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their effect upon the ground state. The criterion for
selecting the extended basis states was to include those
vectors with significant 'G composition (greater than

4%%u~), since the major interactions between ground and
excited states involves excited-state '6 components
only. Examination of the composition of the ground-
state vector and all higher-lying multiplets indicates
that the J-mixing contribution to the ground splitting
from any other multiplets should be negligible.

No attempt was made to fit the data with this
extended basis, since the matrices are so large. %e
merely assumed the previously calculated values of
$0' and 80' and computed the crystal-field matrices
with the extended basis and diagonalized them. This,
of course, causes the quality of the previous fit to
deteriorate somewhat; however, it was too(slight to

justify attempting a new fit with such large matrices,
especially since we were seeking an e6ect in the ground
state. The eftect, unfortunately, did not appear. The
over-all splitting of the ground state was only increased
from 0.072 to 0.074 cm '. Thus, we were able to account
for about half of the ground-state splitting with a
calculation which is good to all orders within the basis
used. It is felt then that further investigation of the
ground-state free-ion state vector is merited.
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Spin-lattice relaxation theory is examined, in the perturbation-theory regime, for nuclear spin systems
which experience time-dependent forces riot only from fluctuating spin-lattice interactions but also from
externally produced periodic disturbances. These include strong steady rf fields (spin-locking and the Lee-
Goldburg experiments), amplitude and phase-modulated rf 6elds (pulsed narrowing experiments), and
modulation of the secular dipolar Gelds through rotation of the sample. It is shown for relatively slow molecu-
lar motions (Ti&r&)ice, where Ts is the relaxation time, r the correlation time, and ceo the rf frequency)
that uncoupled Bloch equations can be obtained for suitably de6ned components of the magnetization. The
spin-lattice relaxation times, which limit the degree of narrowing that can be obtained, depend in every case
on Fourier components of the thermal motion in the neighborhood of the frequency of the periodic dis-
turbance, and are of the same order of magnitude for all the experiments. Uarious narrowing experiments
on substances having molecular motion are discussed.

I. INTRODUCTION
' 'N recent years, a number of magnetic resonance
~ ~ experiments have been developed in which the
behavior of the spins is influenced in an important way
by a strong perturbation which is periodic in time. %e
have in mind the resonant spin locking'' and I.ee-
Goldburg (LG) experiments, ' in which the perturbation
is a rf magnetic field applied on or off resonance; various
multiple-pulse experiments,

' in which a similar field
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is amplitude and/or phase modulated by a pulse train;
and the sample-spinning experiments, 9 "where a field
inhomogeneity or an internal local field is modulated
by rotating the sample with respect to the Zeeman field.

All these experiments have in common that, in a
suitable frame of reference, some or all of the secular
terms of the internal Hamiltonian become time-de-
pendent and very often much less effective for spin-
spin relaxation. It can be showns that the secular decay
of magnetization becomes describable by a weaker
eR'ective time-independent Hamiltonian. Therefore,
speaking in terms of the Fourier transform of the decay,
we may say that the periodic disturbance provides a
means of line narrowing. Perhaps with the exception of
the first one, all of the above-mentioned experiments
have been motivated by this very fact and, correspond-
ingly, have been treated theoretically and exploited

~ F. Bloch, Phys. Rev. 94, 496 (1954).' E. R. Andrew, A. Bradbury, and R. G. Eades, Arch. Sci.
(Geneva) 11, 223 (1958)."I.J. Lowe, Phys. Rev. Letters 2, 285 (1959).
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experimentally most extensively for the rigid-lattice
case, though molecular motions have also been con-
sidered by a number of authors. s"

The ultimate limit of line narrowing achievable with
these methods will be set by spin-lattice relaxation
processes for which some kind of lattice motion is a
prerequisite. This fact must be considered carefully
in connection with any attempts to apply the narrowing
experiments to samples which already display some
degree of motional narrowing through thermal lattice
motion. It seems that in a number of experiments where
nonrigid samples have been used, spin-lattice relaxation
is the cause of failure to achieve line narrowing" where-
as in other instances, still with nonrigid samples,
some line narrowing has been obtained with these
methods. " "It is the purpose of this paper to provide
a consistent treatment of spin-lattice relaxation pro-
cesses for these kinds of NMR experiments. We
include some well-known cases in order to exhibit
existing analogies and to facilitate comparisons. To
end up with simple explicit results, we will ultimately
specialize in each case to simple molecular motions
characterized by a single correlation time v„ ignoring
any correlations of the dipolar interactions of diferent
pairs of nuclei.

A word about terminology may be in order: One is
accustomed to use the terms "longitudinal, " "spin
lattice, " and "T&" more or less interchangeably. The
same goes for "transverse, " "spin spin, " and "T2". In
the experiments discussed here, this is distinctly
impossible. We choose to speak of spin-lattice relaxation
whenever the lattice is involved in the relaxation process
as an emitter or absorber of energy, and of spin-spin
relaxation when the process can occur in an isolated
spin system.

II. HAMILTONIAN AND FRAME OF REFERENCE

The Hamiltonian of the systems we shall consider
consists in general, of three terms, which represent,
respectively, the Zeeman, the rf, and the dipolar
Hamiltonians'.

