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Cheng's result leads to values which differ from unity

by less than 10%.
This method has previously been employed by P. G.

Klemens, Australian J. Phys. 7, 64 (1954), in calcu-
lations of the transport coefficients of the electron-
phonon system.
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The attenuation of zero sound in the collisionless regime (uv» 1) is calculated using per-
turbation theory to treat the effects of collisions. Detailed calculations are performed taking
into account Landau parameters with l «2; the results are applied to the experimental data
for liquid He ~

1. INTRODUCTION

In the second of his classic papers on normal
Fermi liquids, Landau predicted that a new type
of sound, which he called zero sound, could prop-
agate in such systems. ' One of the necessary
conditions for the existence of zero sound is that
a typical quasiparticle collision frequency be
small compared with the frequency of the mave;
in other words, zero sound exists in the collision-
less region (A@7»1) Ordinary .sound (first sound),
on the other hand, exists in the hydrodynamic re-
gime (&o r«l), where the liquid is in local thermo-
dynamic equilibrium.

The velocity and attenuation coefficient of zero
sound in a normal Fermi liquid may be determined
from the eigenvalues of the quasiparticle trans-
port equation. " The collision integral in the
transport equation is rather difficult to handle,
and in previous calculations~ 4 it has been common
to replace it by an approximate expression which
involves a single relaxation time and which con-
serves quasiparticle number and total quasiparti-
cle momentum. The first such calculation was
that of Khalatnikov and Abrikosov, ' who took into
account only the Landau parameters' Qp and
The calculations were extended by Brooker, 4 who
included the Landau parameter I', as well. A
microscopic calculation of the attenuation of zero
sound has been performed by Eliashberge; in this
calculation a number of approximations mere made
and the results were very similar to those obtained
using the quasiparticle transport equation and the
relaxation-time approximation.

The work described here mas stimulated by the
fact that the calculations of Khalatnikov and
Abrikosov' apparently do not give a consistent

account of the observed attenuation of zero sound
and first sound in liquid He —the relaxation time
required to account for the zero-sound data is
somewhat shorter than that required to account
for the first-sound data. ' Here, we derive ex-
pressions for the attenuation of zero sound with-
out making the single relaxation-time approxima-
tion and show that one can give a consistent ac-
count of the data. In the collisionless regime,
the properties of the sound wave are little affected
by collisions; one may, therefore, use perturba-
tion theory to calculate the effect of collisions on
the zero-sound wave. This situation should be
contrasted with that in the hydrodynamic regime
where it is important to take into account multiple
scattering effects. Detailed calculations are per-
formed taking into account Landau parameters
with / &2 and the results are compared with the
experimental data for liquid He'. By comparing
the observed attenuation of zero sound with that
of first sound a rough estimate for the Landau
parameter F,~ is obtained, but the uncertainty in
its value is rather large as a result of uncertain-
ties in the experimental data. The value of F,
is consistent with, but somewhat more uncertain
than, the value obtained from measurements of
the velocity of zero sound. 4

In Sec. 2, we describe the perturbation-theory
calculation of the attenuation coefficient, and give
limiting forms of the result when the zero-sound
velocity is very much greater than the Fermi
velocity. The method used is modeled closely on
the standard calculation of the attenuation of sound
in the hydrodynamic regime, and is close in
spirit to Gavoret's calculation of the acoustic
impedance of liquid He'. The calculation is ap-
plied to liquid He' in Sec. 3. In Sec. 4, the in-
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fluence of higher Landau parameters is shown to
be small. Finally, in Sec. 5, we give a brief
discussion of the results.

V 2

2 m* F
Q (d 7'

1 15 m c3 (3)

2. CALCULATION OF THE ATTENUATION

COEFFICIENT
where the velocity of first sound c, is given by

Consider first of all a sound wave which is
weakly damped; the sound may be either first
sound or zero sound. The amplitude attenuation
coefficient may be written'

n = IE hI/(2cE)mech

mech (2)

In the case of first sound, the rate of entropy pro-
duction is related to the transport coefficients;
for a normal Fermi liquid at low temperatures
only the viscous attenuation is important and one
finds the amplitude attenuation coefficient'

where Emech is the rate at which mechanical
energy is dissipated, c is the velocity of the wave,
and Eis the mean energy density in the wave.

Emech is given in terms of the rate of entropy
production, S, by the relation

c =-,' v (m+/m)(1+E, ) . (4)

1/=5 nP n 7.
n

(6)

where n is the number density of particles in the
liquid, and PF is the Fermi momentum.

