27r(kp/np2)X' )2

is a s-independent propagation matrix. We shall call

(y' p+iTp )))2/gp=A S the 22ef propagation matrix,
which is to be diagonalized. We introduce the ansatz

hi, '(2) hi. (0)
h) „'(2) h) „(0)(h '( ))= h "*()

=
h '*(0)

-hpp" (&). -h2.*(0).

','„)
e'&' (83a)

(x, 117)D—1 —(x 227) TD 1—
/4+ p2

~Pip
=~E ! hpp!'!

-s2p 24 p2+—1 )

We shall take hpp real henceforth, so that ! hpp! '= h«'.
Let us introduce the 4X4 Inatrices

or

(
Ei,,(s)) cosI's —sin&2 1

!P,„(s)7 sinI's cosI's)(II,)
'6 [ (1G1+K+ f )Z Gl 1t ]X 1o& )

(x'1,""+x')'")
(x'-p) =

—(x,k'")

(x,a"')
(77) p„(s)) cosI's —sinl's)(1

)(X. 2PI+X. 227)i~
I

i~
I

E2„(s)3 sin Fs costs i h2

(83b)

(78) i [(k2+K—y*)Z—CO2t]X 2o&

((,.) 1P)

)(0) (p')
Substituting (83) into (81), we obtain the eigenvalue

equation

) hi. (0)
hi„(0)

'Y
h ps (0)

—
2 gp

.hpp'(0).

3p2+ D(2+-,'p2—)
+3ip —DX—,'2p

D(—2+-,'p2)
DX-', se

—3ip+DX-,22p
—3+D(2~2+ —,')

DX2se
D(2p2 ——,')

D(2 —,'p2)

DX—,se
3p2 —D(2+-,'p2)

3z~ —DX ~so

DX&s~
D(—2p'+-,')
—3ip+DX-2'ip
3 —D(2p2+ —,') .

hi. (0)
hip(0)
h2,*(0)
.h,„*(0).

(84)
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where

—8 C

—C

—= (A-s), (85)

—342+ D(2+ 22 e2)

—3+D(2e'+-,'),
—3ie+D X-2'ie,

D&& (2——,'e'),
D&& (—2e2+-2)

D&(-,'i6.

The eigenvalues of (85) are

~{ A ~ )A2 (detA) 2]1/2) 1/2

Where p= 2gpX and

A = '(a'+ b'—-2c' d' —e'+—2f')—

(86)

(8/)

where go is given by (28). The net propagation matrix
has the form

It can be easily verified that this is its only eigen-
polarization (A s is non-Hermitian). Physically, this
states that if we introduce Stokes and anti-Stokes
polarized the same way as the strong wave, with the
anti-Stokes amplitude equal to but 180' out of phase
with respect to the Stokes amplitude, then these waves
propagate with canceling cross and self-couplings (i.e. ,
no exponential growth and no weak-wave retardation).
This result is independent of frequency shift 0 of the
weak waves. The underlying reason for this behavior is
that the anti-Stokes photon annihilates the "phonons"
created by the Stokes photons, with equal probabilities
of annihilation and creation for this choice of polariza-
tion and relative phase. However, it must be remem-
bered that this eigenpolarization still undergoes the
strong-wave precession and retardation (83b).

Having found one eigenvector, it is natural to con-
struct a unitary matrix U with this eigenvector as the
first column, with three mutually orthogonal vectors as
the next three columns, and have A p undergo a unitary
transformation using U. A natural choice for such a
matrix is

detA= 0, (90)

deth. = (a' —d')(b' —e')+2(ab —de)(c'+ f')
4cf(ae —bd)+ (f—' c')' —(89).