X=Xz+Xr f+XQ ~

ducible tensor notation assumes the form

Xe =—Q (6sr/5)y'br g, '( 1—)™Ye,Te„
= —constX( —1) Ya, T2 . (2)

The Einstein sunnnation convention is used. The
T2 's are second-rank tensor operators, formed with
the components of the spin operators I' and P (see
Ref. 17). The remaining symbols have their usual
meaning.

3'.d is time-dependent explicitly through the depen-
dence on time of the arguments of the I'2 's. The origin
of this time dependence may be twofold: (i) molecular
motion, (ii) physical motion of the bulk sample, as in
the spinning-sample experiment. We indicate such and
only such a physical motion of the bulk sample by
writing Y~„(l) and Xe(l).

In Sec. III, we shall approach relaxation processes
by perturbation theory. In order to do it successfully,
it is necessary to choose an interaction representation
which "removes" the Zeeman and the rf parts from
the total Hamiltonian. In other words, it is necessary
to go into a frame of reference in which no external
fields show up explicitly. These frames of reference, and
the form the total Hamiltonian assumes in them, are
quite different in each case we shall investigate, and we
shall rather carefully state them now.

A. Relaxation in the Zeeman Field

3C,g is zero, and X2; is removed from K in the usual
way by going into the rotating spin frame, laboratory
space frame, in which

X=—const&&( —1) Y2, T2 e' "" (3)

where coo ——~y~P and H is the strength of the static
Zeeman 6eld.

We note in passing that X as given by (3) does ssot

transform as a scalar. Consequently, the density
matrix p in the rotating frame is not a scalar either.
This circumstance, rather surprising at 6rst sight,
arises from the fact that spin and space variables are
measured with respect to diferent frames of reference
which are accelerated with respect to one another.

Nothing needs to be said about 3'.z. X,& varies greatly
from experiment to experiment. It is expressed most
conveniently and also most directly not in the labora-
tory, but in the rotating spin frame. We shall do so in
our examples. Xe, the dipolar Hamiltonian (of a pair
of identical spins i and k) in units of l's and in its irre-

"H. Kessemeier and R. E. Norberg, Phys. Rev. 155, 321
(1967).

~3 M. Cohn, A. Kowalsky, J. Leigh, and S. Maricic, Magnetic
Resonance in Biological Systems (Pergamon Press, Inc. , New York,
1967), p. 45.

'4 J.D. Ellett, U. Haeberlen, and J. S. Waugh, Polymer Letters
7, 71 (1969).

'5 B. Schnabel and T. Taplick, Phys. Letters 27A, 310 (1968)."L.M. Huber, thesis, Massachusetts Institute of Technology,
1968 {unpublished).

B. Spin-Locking, LG, and Spinning-Sample
Experiments

These experiments, seemingly so different, are in fact
closely related and, in order to display the analogy,
we shall treat them in parallel. Since they are fairly well
known with respect to the matter we treat in this sec-
tion, we do so brieAy:

In the spin-locking and LG experiments, one writes
the Hamiltonian in a frame which rotates in spin
space but is stationary with respect to lattice variables,
so as to make the rf field 2H& cos~t stationary:

X=hco1e+co,I,—const&&( —1)~Y2, „T2„e'""e' (4a)
rr C. P. Slichter, PrinciPles of 3Iagnelic Resonance (Harper and

Row Publishers, Inc. , 1963), Chap. 6.3.
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For the spinning-sample experiment, one begins in
the same way, but recognizes that the lattice variables
are time-dependent:

X=—const X( 1)—Fs, m(t)Tsme' "". (4b)

The time dependence of the I"~ 's due to the spinning
of the sample offsets in some sense the lack in Eq. (4b)
of the fIrst two terms in (4a), which originate from X,i
and a resonance offset characteristic of the LG experi-
ment. In (4a), a tilting of the spirt frame about the y
axis through 8=tan I(et,/&&o) brings the (new) z axis

along the effective field Heft with
~ p ~

He f f —(t3t

=(te '+dot')'ts. In (4b), a tilting of the sPace frame
about the y axis through 8, brings the (new) s axis

along the rotation axis. Thus we have in the rotating,
tilted spin, laboratory space frame for the spin-locking
and LG experiments

X=et,I,—constX K) 'Fs, Ts e' "t'(—1), (Sa)

and in the rotating spin, tilted space frame for the
spinning-sample experiment

X=—constX( —1)"X) „, m'F, , m (t)Tsmerm"t'. (Sb)

The Wigner rotation matrices" X)(n,P,y) are under-
stood to have arguments (0,8,0) in (Sa) and (0,8„,0) in

(5b), since these sets of Eulerian angles correspond to
the indicated tiltings.

A rotation of the spin frame about the new s axis with
angular velocity ~, "removes" the term ~,I, from Eq.
(Sa). A similar rotation with angular velocity ot„about
the space-frame s axis "removes" the explicit time
dependence from the I'sm's in Eq.