In the collisionless regime, a sound wave is
again weakly damped, but the rate of entropy pro-
duction cannot be expressed in terms of the trans-
port coefficients; however, it can be determined
from microscopic considerations. The standard
expression for the rate of entropy production due
to collisions may be written'

S
Here, the Fl are the spin-symmetric Landau
parameters, ' vF is the Fermi velocity, m* is the
fermion effective mass, and m is the bare fermion
mass. The relaxation time ~& is defined in terms
of the shear viscosity g by the equation

Z W(e, y)n n (1-n )(1-n )6(g +h - h -8 )
p4

x 6(p, + p, —p, —p, )(y +y —y —y )' .
Pg P2 13 P4

(6)

hp is the energy of a quasiparticle of momentum p, np ={exp[(hp p)/kffT] +1)-is the Fermi function
and the deviation from local equilibrium of the number of quasiparticles of momentum p is given by
vp (- enp /88&) . W(8, Q) is the spin-averaged scattering rate for a two-quasiparticle collision process;
8 is the angle between the initial momenta p, and p2, and p is the angle between the p,p, plane and the p,p 4 plane,
where p3 and p4 are the final momenta. For simplicity spin indices have been suppressed since here we deal only
with spin-symmetric phenomena. Also we consider the case of a wave whose angular frequency, ~, is
small compared with kff T/li When li.&u & AT the collision integral must be modified. 'i'

When the wave is only weakly damped the rate of entropy production may be calculated by substituting
into (6) the expression for y for the zero-sound wave in the absence of collisions. Under these condi-
tions vp is independent of the magnitude of p; for a longitudinal wave, such as zero sound, P

p will depend
only on p ~ q, where q is the wave vector of the disturbance. We may, therefore, expand 7p in terms of
Legendre polynomials

v =Q vP(p ~ q).
p l l l

Substituting this expression into (6) one finds

~ v(0) ~ l

2 21+1 l

Here v(0) = m"pF/m'k' is the density of quasiparticle states at the Fermi surface and r is defined by the
equation

1/& = (m* /12m k )(k T)'(W& (6)
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where (W) = f(sin 8d8dp/4s)[W(8, $)/cos —,
' 8]

and (l is given by the relation

$ (W) = J (sin 8 d8 dQ/4s)[W(8, Q)/cos —,8] [1+Pl( p ~ p2)- Pl(pl ~ p8) —Pl(pl p4)]

$0 and $, vanish identically because collisions conserve quasiparticle number and total momentum. We
also note that ~/$, is the characteristic time for viscosity one obtains using the simplest variational ap-
proximation"; from the variational principle it follows that &&

~ &/$, .
The mean energy density in the wave is given by the usual expression'

Fs v2
v(0) l

2 2l + 1/21+ 1

The vl are related to the deviation from equilibrium of the quasiparticle distribution function in the same
way as the vl are related to the deviation from local equilibrium. The relationship between vl and vl is

v = v [1+F /(2l~1)]l
(10}

The attenuation coefficient for zero sound o, may be found by combining Eqs. (1), (2}, (7), and (9); the
result is

1 l l

where cp is the velocity of zero sound.
To obtain the vl one solves the quasiparticle transport equation neglecting the collision term; some of

the details of this calculation are described in Appendix A. If one takes into account only Landau para-
meters with l& 2, one finds

2 (1+-'F2 } [Z ~fool(s. )~ (21+1)&11
1m+ F l=2
6 m c, r [ (1+-,' F, ) ()ts,) - -', Fno2(s, )] {1-—,', (m*/m)(1+-,' F, )(s,)-'[SA(s, )/Ss, ) )

where s, = c, /vF,

s —1 1 1 1 1
y(s) = 1+-, s ln s+ 1 3s2 5s~ 7se +0 — (s»1)

7

Q&z(s) = 2 + P, (s)y(s) —
z

— — +0 — (s» 1)
2 4 2 1

15s 35s~ 21s' 7 (14)

and A(s) =-,'g (s)/[(1+ F } ( }
s

02

(15)

s 1 23 242 s 9 ' s
85s' ' ' s' 175 6125 ' 175

Expressions for the Qoi are given in Appendix B. The form in which the result (12) has been written is
Particularly convenient for studying its behavior for s, »1, which is well satisfied for liquid Hes. (For
liquid He', s,' =12 at low pressure and s,' = 140 at 28atm. ) At high values of s„ the attenuation is given
by

2

2 m~ F 2 1 s2 1a, =— —(1+—,
' F ) 1+0—

0 ~ S (18)
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When the velocity of zero sound is very much greater than the Fermi velocity, the dominant contribution
to the attenuation comes from the second harmonic distortion of the Fermi surface. Mathematically the
reason for this is that Q0I- I/s, f, (l~ 1, s, » 1). Physically this corresponds to the fact that the ampli-
tudes of the higher harmonic distortions of the Fermi surface fall off rapidly as a function of l. Equation
(16) also exhibits clearly the possibly important influence of the Landau parameter F, on the attenuation.