Calculation of detA from (86) gives

1

26
(U-s) =

26 1
26

26

1 z6

26

1
)(2—1/2 (1+42)—1/2—26 (95)

which simplifies the eigenvalues to

) = a(—2A)'/', 0.
Calculation from (86) and (88) gives

A = 9{—24'D'+ —,
' L(1+e') '+4e']D——,

' (1+e') 2}
= —P(1+e')' —18e'D](1 D) . —

Hence the nonzero eigenvalues of (84) are

V"' =~2ao(1+")

D 1 D2

(91)

(92)

It can be shown that
0
0

(A )4=(U- As(///~ )=40
(0

where

Cl2 Cqq 0

( )

C42 C43 0 J

(9/)

c12= 6DieL(1 —e')/(1+ e')],
"=4DL(1-"+")/(I+")],
c24= —3(1+e') (1—D),
c42 = —3(1+4') +[124'D/(I+ 4')]
c42= —6Dze[(1 —e')/(1+4 )7= c12.

462 1/2

+B~(1+ ')(l =D/U'(1—
(I+e2) 2

Then A p~ possesses a characteristic equation

(93) X'() 2 —c24c42) = 0 which reduces to (91), as it must. The
eigenvectors in the new representation are

To obtain the eigenpolarizations associated with these
nonzero eigenvalues, let us first notice that, using (86), So if

C

b f
f —a
—e —c

Z6

—b. .i6.

T'0

0
0
0.

(94) (h ')= (99)

so that (1, ie, —1, ie) ~ is an eigenpolarization of the zero
eigenvalue. " (This implies immediately that detA =().)

"Another solution associated with linear growth (as is usual
with degenerate zero roots) is

(slopslops2z ps2o ) = [(1,Oso, Ip Oso) O'Yos(1~ Oo~ Ig Oo)

where

and
Bo= 4[3(4'+ 1)—6D7/[3 (4'+ 1)—64'Dj,

go= 12D[44+1—4'(1+D)7/[3(o'+1) —64'D7.

This along with the other three eigenpolarizations (94) and (j.03)
can satisfy arbitrary boundary conditions at s=0.
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where

1
r ~

ze Ze (1—e'

ze

so that the basis vectors of the new representation are
the columns of U as usual. It has already been noted
that the first basis vector is already an eigenvector of
the zero eigenvalue. The other eigenvectors, however,
must also in general contain this basis vector because
A p is non-Hermitian and eigenvectors need not be
orthogonal. In this new representation, the eigenvectors
satisfy

&&L(1+e')'—4e'D] '"=- — (1Q4)

(1—4e2D/(1+e2)2 t/2 tt)( )

1 D — I()

(—) 1 B+( h (+)@

hs (—)s ]+B ( gt (+)
(105a)

Another way of expressing these results [cf. (83)7 is

C12 C13

0 0 0
0 0 0

~0 C4g C4q

0 1

C24 Q

0 v

0 . .vv

which implies for the nonzero roots that

1+Be'+C 1
g, (—)— (+)g

1—B+C e

1—Be'—C 1
( )g g (+)

1+B Ce—
(105b)

C12

p (+) —0

1 1+e'
1 D'"

yL(1+e2)2 4e Djt/2

(102)

It should be remarked that the exchange symmetry
that shows up in the eigenvectors (103) is a general
property of any matrix of the form (85). For, if

(1,g, t), t())" is an eigenvector of (85) associated with an
eigenvalue +X, then it is easily verified that

P, (+)2 C4

gg (+)—
C12C24 C12

(]+es)s—4eso

2ieD(1 —e')

8 C

—C

—d

'V

= —X
1

. (106)

gt (—)(0)
Bti

—'(0)
(—)s(0)

gq (—)s(0)

' ie{1 B+C)—
1{1+Be'+C)
t.'e{1+B C)—

.—1{1 Be' C)——

g, (+)s(0)
g (+)s(0)

@
''"(„)(0), (103)

(+)(0)

TABLE II. Forward gain versus e and Qr. The gain is normalized
with respect to incident intensity and is that of the gainy root
expressed in units of -', go [see (93).)

g gn~ o.ss 0.6 0.7 0.8 0.9 1.0 1.04

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.41329
1.41199
1.41068
1.41625
1.43737
1.47935
1.53821
1.60011
1.65002
1.67984
1.68906

1.41362
1.41SO6
1.42166
1.43940
1.47511
1.53134
1.60130
1.67013
1.72364
1.75506
1.76471

1.39887
1.40548
1.42689
1.46690
1.52837
1.00861
1,69642
1.77602
1.83506
1.86890
1.87919