'

(5b). Thus, we have
in the rotating, tilted, rotating spin, laboratory space
fl arne

tX~ sy T,( ])meimtttteim'ttet (6a)

and in the rotating spin, tilted, rotating space frame

X= coilstX S—m, —m' I s,—m'Tsm( 1)
Xeimet te—™~„t (6b)

The last space frame of reference in the spinning-
sample experiment [Eq. (6b)) is a sample-fixed frame.
In this frame, the space variables depend upon time
only through molecular motion, and, consequently,
we have dropped the argument (t) from the Fs 's in

Eq. (6b).
Note that every factor in (6a) has its exact counter-

part in Eq. (6b). Note also, to which indices the "slow"
(et„et,) and the "fast" (ops) oscillatory terms are related.
In this respect, Eqs. (6a) and (6b) are different, and
the difference is quite significant, since from now on

spin and space variables are treated diGerently in the
usual way.

By choosing 8=sr~ and dropping iI&0 terms, (6a)
goes over into Redfteld's dipolar Hamiltonian [Ref. 1,

~8 A. R. Edmonds, Angular Momentum irl, Quantum Mecharlics
(Princeton University Press, Princeton, N. J., 195$).

(21)3 By choosing 8=cos '(3 It') and dropping
its/0 terms, (6a) goes over into the Hamiltonian
pertaining to the LG experiment. . Similarly, Eq. (6b)
assumes the form usually used in the spinning-sample
experiments, if we drop m/0 terms.

C. Combined. Sample-Spinning G.nd LG Experiment

One might be tempted to try to improve resolution
in high-resolution NMR in solids (including high-
molecular-weight solutions and highly viscous liquids)
by performing at the same time two of the line-narrow-
ing experiments. To see if something can be gained by
such a procedure, we examine the simplest —at least
conceptually, if not practically —of these experiments,
which is the combined sample-spinning and LG experi-
ment. A brief, more intuitive account has been given
previously (8). The Hamiltonian pertinent to this case
is obtained by combining Eqs. (6a) and (6b) with the
result

X= —const XI) „..'X),'(—1) P', „T, ,e

Xeim'tt etc im"ra„t —
(p)

The spin coordinates are measured [as in (6a)) in the
rotating, tilted, rotating frame, the space coordinates
[as in (6b)j, in the tilted, rotating framc -the body-
fixed frame. The arguments of the %signer rotation
matrices are the same as given in the text following
Eqs. (Sa) and (Sb).

D. %HH Four-Pulse Experiment

In the rotating spin, laboratory space frame,

X=X„(t)—constX (—1) Vs, Ts e' "". (8. )

X,(t) is shown in Fig. 1(a). The index v suggests video
and has been chosen for the characteristic time depen-
dence of this Hamiltonian.

In a frame, moving as indicated in Fig. 1(b)—we
call it the rotating, toggling spin frame of reference
X,(t) drops out, and in this frame

X= —constX (—1) 7', {X),'(0,0,0)P,(t)

+& ~ (0,—tr, 0)P„(t))Ts e' "o'. (9)

The space coordinates are still measured in the labora-
tory frame of reference. P (t), P„(t), P,(t)=P, (t) are-
shown in Figs. 1(c)—1(e). Equation (9) results from
Eq. (8) by expressing the Ts 's of Eq. (8) in terms
of the spin coordinates of the toggling frame by use
of the Wigner rotation matrices. Equation (9) is a
generalization of the X(t) we used in Ref. 8, inasmuch
as it encompasses the total dipolar Hamiltonian, not
only its secular terms.
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gv '
y H~Ix -yH~Ix -yH~I& YH~I&

(a) f/tc

III. RELAXATION THEORY

We choose as our starting point the following equa-
tion of motion of the reduced-spin density matrix p ".'

(b)

0 I/6 $/6 0/6

d ([&(t),[&(t—), 77)- (13)

(c)

I/6 5/6

(XY,Z) (X,-Z,Y) (XYZ) ( ZY, X)

I /6 5/6 4/6
The approximations inherent in Eq. (13) are thoroughly
discussed by Abragam and will not be repeated here.
K is the relaxation-causing Hamiltonian and is given,
for our cases, by Eqs. (3), (6a), (6b), P), and (12).
We recall that these Hamiltonians are expressed in
totally diferent frames of reference, and the same will
be true for p. Contrary to our convention in Sec. II,
here (t) includes all time dependences of X or Ys
arising from thermal lattice motion or elsewhere.

0/6

t/tc

(e)

We expand P, (t) in Fourier series:

Q i/6 5/6 4/6

Fro. 1. {a)X„{t).The widths t~ of the pulses are thought of as
being infinitely short, but such that yH&t~=~7t. . Between the
pulses X„(t)=0.The sequence of pulses, shown above, is repeated
at a rate n&, /2tt = fjt,. (b) Rotating toggling spin frame of reference.
The row vectors give the direction of the x, y, and s axes of the
toggling frame in terms of the axes of the rotating frame. They
are valid in the indicated intervals. (c), (d), and (e); P, (t),
E„(t),and P, (t).

A. Relaxation in the Zeeman Field

Ke include this case primarily to show how our
approach applies to a well-known case. Also we believe
that the exploitation of the properties of tensor opera-
tors renders the reasoning more direct than in the
standard approach, " especially with regard to the
step from the equation of motion of the density matrix
to Bloch equations.

