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In a previous calculation of the gain factor for stimulated thermal scattering, it has been

assumed that the dielectric constant is insensitive to changes in temperature. In our treat-
ment such an approximation has not been made and it is shown that this additional contribution

gives rise to a correction of up to 6% to the stimulated thermal Rayleigh peak for liquids

commonly used in such experiments. The inadequacy of the Lorentz-Lorenz relation in

estimating the magnitude of this correction is also discussed.

In a recent paper by Herman and Gray, ' the
gain factor for the stimulated thermal Rayleigh
peak has been calculated. The density and
temperature are taken as independent thermo-
dynamic variables and it is assumed that the
dielectric constant is insensitive to changes in
temperature, i. e. ,

5T«5p,

where 5p and 5T are the rise in density and
temperature, respectively, e is the dielectric
constant of the medium. This assumption is
common in the literature and generally quite
valid. Stimulated thermal Rayleigh scattering,
however, is one physical situation where this
approximation is not so good. As a guide to
future attempts to obtain quantitative agreement
between theory and experiment we set down a
more exact theoretical treatment. It is true that
for most liquids

= 10-';
p

however, in the final expression for the stimu-
lated thermal Rayleigh gain it is not R but R

times a quantity of order 10' that appears and

as a result the term that has been ignored pre-
viously is not negligibly small. In most cases
this additional term would change the gain of the
stimulated thermal Rayleigh peak by 3 to 6/0.
In some recent experiments, ' I, has been used
as a coloring agent to study stimulated thermal
scattering. In these cases there exists large
discrepancies between theory and experiment
with regard to the onset of thermal Rayleigh
scattering. The treatment presented here does
not account for such discrepancies.

In this paper a derivation of the gain factor, in-
cluding both contributions to the change in di-
electric constant, is given. In the limit when
R-0 our result reduces to Herman and Gray's'
result. It is shown that for R=0.6x 10 'g
cm "K ' for benzene (we compute this value of
R from existing experimental data in the litera-
ture') the additional term changes the gain of
the stimulated thermal Rayleigh peak by about
5% from Herman and Gray's result 'lt shou. ld
be pointed out that Mack's' data leads to a value
for R = 1.34 & 10 'g cm "K ' which gives a
change of 13% from Herman and Gray's' value.
This estimate is too high because Mack made
use of the Lorentz-Lorenz relation which is in-
adequate for the liquids discussed.

%'e are interested in calculating the power
gain per unit length 6, which is related to the
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imaginary part of the nonlinear susceptibility

X~I (~B) through the relation G =4vkB Imx~f ()dB),
where the subscript S refers to the scattered
wave and k is the wave number. To calculate
G we start with a set of two coupled equations, '

one describing the temperature fluctuation 5T(t),
the other describing the density fluctuation ep(t)
[or equivalently in terms of dilatation A(t)
= —ep(t)/p, ] in an isotropic medium:

8
8z2 poc 8t TpF

8 6 8 8

T 8Z2 + n Bt 8Z2
—Po 812

—
8Z2

Here p„T,are the equilibrium values of the
density and temperature, respectively, C~ the
specific heat at constant volume, K the static
thermal conductivity, n, some average value
of the refractive index, y =pp(ae/ep)T is the
electrostrictive coupling constant, o the elec-
tromagnetic absorption coefficient, c the speed
of light in vacuum, E the total electric field, g
the effective viscosity of the medium. The
factor F = pBT —=pOC„(y—I)/Top, where p is
the coefficient of volume expansion, y is the
usual ratio of specific heats and BT is the iso-
thermal bulk modulus.