1.36953
1.38071
1.41503
1.47387
1.55619
1.65475
1.75543
1.84242
1.90512
1.94051
1.95122

1.33102
1.34604
1.39110
1.46517
1.56361
1.67558
1.78512
1.87688
1.94176
1.97803
1.98895

1.28719
1.30534
1.35899
1.44491
1.55534
1.67669
1.79195
1.88646
1.95241
1.98901
2.00000

1.26880
1.28801
1.34454
1.43434
1.54857
1.67274
1.78958
1.88474
1.95086
1.98748
1.99846

or, expressing the eigenvectors in terms of the second
basis vector,

—e —c —b —I —Ir

This means that if one exchanges the Stokes and. anti-
Stokes eigenpolarizations with a change of the sign of
the y (or x) components $i.e., reflecting the weak-wave
vibrational ellipses across the x (or y) axis or the major
(or minor) axis of the incident vibrational ellipse] one
obtains the eigenvector associated with the negative
eigenvalue. A second way of exchanging Stokes and
anti-Stokes waves is simply to let 0—+ —0 or D~ D*.
If, at the same time, we let e~ —e (i.e., reverse the
sense of the laser polarization), then all the matrix
elements of (85) are complex conjugated, so that the
eigenvalues and eigenvectors are also complex con-
jugated. But by inspection of (103), one sees that the
operation e —+ —e changes the sign of the x (or y) com-
ponents of the Stokes and anti-Stokes waves Li.e.,
reversing the sense of the incident vibrational ellipse
not only reverses the sense of scattered vibrational
ellipses, but also reflects them across the y (or x) axis),
so that the two ways of exchange yield the same
physical result as is expected. In particular, in either
case the gain g= —2 Imp reverses sign.

Since p(+) turns outsto be the "lossy" root, we shall
henceforth eliminate it from discussion. The zero root
has already been discussed. The "gainy" root y( ) has
a normalized gain G( ' (53b) which is given for various
values of e and Qr in Table II. For a given eccentricity e
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0.10

0.08

C:

I I I I I I Fig. 6, and the relative phase AP between the bio& l and
820( &* is plotted against e in Fig. 7, these quantities
being evaluated at Q,~t,

'

To obtain a physical insight into these solutions, let
us consider the special cases when &=0 and &=1
(linearly and circularly polarized laser, respectively).
XVhen e= 0, the net propagation matrix A s (85)
becomes

0
(A 0 p6
0

0
I

0.04C
CI

2D 0 2D
0 3+s—D 0

-2D O -2D

0
3D
0

3—2D-

= [A.,(.=0)], (Io7)

0
0

0.02 ~&+)—~og (1 D)i/& (108)

the nonzero eigenvalues and eigenvectors of which are
Lcf. (93) and (103)j

0
0 0.2 0.4 . 0.6 0.8

Incident eccentricity e

1.0
(&-"'(0))=

0
1~(1—D) '"

0
.—I w(1 —D)—'"g

(109)

of the incident vibrational ellipse, there is a frequency
shift Q,~t~

—
& of the scattered light which will maximize

the gain. This optimum frequency shift is found by
computation from (93) and is plotted against e in Fig. 2

as the solid curve. The maximized gain G(II,o&& ') is
plotted against e in Fig. 3 as the solid curve. Expressing
&Ii& ' and 82& & of (105b) in polar form and using (54),
we can find the angles Pi& ' and &fz& l that the major
axes of the vibrational ellipse of the Stokes and anti-
Stokes waves, respectively, make with respect to that
of the incident light. These angles evaluated at Q,~~~ )

turn out to be equal and are plotted against e in Fig. 4
as the single solid curve. The eccentricities e~( & and
~~( ' of these vibrational ellipses evaluated at Q,p~' ' are
plotted against e in Fig. 5 as the solid lines. The ratio of
anti-Stokes to Stokes intensities R=

I
hzo& l /~io& i

I

X (I+ I 8, &
—l

I ')/(I+ I
8, &

—
& I') is plotted agains« in

i I I I

1.9
C
0
U 1.8
U

CI

1.6

1.5 2
I

0.2 0.4 0.6 0.8 1.0

Incident eccentricity e

FIG. 7. Relative phase of Stokes to anti-Stokes amplitudes GIp
and 8~p*. The limit for linear polarization (&=0) is ~&= —arctan
{242) and for circular polarization (&= 1) is hg =—',m..