Insertion of (3) into (13) gives

dp 6x yVi'
( 1)m+m'e~(m+m') pt[Tn[T p77

dt 5 r'

(&s, m(t)&s, m (t—r)), e ' '""dr. (14)

+00

P, (t) = P r„e'""', o&, =2tr/t, . Using the definition

For the coeKcients r, we And xp=pp=sp=3 and, for & (ot)=

e/0,
(7's, „(t)1 s,„(t r))„e'"'dr—

y„= (1/tstr)e'" "sin(rttr/3),

x„=(—1)ny

Sn = (xn+yn) . —
Note that r „=r„*Insertin. g (10) into (9) gives

X= —const X (—1) Fs, mTs, m~

(11a) = (—1)" (&s, *(t)Fs, (t r), )e'"'dr, —(15)

(11b)
and restriction to secular terms in (14) leaves11c

dp 6m. y4A'

[Ts, ,[Ts, ,p77S"(~s). (16)
dt 5 r'

+00
, neinn, tet'mtttt (12)

where

q„„,.={u„„,s(0,0,0)s„yn„„,s(-', w, —-', , --',w) x.
+S „'(0,-,'tr, o)y„}.

The coefficients 6 " are completely determined by
the Wigner rotation matrices and Eqs. (11a)-(11c).
Since we will not need all of them, we will postpone
their further evaluation.

We multiply both sides of (16) by I„(tt=1,o, —1) and
take the trace, thus getting equations of motion for
the expectation values of Ir ——(1/42)I+, Is =—I„I,=(1/V2)I .

The traces over the double commutators

tr{[Tsm,[Ts, m, p77I„}=tr{[Ts, m, [Ts,„,I„77p}
—= ([T .=,[T..-,I.77) (»)

are reduced to traces over single conunutators by use
» A. Abragam, The I'rincip/es of ENcleur 3fagzetism {Oxford

University Press, New York, 1961), Chap. VIII, Eq. 33.
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LI „T,, 7=~L.", (t~ )(t+ +1)7"T,
LI„TI,„7=~TI,. (18) II—=+— I(I+1){—&'(~0) —& '(—~0)

0 r'
Thus, we get +4K'(2o)0)+45 '(—2(eo) j . (27)

of the following commutation relations, valid for tensor Inserting (26a) and (26b) in (19), we see immediately
operators": that we get a Bloch equation with

(
dI p 6m- y4h'

(C T, , ,T,, 7)ms (cusp),
dt 5 r'

TI, ,TI, ,=Q Tg, „(tgt2lm~tInzgt2m2), (21)

where ( ~ ) are Clebsch-Gordan coeKcients (in
the notation of Edmonds), we get

LT2, m1 1 T2, m 27

=Q TI, {(22tm~2rn~2m2) —(22lm(2m22mI)}, (22)

and, because of the following symmetry relation t Ref.
18, Eq. (3.5.14)7

(tgt2lnz
~
l~m~l2m2) = (—1)"+" '(l2lItm

~
l2m24m~), (23)

the only terms that survive in (22) are those with t odd,
that is, 1=1,3.

The 1=3 terms cause trouble, for they lead to an
equation of motion for (I„)not consistent with the Bloch
equations. Fortunately for I=-', , (T3 ) =tr{T3 p) van-
ishes because in the matrix elements (j&m&~ T&m~ j2m2)
the "triangle condition" 3+j~&~ jI&~3—j2 can never
be met with j~, j~——0 or 1, which are the only values

j& and j2 can assume in a spin- —', system.
For the I =1 terms, we have by virtue of the Kigner-

Kckart theorem"
(T -)= (I-) (24)

where c is a constant (with respect to m) and for which
we get by direct evaluation of (Tyo),

= (-',+10)I(I+1). (25)

Combining Eq. (25) with Eq. (22) and inserting the
Clebsch-Gordan coefficients, we get (completely for
I=-', and the 3=1 contributions for I~&1)

&P'»1T2,-27) =3I(I+1)(Io) (26a)

(fT,g, T2, 7) = —-,'I(I+1)(Io), (26b)

(pT221 T2, g7) =-',v2I (I+1)(Ig), (26c)

(LT211T207)= —(2/~&)I(I+1)(I&), (26d)

(LT2~, T2, . 27) =-',%2I(I+1)(I g), (26e)

(pT20, T2, g7) = —(2/&3)I(I+1)(I g). (26f)
~ M. E. Rose, E/ementary Theory of Angular 3fomentlns

{John Wiley 8z Sons, Inc. , New York, 1957), p. 84.

dIgg 6m. y4PP

(LT.,-",T.,--7) (~1)
Ch 5 r'

XL~(2&m)(3Am)7""7 (m&oo). (20)
From

Inserting (26c)—(26f) into (20) we again get Bloch
equations with

For random stationary motions, P (—&a)=P *(u&),

the star indicating conjugate complex, so Eq. (27)
gives a real quantity identical to 1/T&, whereas Eq.
(28) give complex quantities, the real parts of which
are equal and may be identifLed with 1/Tm. The imagi-
nary parts correspond to shifts. For a Gaussian-Marks
process with correlation time v.