The nonlinear polarization is given by

(t) = [ae(p, T)/4v] E(t)

k. iE
2Q P+0 + 2 1 r )2
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) ' )')))*1) ) *- ~*)*~ ) r'~ )*]) ,

(4)

where the subscript L refers to the incident
(laser) field, k =kL+kS and ~ =(dL —~S. Further
&uB=ulk where ul'=B /po, TR=2Kk'/pOC~ is
the Rayleigh linewidth and I'B= rtk'/po is the
Brillouin linewidth. The term involving (y )'
leads to the usual gain at the Stokes frequency
for ordinary stimulated Brillouin scattering.
The term involving y y T would modify this
slightly but numerical computation shows that
the correction is of the order of 0.01% so this
term can be ignored. Now we concentrate on
stimulated thermal scattering (arising from
terms involving a) where our theory predicts a.

non-negligible change from previous results.
For stimulated thermal scattering we can

immediately write the gain factor, G(o), from
Eq. (4) as follows:

(o.) R
Pp. ~ '[~'+(lT )']

~(&u' —ur ') ——,
' I' I' &u

[(o'+(-', I' )'][((u' —(u ')'+(I' (u)']

ye
E(t)ep(t) + E(t)6T(t),

yT
4mpo p

where y = To(e&/aT)p and it is the latter term
involving y T that has been completely ignored
earlier. ' As stated above ep(t) = —p, A(t) and
thus P~L can be easily expressed in terms of
h(t) rather than ep(t) Equations .(1) and (2) are
to be solved simultaneously for ~(t} and 5T(t) to
obtain the nonlinear polarization.

Solving Eqs. (1) and (2) for the case of back
scattering using the usual steady-state approach'
we obtain the following expression for the com-
plete gain factor

[u(&u' —w ') —~
I' I' u]

[(u'+ (-,' I'R)'] [(~' —(uB')'+ (1B~)']

e -k'k t E j

where A == y'o- o

(as/e T) (an/a T)
p p

(ee/ap)T (an/ap)

In actual practice the laser beam has some finite
width rL and one should convolute the above fre-
quency spectrum with the laser profile. The con-
voluted expression for G(o') can be easily derived,
but for the purpose of the discussion here it does
not add anything, and so we will not write it down.
If in Eq. (5) we let R-0 and neglect the quantity
—,
' rBI"geo in the second term, we immediately
regain the result obtained by Herman and Gray
for 1Z, =O.

For most liquids 8 is a small quantity but the
combination R/Pp, may not be. To estimate
R/Pp, from existing experimental data we write

x (an/aT)
= 1+ p

pp, p (en/ep)
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TABLE L Values of R/ppo for some liquids. The experimental data in columns 2-5 are from Coumou et al. (Ref. 3).

Liquid

Carbon
disulphide
Benzene
n decane
Methyl ethyl
ketone
Carbon
tetrachloride
n hexadecane

10'P
( c-')

1.19

1.21
1.04

1.30

1.21

0.90

1012

(cm dyne )

94

95
105
108

106

83

1O' (—g
(c')
-81.6

—63.8
-44.8
-51.0

—58.6

-40.6

10|2 ( )
8n

8P T

(cm dyne )

68.2

52.3
46.9
44.2

52.8

39.1

R—X 100%
PPo

calculated
from Eq. (7)

3.6
4.1

2.8

4.2

where ~T = I/BT is the isothermal compressi-
bility and P is pressure. Using this expression
and the experimental data of Coumou et a/. ' we
list the values of R/pp, for some common liquids
in Table I. Since the stimulated thermal Ray-
leigh peak occurs at u = —

~ I'R (in terms of the
frequency of the scattered light at up= ~1 + —,

' I'R)
it is easy to see that in fact R/Pp, is just the ratio
of the first term to the second in Eq. (5) for
stimulated thermal Rayleigh scattering, and this
ratio is independent of linewidths. The last
column in Table I then indicates the percentage
error being made by assuming that

(8&/Bp) 6p»(Be/BT) 6T.
T p

The largest value of R/Pp, quoted in Table I is
about 6%, However, there may exist other liquids
for which R/pp, is even larger. In water, for
example,