FIG. 6. Ratio of anti-Stokes to Stokes intensities. This ratio for
linear polarization (e= 0) is (5+6+-,) ' and for circular polariza-
tion {a=1) is zero, indicating the absence of the anti-Stokes
channel.

The gain of the gainy eigenroot is

0-,'v2
Qr Q7.

1———
&1+0' ')' &1+p ')l) (110)

which has a maximum at
(-) -3-&/2

opt

and a maximized value of

g' '(I/~3) =- gol~2. (112)

Note that this ga, in is even larger than the largest gain
in the backward direction for e=-0

I i.e., that of the
major eigenmode g&+l= go in (57)$. However, the eigen-
polarizations of these two cases are orthogonal; the
forward-going polarization by inspection of (109) is
perpendicular to that of the laser for both Stokes and
anti-Stokes, whereas, the major backward-going polari-
zation (56) is parallel. Comparison with the minor
backward eigenmode, which yields perpendicular-linear
scattering, shows the surprising result that the par-
ticipation of the anti-Stokes channel enhances the gain
in the forward direction for perpendicular-linear scat-
tering Lcomparing (112) with g' '= ~ago in (57)],
whereas, the anti-Stokes channel completely suppresses
the gain in the forward direction for the parallel-linear
scattering'

I comparing g&+'=go in (57) with g&"=0
with the eigenvector (1, 0, —1, 0)~j. But by inspection
of (109), one sees that there is a component of Stokes
and anti-Stokes which is in phase with respect to each
other, so that there is a constructive reinforcement of
the cross coupling upon the self-coupling; the opposite
effect occurs for the parallel-linear scattering.

The ratio of Stokes to anti-Stokes intensities for the
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gainy eigenmode of (109) at the optimum frequency and the relative phase AP between $&o and hss~ is'r

shift is
Af= arctan( —242) = 1.91065 rad. (114)

R '= =5+6+(-' —9.89 9,) 88,
In the case of circular polarization of the incident

(s=O,Q,~&& &r=3 '&'), (113) light (s=1), the net propagation matrix becomes

3+ 2—D
—i(—3+-,'D)

—-D2
—'D
2

i(—3+sD)
3+2—D
—,'iD
—,'D

—,'D
2zD

D
—i(—3+-,'D)

—,'iD

( 3j sD) =[~ t&('=1)]

3—2D

0 )

.0.

0

(h-"&(0))= (117)
z

Note the absence of the anti-Stokes and Stokes com-
ponents for the gainy and lossy roots, respectively. The
gain of the gainy root is the same as for the major
backward eigenrnode (59a):

g~
—

& = —2 Imp& —
& = 6gs[Qr/(1+Q'r')], (118)

with maximum occurring at Q,~&
'r= j. and with the

value g( )=3gp. Also the eigenpolarization is identical
to that of themajor backward case [(1,—i)r].However
the minor backward eigenmode [(1,i)~] gets suppressed
in the forward direction —g(')=-0 for the eigenvector
(1, i, —1, i)r; this is to be contrasted with the linear-
polarization case discussed above, where the major
backward eigenmode gets suppressed. These results can
be understood in terms of the absence and presence of
the anti-Stokes channels for the counter-rotating and
co-rotating eigenpolarizations, respectively, as has
already been discussed in the Introduction. Note how-
ever, that key differs for the forward and backward
counter-rotating eigenpolarization [cf. (116) and (59)].
But when s= 1 (and 6r ——— —1), the over-all precession
of (83b) and (49b) obviously becomes indistinguishable
from retardation and combines with Rey to give the
same total propagation constant for the forward and
backward counter-rotating eigenpolarization

~+ RE &
—

&~.. .,s+ I'= 3go[(1+Q'r')-'+ s]
=-s+Rey'+'b &, g I'. (119)

Hence, not only does this eigenpolarization have the
same gain, but also the same speed in the forward and
backward directions due to the absence of the anti-
Stokes channel.