«L&"(~)7= (—1)"(1/4~) t r/(1+~'r')7 (29)

and with this we recover from (27) and (28) the familiar
expressions" for Ty and 72.

2 y4h' 1
I(I+1) +

rx 5 r' 1+ '' 1+4 '') (30)

1 1 y4A' 5r 27-

I(I+1) 3r+ +— . (31)
T2 5 r' 1+ Ird'01+4~/ r'

B. Spin-Lattice Relaxation in the Spinning-Sample
Experiment

By comparing the Hamiltonians of (3) and (6b), we
see immediately that we can take over all our formulas
from case A, provided we replace

I'p, (t) by S, 'F2, (t)e—' '"',
which gives, consequently,

+m(m11IO) +—m, —m', +m, m" e

(F2, m~(t)F2 m" (t r))»e'I "' ""'~'dr—. (32)

Now

,2 (1)m—m—'~,20

l'. .-- (t) = (—1)"'F.,- *(t),

and, for random molecular motion,

(I'-*(t)I' -(t—))-=&---(l'-*(t)l'-(t—)). ,

4x y4Pi'

I(I+1){Mo(0)+2&~'(~2(oo)
Tgg 5 r'

—2r+'(+~0) —3r+'(w~o)) . (28)
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which reduces (32) to

r (mo&o)=( —1) Q In

(Yz ~ (t)Y& (t r))—, e'( ~o '~~)~dr

For a Gaussian-Markoff process, Eq. (33) gives

(moo p)

(33)

p = 1, 0, —1, should be proportional to (I„).The result-
ing "Bloch equations" are no longer decoupled. By
inspecting the limiting case or, ~ 0, 8 hnite, we see that
this must be so indeed: In this limiting case, physically
we come back to our case A. However, we are now in a
diferent frame of spin coordinates. Rather than
elaborate the general case, we shall restrict ourselves
to m =0 in Eq. (6a). This amounts to discarding all high-
frequency terms from the Hamiltonian itself, which then
reads

1 T'

= (-1)=p I
n .'I'

4m m' 1+(neo p m'cv—,)'r'
(34)

For coo))co„and m~o, and thus for T~, there is no
dramatic change as compared to ordinary spin-lattice
relaxation, treated in case A. However, in 1/T~q or
1/Tp, there is the term m=0, RePo(0) which dominates
the others greatly for mo7))1. This term changes by
spinning the sample from r/4rr to

K= —constXnp '(0,00)Y&o(t)T& e™~t (37)

After putting m=O in Eq. (6a), we have changed m'

to m. By comparing (37) with (3) and recalling the
results from Sec. III A, we find (i) (I~), (Ip), (I ~) in
the rotating, tilted, rotating frame relax independently
and exponentially with time constants To, T+&, T &, and
(ii) we get these time constants by replacing everywhere

(—1) Yp (t) by no 'Ypo(t), and ooo by op„which conse-
quently gives

—p In,„.(o,e„,o)
I

4'' ~' 1+(m oopr)

3 cos'0 —1
+3 sin'O„cos'0„

4~ 2 1+op

1
+f sin40„ (35a)

1+4' 'r'

which, for the magic angle 8„=tan —'V2, is

7-1 2 1
+

4m- 3 1+op„'r' 1+4','rV

(m(u, ) = (—1) I
no„'

I

'

X (Yqp(t) Yop(t r))»e'~—""dr, (38)

and, for a Marko6 process,

1 7-

Ret~(mo), ) =(—1)mI no 'I'— (39)
4m. 1+(nud, r)'

We get To, T~x by inserting (38) or (39) into (27)
and (28).

We proceed to discuss two important special cases.

This makes 1/Tp essentially become 1. 8= p~: Resonant Spin Lock-ing

for (n,P,y) = 0,—,0 I,'2'

' '7'"'
I(I+1) +

27- r
(36)

Ino.+p'I'=p Ino, +~'I'=0, Inoo'I'=-:

T2 5 r' 1+~ Pr& 1+4~ &r&

We note that the condition for T2 in the spinning-
sample experiment to be considerably longer than the
ordinary T~ is not only coor))1, but also co„7))1.It is
very likely that failure to meet this last condition is
the cause of the failure of some recent experiments, "
in which it had been attempted to narrow broad lines
of high-molecular-weight solutions by spinning the
sample at the magic angle.

C. Relaxation in Tilted-Rotating Frame (Spin-Loclring
and LG Experiments)

Things get more complicated here. Elimination of the
high-frequency terms in the equation of motion of the
density matrix, that is, those terms which contain
factors e'""",n= m+m" WO, does not select the proper
Tp 's in the sense that the rate of change of the (I„),

which gives

1 3 y4h' r
I(I+1)

To 5 r' 1+4(u,or'
(40)

In the "extreme narrowing" case oo.r«1 (but still
&d'or))1), we get Tp, =2T~P,' for ur, r))1, T~, becomes
larger than T». Note that T» is always longer than T&,
itself.