= —]0.6x].0- 'C ', Ref. 5,~ ~"p

(
8Ã =14.9x10 "cm' dyne-', Ref. 5,
8P

P = 0.2X10 ' C ', Ref. 4,

&& = 45.6 x 10 "cm' dyne ', Ref. 6,

which leads to (R/pp, ) x100%%d = 84. Although this
may represent a rough estimate, it indicates that
there may exist other liquids for which R/Pp,
may be quite appreciable. It should perhaps be
remarked that a large value of R/Pp, implies a
critical absorption coefficient for the onset of
stimulated thermal Rayleigh scattering which is

larger than that predicted by Herman and Gray. '
This may be a clue as to why stimulated thermal
Rayleigh scattering has not been observed in
water to date. In a recent paper on stimulated
thermal Rayleigh scattering, Mack also esti-
mates the value of (Bn/BT) for various liquids
using the following equation, viz,

(8)

He obtains (Bn/BT)f from experimental data but
approximates

(n, ' —1)(n,'+ 2)
8p T 6n &o

according to the Lorentz- Lorenz relation. Since
(Bn/BT)p and pp0(Bn/Bp)T are of comparable
magnitudes but of opposite signs [(Bn/BT)p &0],
the use of an approximate value for (Bn/Bp) T
leads to erroneous results for (Bn/BT)p for
liquids under consideration. By using Eq. (7)
we have avoided the use of Lorentz-Lorenz re-
lation because the latter procedure is inadequate
for our analysis.

%e conclude that if a quantitative comparison
between theory and experiment is to be made,
one cannot simply throw away the term arising
from y . Even though R is small, R/Pp, is the
parameter of interest which is not negligible.
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The work of Glassgold on spin exchange in collisions between atoms is extended to include
target polarization. The appropriate averages are taken for spin-exchange collisions which
occur in low magnetic fields, but where the incident and scattered beams are selected in a
high magnetic field.

INTRODUCTION

An extension of Glassgold's work'~' on atomic
spin-exchange collisions became necessary in
order to understand two types of experiments.
The dependence of spin-exchange collisions on
target polarization was an important considera-

tion in our study' of the feasibility of measuring
magnetic resonance of trapped ions by monitor-
ing the spin exchange of an atomic beam scat-
tering from the ions. An additional extension
required for interpreting many scattering experi-
ments4 is the proper averaging over hyperfine
states when atoms are selected in high magnetic
fields and scattered in a low magnetic field.

SCATTERING FROM A POLARIZED TARGET

lf the target has electron spin polarization P, the incident density matrix (12.10b) (Glassgold's' equation
numbers will be preceded by I) must be modified. We obtain

p. =-,'P (a)x[I +Po (2)],

where we ignore the target nuclear spin. The cross section for scattering from initial state I n) to final
state (n 'I with no knowledge of the final target state becomes

o(an'; 8, P) = 2 Tr(FP (a)x[I +Po (2)] F P (a)xI2}, (2)

where the scattering operator 6:(8) is given by (12.5). If we expand (2), we obtain eight terms which can
be evaluated by using the properties of the Pauli spin operators. The cross section is

cr(nn';8, P)=6, [ IFdI'+P(FdF*+F Fd)(alar Ia)]+ IF I'Q (1+Pp)l(n'lo Ia) I'
QQ d d x x d 8 X P,

where Fd(8) and Fz(8) are, respectively, the direct and exchange scattering amplitudes.
We must find the matrix elements of op (p =0, s 1) for the hyperfine states I a) =

I fm), where f=Is-2 and
J. is the nuclear spin of the incident atom. Glassgold carries out this evaluation for the square of the ma-
trix elements (14.3-14.6). The proper sign for the o, matrix element is obtained from the Lande g factor
due to the electron-spin moment

(fmIa Ifm) =mg

wheregf =s2/(2I+1) for f=Is-, . The cross section becomes