Let us next consider the case of Q=O, where the
Stokes and anti-Stokes merge with the incident wave
(also called "degenerate four-photon scattering");"

the nonzero eigenvalues and eigenvectors of which are,
by inspection [also cf. (93) and (103)7,

y~+&= a3gs(1 —D), (116)

Whereas in backward scattering the case of Q= 0 leads
to birefringence when 6=0, to optical activity when
6=1, and to a combination of the two effects for the
in-between values of 6, in forward scattering with Q= 0,
only optical activity occurs for all 6 without any
birefringent effects. When Q=O, D=1 [hence y&+&=0
in (93)] and h. t& becomes

2 —32
2

216

2+ ss
1 '
216

I '
Z62

26 ——
216

26

2 —-62

216
—2+-ss'2

216

216
—2E+s.1'——Z62—2s +
= [A.t&(Q= 0)], (120)

which has two degenerate zero roots (A s is non-
Hermitian) associated with two eigenpolarizations,
which by inspection are

p=0, y'=0, (121)

z

(h.(0))=

.0.

r
Imz

0

(122)

(&-'(0))=

0'
z' 0
0 Rez' '

/z

for a,ny z or z'. We must add (8&+ 8s) to form 2-vectors
from the 4-vectors, since the Stokes and anti-Stokes
waves are indistinguishable. Clearly, any arbitrarily
polarized weak wave with Q=O can be expanded in
terms of these eigenpolarizations. The complete solution
(83b) then. produces optical activity with a rotatory
power ssl'=3sgs (sign determined by right-hand rule).
(In the backward case, the rotatory power" is +5gs/4

'7 Dp represents the relative phase of the x components of the
Stokes and anti-Stokes waves. Since, for c=0, these components
are zero for the gainy root, ~P is the limiting value for small e.
A more useful phase difference is that between the y components
4„& &(0) and Ss„& &~(0), which is hp„=arctan&2=0. 95527 rad."Note that this effect is more similar to Faraday rotation than
to natural optical activity in that reQecting a linearly polarized
weak wave backward upon itself almost doubles the rotation, but
differs from the Faraday effect in that the rotation is not exactly
double.
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—36
316
0

g 0

—316
—3
0
0

0
0

36
316

0
0 =LA p(Q= ~)j,
3

(123)

the eigenvalues and eigenvectors of which, by inspec-
tion, are

v' '= +sao(1+e') V"'= o o (124)

(&-"'(O))=
0
0
26

I

Z6

0
.0.

0

(&-"'(O))= 0
1

16
) 0
.0.

(125)

(Since h. s is now Hermitian, four orthogonal eigen-
vectors exist. ) These results are identical to those of
the backward case (63), except for a reversal in the
sense of the eigenpolarizations. From (124) we deduce
birefringence when 6=0, which is physically reasonable
for light at all frequencies, except those nearer than

for e= 1.) In the particular limit e=0, no birefringence
results. This fact may appear strange at erst, since
when the strong wave is linearly polarized, the mole-
cules clearly must align themselves parallel to the field,
and should produce birefringence upon a weak wave.
This indeed is what happened for a backward-going
weak wave, as has been discussed earlier, and for
0v&)1, as we shall see presently. But in the forward
direction with Q=O, the weak wave becomes indis-
tinguishable from the strong wave and the vector sum
of a linearly polarized strong and weak wave produces
a slightly changed alignment direction for the Inolecules;
the sum field propagates with a negligibly modified
speed, whether the weak wave is polarized parallel or
perpendicular to the strong wave. Indeed, for any 6 of
the strong wave, any arbitrarily polarized degenerate
weak wave becomes part of the strong wave, so that the
nonlinear solution (31) still applies to the vector addi-
tion of the strong and weak waves. Since Bt+ Ss«8o,
the alterations of I" and I~. are negligible, and the weak
wave merely undergoes the strong wave's precession
and retardation, which is in agreement with (121).
Angular momentum conservation also forbids bi-
refringence of the weak wave. Birefringence would

imply angular momentum exchange with the strong
wave; however, since the weak wave is indistinguishable
from the strong wave, and the latter cannot exchange
a,ngular momentum with an isotropic medium (Q=O),
no birefringence can occur.