To is identical with what is generally called T&,'in the
literature. Ke get also an expression for what might~&be
called T~~.

1 1 3 7'k' T
Re -= =— 1(Igl) rg (41)

Tgg T2, 20 r' 1+ho 'r'
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Z. 8= tan-'V2: I.ee Gotd-burg ExPeriment when anisotropic chemical-shif t broadenings, which
are unafFected by an LG type of experiment (or any of

Sp,+2 —
g $~] —3 X)pp —0 the multipulse experiments) prove to be troublesome.

1 27k 2T They may be removed by spinning the sample. The
I(I+1)~ +, (42) preceding considerations show that one should avoid

Tp 15 r' k1+ppPr' 1+4(e,'r' choosing pp, =&a„, a better choice usually being co&)ar„.

1 y'h' 5v 7

Re — =— I(I+1) + . (43)
T~y 15 r6 1+~82r' 1+4(a,'r'

E. WHH Four-Pulse Experiment

The reader will accept it as only fair if again we

We ost one a discussion and a corn arison of these restrict ourselves to the terms m=0. The Hamiltonian

times until we have completed cases D and E. we ave to deal w'th the reads

D. Combined LG and Sample-Spinning Experiment
+00

BC = —const&& I ppTp ~ Q Gp„"e'""'. (45)
We will treat this case only far enough to recognize

the essential point, which is the following. The term
in Zq. (31) that causes T2 to become very short, when
the correlation time r becomes very long, is the term
3r in the large parentheses, which has no large denom-
inator. The outstanding feature of the magic angle
experiments is the lack of such a term in the expressions
for the relaxation times, see (36), (42), and (43). Now,
in a combined LG and sample-spinning experiment
such terms with no large denominators are reintroduced
when co,=or„, but essentially also, when co,=or„. In the
following, we con6ne ourselves to demonstrating this
point.

From the Hamiltonian, as given by (7), we keep, of
course, again only the terms with m=0.

By comparing the resulting Hamiltonian with (3),
we see that we get the desired relaxation times by
making the replacement in (3):

Fp (t) -+ (—1)~Sp, '(0,8„,0)
XX)p, '(0,8,0)Fp, (t)e ' '"',

which subsequently gives, after some manipulations
including change of indices and for a Gaussian-Marks
process

ReÃ~(mo, ) = (—1)"
~
np '(0,8,0)

~

'

1 7

XQ i
X)p '(0 8„0) i

'— — . (44)
m~ 47r 1+(cue, —m'(o )'r'

It is troublesome that the frequencies m~, are not
related to the index ns' of T2 . In our previous examples,
frequencies had always been related to the components
of the spherical tensors, and this had quite important
consequences: Restriction to secular terms in the equa-
tion of motion of the density matrix left only such
commutators LT2 „Tp,) as to give decoupled Bloch
equations.

However, as we shall show presently, the syDUnetry
relations among the Wigner rotation matrices and the
relations among the x„, y„, and s„as given by (11a),
(11b), (11c) result in

C~y":—0, epp"=0 for e odd, and 6~2"=0 for e even.

So, essentially, we recover a relationship between the
index m' of T2 and the associated frequencies.

Table I gives the Wigner rotation matrices
Sp '(n, P,y) for our three sets of (n,P,y). We deduce
immediately that 8~~"=—0. This results from our
applying only ~m pulses. With xp=y&sp=3 we also
find Cp~~ =0.

By plugging x„,y, and s„as given by (11a), (11b),
and (11c)and the numbers from Table I into the de6n-
ing equation for 8 ", we get

~pp" = —2L1+(—1)"3y- 1.= ——,'L1+ (—1)"g—e'" "sin (mr/3), (46a)

These expressions, for m= —2 +2, have to be
plugged into (27) and (28).

For the magic angle conditions 0=0„=tan 'V2,

j X)ppp(0 8,0) (
'=

[ Spp'(0 8 0) ('= 0

so in the equation for 1/T~q, (28), the term 7'(0) drops
out. The other ones, m= &1, &2, however, for ~.=co„
will all contain terms, where m'co„cancels men, with the
effect that for 7- —+~, T'2 does not become long as
predicted by (36) and (43), but short as predicted by
(31).

There may still be situations, where a combined
LG-spinning-sample experiment might be useful: i.e.,

TABLE I. Numerical values for the Wigner rotation matrices.

X)p "(0,0,0)
~~.~(-',~ —-', ~ —-',~)
Sp '(0-'m 0)

0

pV'~s

11
0
0
0

1
2

0 0—pV'4

~~p" = 2 (v'2)L1 —(—1)"jy-

1.
=xp(gpP)L1 —(—1)"j—e'" t' sin(re/3). (46b)
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Next, we insert. the Hamiltonian (45) into the equation
of motion of the density matrix p (Eq. 13), and get

Jp—= —const'&( Q e""'+""'""60 "'60 -""
dt ~t~t t

X(T2t0'&P2tn")p))

X&I'„(&)I',.(&—.)),.-'-"-". (47)

Restriction to secular terms (I=22'= —I") l~~ve~

Ip—= —const2XQ &om' '80m" LT2~'&ET2~"&p))
dh n

dr(y o(&)y 0(~ ))

Multiplication of (48) by Io(=I*), taking the trace,
and using

tr(CT2~'i( T2~ i,p)I0) = tr(( T2~"&LT2~,I0))p)
=rt'&LT2-, T2 -)& (49)

gives

dIp = —const2XQ 60~ "&om
d$ n

X&( T...T. )»'(-.). (50)

X&LT2 " T2, 'yl)&&0(22'. ) . (53)
From the double sum over m' and ns", only three terms
survive, due to the properties of the ep

fg 2) 852 ~

fg 2) 822 ~

The T1 's contained in LT2, 2,
T2, 2) have rt2= —3, and so we
can have only I,=4 or 3. However,
TE 's with / even are not contained
in the commutator, and so we are
left with /=3. %e have shown, in
Sec. III A, that for I=—,', (T2 )=0
and, to be consistent, we drop
these terms for any I.
These terms vanish for e even but
do survive for s odd.

«,—2 &0.+2 "(:2(4)(1))'"
X&ET2.+2,T2.-2)&

= (3/2+2) (1/n2)I(I+1)(I2& (54)

The summation is over e positive, odd and not a
multiple of 3. The term e= 1 dominates all other ones.
The weight of the next one, n= 5 is already down by a
factor of 25.

Turning now to I1=—(1/v2)I+, the equation of
motion, analogous to (50), becomes

(dI2/4& = c—onst

XP t'-0 "80 "-"(-,'(2 —m')(3+m'))'~2

for e odd, but not a multiple of 3.
m'=0, m"=0: These terms vanish for e odd, but

do survive for e even ~0.

We proceed to examine the double sum over m' and
m": Because C~& 0) all terms with m')m"=~1
vanish. For e even, the only coeQicients that do not
vanish are the Coo"'s. But then the commutator van-
ishes, because m'= m"= 0. We are thus left with e odd,
and m', m" =2,—2 and —2,2. Using Co,s"8o,—2

"
= 80 2"80 2

—"=
(
802"(', which follows from (46b), and

&( T22, T2, 2))=-;I(I+1)(I0) ( Eq. (26a)), we get

&00 &00-"P2'(2) (3))2"&LT20,T22)&
= (27/22r2) (1/n2)I(I+1) &I2) (55)

for e even, but not a multiple of 3.

dIp
const X Q ( +02

A od8

By inserting
const' = (62r/5) (y4&2/r 0),

( p020(2= (9/g2r2) (1/n') fOr 22 Odd, but nOt a
multiple of 3,

=0 otherwise L'see (46b)),

1 7
ReÃ(2201,) =—

4~ 1+(2200,r)2
IV. SUMMARY AND DISCUSSIOH

YVe have shown that in a wide variety of NMR
experiments Eq. (13),

into Fq. (51), and summing only over positive 22,

which brings in another factor 2, we anally get

Inserting (54), (55), and the expressions for const
and F0(n01,) into (53), we get a Bloch equation de-
coupled from the equations of motion for (I 2& and
(I0) with a time constant:

X(16/3)I(I+1)&I0&80(2201.). (51) 1 1 3 9 'Y 12

Re =—=—— I(I+1)
Q T~2 T2 10 vr2 r0

1 7 1 1 7X3+- +-Z — (56)
n I' 1+(2201,r)2 3 m rt22 1+(2nr)A)2

The sum over e runs over e&0, even and not a muItiple
of 3, the sum over m runs over m&0, odd and not a
multiple of 3.

1 2 9 y4A' 1—=-—I(I+1)
T2 5 2r r0 0 n2 1+(na).r)2

(52) d &L~(&),L~(& ),p))&,—,
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with BC being the dipolar Hamiltonian coupling two
identical spins, under certain conditions leads to de-

coupled Bloch equations for the components of (I). The
required conditions are (i) we choose an appropriate
frame of reference, which is the one in which no external
fields, static or oscillatory, appear explicitly. (ii) We
restrict ourselves to the famous secular terms of the
dipolar Hamiltonian whenever —in the laboratory
frame rf fields are present during the relaxation pro-
cess. (iii) We are dealing with spins with I= , or w—e

discard, for I~&1 terms, (T3 ) from the equations of
motion of the components of (I).

As we have noted earlier, the characteristic feature of
the line-narrowing experiments is the removal of terms
without "soaring" denominators from the expressions
for the relaxation times. The remaining terms are very
similar in all of these experiments. The decisive param-
eter is always some frequency 0 which is provided by
the experimenter himself,

0=co, in the spin-locking and LG experiments
=co„ in the spinning-sample experiment
=co, in the WHH four-pulse experiment (and also in

the other versions of the multipulse experiments).

The magnitude of Q in practical experiments of all

these types tends to be roughly the same (say, 10'—10'
sec '), and so the corresponding spin-lattice relaxation
times T+ and the limit they set to the narrowing are
also similar. It is important to realize that this T+ is rot
the ordinary spin-lattice relaxation time Ti which limits

the resolution of conventional NMR experiments, but
is invariably shorter, and often, for relatively slow

lattice motions, very much shorter. Of the various

relaxation times in question, perhaps the most familiar

is Ti„ the "rotating frame" spin-lattice relaxation

time in a spin-locked system at resonance. Accordingly,

one may use Ti, ' as a reasonable guide to the limiting
resolution of any of the narrowing experiments.