I.et us next consider the special case 0= ~, or more
precisely, 07.))1, in which case the molecular alignment
fails to respond to the weak waves and Xsl,""""=0
(i.e., there is neither self-coupling nor cross coupling).
Then D=P, and

Q& r ' to the incident frequency. Although (124)
appears to predict optical activity when 6=1, such is
not the case because of the canceling effect of the
strong-wave precession or optical activity. Equation
(83b) gives for e= 1, the same total propagation con-
stant

«+y &'& —I'= lr+yt &+I'= K —y'+'+ I'= -,'gs

for all eigenpolarizations. (Note that these weak waves
travel with the same speed as does the strong wave. )
The lack of optical activity is also physically reasonable,
since a circularly polarized strong wave aligns molecules
randomly in the plane swept out by the rapidly rotating
electric field, and these molecules cannot distinguish
the sense of polarization of the weak wave. The amount
of birefringence predicted for 6=0 and the isotropic
retardation predicted for 6= 1 are half the corresponding
values for the low-frequency Kerr effect (i.e. , ~s&1/r),
which is understandable because the molecules, at such
low frequencies, can follow the electric field and no
time averaging takes place.

VI. CONCLUSIONS

The results of the calculations for the limits of linear
and circular polarization of the incident light are sum-
marized in Table III, which lists the ratios of gains and
retardations for the various eigenmodes of propagation.
These ratios summarize the eRects of optical field-

induced birefringence, optical activity, and linear and
circular dichroism (or stimulated scattering) described
in some detail in the previous sections of this paper. It
should be emphasized that these ratios and indeed the
other results obtained in these calculations apply not
only to the molecular-orientation Kerr effect but also

quite generally to any traceless tensor light-scattering
process in an isotropic medium. "

We have not included in the present paper the eRects
of small-angle scattering; this extension of the present
analysis involves a generalization in manner of Ref. 2

and will be published elsewhere. For parallel linear
polarizations of incident and scattered light, an im-

portant feature of such near-forward scattering is the
elastic light-by-light peak in the gain, which is twice the
maximum value of the gain for the inelastic backward
stimulated Rayleigh-wing scattering which occurs at
Qv = 1, but unlike the latter process, this light-by-light
gain involves no frequency shift. Hence, in comparing
the gains of the two eigenmodes of circular polarization,

"An example is stimulated rotational Raman e8ect (see
Ref. 14). However, one must replace D= (I+iQr) ' by D=Qi/
(1+2iQr), where r is the lifetime of the rotation, 0= coo —co1—cog is
the detuning from resonance, and Q=euzr))1. Also, there is very
little self-precession and self-retardation in this case. Another
example is the Kerr effect arising from clustering among spherical
molecules discussed by R. W. Hellwarth, Phys. Rev. 152, 156
(1966). However, in nonspherical cases one must consider non-
traceless generalization of Kq. (7). Still another example is shear-
wave Brillouin scattering; however, for the forward and backward
scattering the gains are zero for kinematical reasons.
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TABLE III. Ratio of gains and retardations of linear and
circular eigenmodes. The gain is normalized with respect to
incident intensity and expressed in units of —,g0. The weak-wave
retardation (subtracting out the strong-wave retardation) is also
normalized with respect to the incident intensity )see (33b)g and
expressed in units of —4g0 (i.e., Rey(+)%1"+I" for the backward
case and Rey('), Rey& )+21 for the forward case). Incident linear
polarization is assumed I and circular polarization C.