T+, like T&, depends strongly on the rapidity of
molecular motion. It is helpful to discuss various experi-
mental situations in terms of the familiar schematic
plot of Fig. 2: Consider first the situation labeled A,
appropriate to a nearly rigid lattice. A narrowing
experiment will apparently be highly successful, since
T+))T2. However, if really high resolution of, say, 1 Hz
is desired, one must have T+= 1 sec. But if this is true,
Tj, being several orders of magnitude longer, may be
so long as to make the experiment unfeasible. (One
must wait several Ti's for the spins to polarize before
the experiment is performed or to recover to equilibrium
after applications of a strong rf field. )

Now suppose the correlation time is shortened
(perhaps by raising the temperature) until T& decreases
to the convenient value of a few sec (case 3). Since T+
is still smaller than T~ by several orders of magnitude,
the degree of line narrowing which can be obtained is
sharply curtailed. This situation is appropriate to
many substances, including polymers near room temper-
ature, which show some degree of motional narrowing.
In several fluorocarbon polymers (including Teflon),
we have observed limiting linewidths of 1—2 knz near
room temperature. "

The situation labeled C is even worse. It applies,
for example, to viscous-liquid solutions of many high-
molecular-weight substances, where a residue of dipolar
broadening persists because of the relatively long
rotational correlation time of the molecule. In such a
case, it may well be that T+=T2, i.e., eo further
narrowing is obtainable. We believe this is the explana-
tion for several reported failures" of the sample-

spinning technique to narrow the %MR spectra of
protein solutions.

Z'
O

)C

LLI

FIG. 2. Schematic dependence of relaxation times on
correlation time for a simple lattice motion. The labels
A-D refer to situations discussed in the text. The dashed
curves emanating from the lines labeled Ti and P
indicate the behavior of systems in which spin-lat-
tice relaxation through the molecular motion is short
circuited by spin-diffusion-controlled relaxation through
paramagnetic centers.
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Case D of Fig. 2 corresponds to extreme narrowing
in a mobile liquid, where the narrowing experiments
again fail (T+=Ts), but are in any case academic
(Tr——Ts).

Evidently, partial narrowing of a resonance through
thermal motions is not a blessing, but a curse to the
seeker after narrow resonances. Is there a way to
defeat nature in this quests The answer is in a sense
affirmative, but requires, paradoxically, that the motion
and the partial narrowing it provides be erst eliminated.
Imagine that the sample is cooled to a low temperature
or otherwise immobilized, restoring case A. To avoid
the problem Of unbearably long T& we supply a suitable
concentration of paramagnetic centers, either chemi-
cally or, perhaps, by suitable irradiation. The dominant
spin-lattice process now becomes dependent on nuclear-
electronic spin Rips involving the nuclei near the para-
magnetic centers, and equilibration of the nuclear
system through spin diffusion. When, as often occurs,
the bottleneck is the spin-diffusion process, T~ becomes
independent of temperature. The same is true of T+,
which may be longer or shorter than 1"~. Under the
conditions of effective narrowing experiments, it is in
fact typically longer (and the relaxation is nonexpo-
nential) ""These were the conditions of our successful
experiments in paramagnetically doped CaF& ~ 8 and
CaSO4 2H20, in which there is not much effective
molecular motion even at room temperature. We believe
that similar results could be obtained rather generally
in more mobile molecular solids by suitable doping and
freezing. One should keep in mind that relaxation
centers introduced by irradiation at a low temperature
are likely to disappear unless the sample is kept cold

"S.Clough and K. W. Gray, Proc. Phys. Soc. (London) 79,
457 (1962).

until the NMR spectrum is obtained. I.ow temperatures—even that of liquid helium —are, of course, advanta-
geous for obtaining intense magnetic resonance signals.

Before concluding, we hasten to emphasize that few
substances have molecular motions as simple as Fig. 2
implies. More complex motions may well be involved in
the few cases of motionally narrowed substances in
which narrowing experiments have had a degree of
success. " "Consider the case of silicone rubber, whose
ordinary NMR spectrum is much narrower than the
rigid-lattice width at room temperature, yet in which
both magic angle rotations" and the WHH experiment"
are successful. One can imagine that the motional
narrowing is due to rotation of the —CHg side chains
at a rate so high as to have no appreciable spectral
density near 0, and that the residual width exists
because the over-all motion of the chain is so slow that
the spectral density of the inter —CH3 interactions
lies almost entirely at frequencies smaller than Q.
Under these circumstances any of the narrowing
experiments will succeed in removing the inter —CH3
dipolar coupling. One would also predict that T'i„
measured in an rf field of a few gauss, would be "anom-
alously" long. The case of aqueous solutions of poly-p-
benzyl glutamate in the helical configuration, reported
by Cohn" to give narrowing of the aromatic proton
resonances only in a spinning experiment, is more
puzzling: Still, this is certainly another case of two or
more different molecular motions on rather diferent
time scales.
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