Forward
gain

Backward
gain

Forward
retardation

Backward
retardation

@=0I:~:2:C
0: 0:0:0
0: 0:0:0
0: 0:6:0
4:—3:6:1

~= ~opt
:2:C,

0 ' 3v2': 6:0

4: 3 :6:1
0:3+-,".3:0

Q= oo

f:~:2:C,

0: 0:0:0
0: 0:0:0
0:—6:0:0
0:—6:0:0

a Oppf1 =1 for all entries except these, for which Qoptr =3 'i.

one must take into account that the co-rotating —circular
eigenpolarization also has such a light-by-light peak.
This peak occurs in spite of the fact that in the exact
forward direction this eigenmode has zero gain due to
the suppression arising from the presence of the anti-
Stokes channel. Indeed, this same channel gives rise to
the elastic light-by-light peak, which has a maximum
gain double that of the backward gain at Qr= 1, or in
terms of the units of Table III, 2(igs). However, this is
still only a third of the gain at 0v = 1 of the inelastic
counter-rotating eigenmode, which we, therefore, expect
to dominate in the experimental observations.

In the case of the two eigenmodes of linear polariza-
tion, on the other hand, the light-by-light peak causes
the parallel-linear eigenmode (with no frequency shift)
to dominate over the perpendicular-linear eigenmode
(with Br=3 't'), as becomes clear when we compare
the maximum elastic gain of 8(sgs) with the maximum
inelastic gain of 3%2(4rgs). Hence, one infers that there
must be an intermediate elliptical polarization at which
the maximum elastic light-by-light gain crosses the
maximum inelastic forward stimulated Rayleigh-wing
gain. This crossover of the gains may explain the
observation~' that the self-focusing threshold for
circularly polarized light is not a factor of 4 higher than
that for linearly polarized light, as one expects on the
basis of the ratio of Kerr coeKcients (cf. entries in
Table III for 0=0 and backward retardation) and also
on the basis that the self-focusing threshold is inversely
proportional to the peak light-by-light gain' "for these

"D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. O. Bess,
F. J. McClung, and W. G. Wagner, IEEE J. Quantum Electron.
QE2, 553 (1966).

"V.I. Bespalov and V. I. Talanov, Zh. Eksperim. i Teor. Fiz.
Pis'ma v Redaktsiyu3, 471 (1966) )English transl. :Soviet Phys. —
JETP Letters 3, 307 (1966)j.

Ax;g= a'E', Eyjb' E,E',3;y. (127)

This is generalizable in the case of time-varying fields
to the form given by Eq. (7). For tensor light scattering
of the Kerr type,

a = —36 =E7-. (128)
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two polarizations. A dominant counter-rotating scat-
tered polarization will generate in combination with the
incident light a linearly polarized component, which

may affect the self-focusing threshold, and which may
also explain the observation" that the light contained
in the self-trapped filaments is linearly polarized, in

spite of the fact that the incident light is circularly
polarized.

Comparing the predictions of the present calculations
with the observations of Foltz et al. ' (cf. their Fig. 2)
one has good qualitative agreement on the following
points: (i) The frequency shift of the Rayleigh-wing
scattering decreases upon going from circular to linear
polarization (as one would expect from our Fig. 2);
(ii) the intensity of the scattered line diminishes as
e —+0 (see our Fig. 3); (iii) the scattered line becomes
increasingly polarized in the direction perpendicular to
that of the laser as e~ 0, so that in the limit of linear
polarization the scattered line shows up predominantly
in the crossed-analyzer channel (see our Fig. 4); and
(iv) there is never verymuch intensity in the anti-Stokes
lin= we expect at most only about 10%, which occurs
with linear polarization (see our Fig. 6).However, more
quantitative experimental work needs to be done using
the two-cell amplifier method" to measure the gain as a
function of the elliptical polarization of the laser, and
measurements are also needed on the birefringence and
optical activity predicted for an unshifted weak wave
(0=0).

Zoic added in manuscript The third. -order nonlinear
susceptibility X;&A, ('& is a fourth-rank tensor. In an
isotropic medium, however, the most general form for
such a tensor can be written

'ilkm s(~+c)gil3kte
+-', (u' —c')3, bp(+b'3;qadi . (126)

Therefore, the change in susceptibility for a static field
+i is