Another simple result is obtained if one puts )I = ) (1+—, F2s), (I &2); this corresponds to the single re-
laxation-timeapproximation. The sum over I in (12 may then be evaluated easily by using the complete-
ness relation for Legendre polynomials, and one finds

*'F '2
o., =1,—(1+-', F, )[A —s,(BA/Bs, )]/[1 —— (m*/m)(1+-,' F, )(s,) '(BA/ss, )] (i7)

a result which agrees with that of Brooker, provided one identifies his 7 with our r/[$, (1+—, F, )]. The
Fermi-liquid factor 1+—,F, occurs in the relationship between the two relaxation times because it is con-
ventio|nal when using the single relaxation-time approximation to write the collision integral in terms of the
deviation of the quasiparticle distribution from equilibrium, whereas in the microscopic expression for the
collision integral, the quantity which occurs naturally is the deviation of the quasiparticle distribution from
local equilibrium. [See Eqs. (6) and (10).]

The results of this section may also be derived by calculating the shifts in the eigenvalues of the quasi-
particle transport equation; this procedure is closely related to earlier work on zero sound and is de-
scribed in Appendix A.

3. APPLICATION TO LIQUID He

We now apply the results to the experimental data for liquid He' at low pressure. ' For this system
s,'=12 and, therefore, expansions in inverse powers of s,' are very convenient for calculations. Making
such an expansion of (12) one finds

(i8)

For liquid He' at low pressure, the s, terms are only of the order of 0. 1/p of the total, and may there-
fore be neglected.

In analyzing the experimental data, we first of all extract a value of r/$, from the first-sound attenuation
measurements. As one can see from Eq. (18) the time v/$, also determines the dominant contribution to
the attenuation of zero sound, and by using Eq. (18) and the observed value of o, we then obtain an estimate
of the Landau parameter F,~.

According to the work of Brooker and Sykes, ' and Jensen, Smith, and Wilkins, "the characteristic re-
laxation time which determines the viscosity is given by

2 rj 2 (4n+ 3)
3 n = 0 (n + 1)(2n+ 1)[n(2n+ 3) + $2]

$, cannot be determined directly from experiment, but if one uses for W(6, @) the approximations in terms
of Landau parameters described by Dy and Pethick, '4 one finds values of $2r&/v' which lie between 1.035
and 1.055; the actual value depends both on the value of the Landau parameter F, used and also on how the
scattering amplitude is approximated. In the calculations we use the value 1.045 for $2r /r; this number
is uncertain by a few percent. The observed value of o., is 2. 68x 10 "uP(T*) ' cm ', where T* is the
magnetic temperature in 'K. Using for m*/m the value"~M 3.0, and for c, the value" 187.g m/sec, one
finds from Eq. (3) that v(T*)2/$2=1. 36X 1'0 "sec ('K)

The Landau parameter F,s may be estimated by using Eq. (18) if $3 is known. $, cannot be determined
experimentally, but one can show that it must lie between zero and 222-. If one replaces W(e, P) by a con-
stant, one finds $3 7 which is the value used in the calculation. Using the approximations for the scat-
tering amplitude given in Ref. 14 one finds values of $, which are very close to this value. Fortunately,
the value of $, is relatively unimportant, since even if $, took on the extreme value ~9, the third harmonic
would give rise to only about 1(P!g of the total attenuation. The observed value of o,, is 1.57 x 10'(T ~)' cm ',
which leads to a value of 1.08 for 1+ 5 F,~, or, in other words, F, = 0.4.

The uncertainty in the value of F,s is rather large. If Eqs. (3) and (16) are multiplied together, and
terms of order s, ' are neglected for simplicity, one finds
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yFs 15 m ~Q Q, T' cP c, (20)

where vFP is the Fermi velocity of a free Fermi gas. The major sources of uncertainty are the measure-
ments of n, /T' and a,T'/ur'. The error in these measurements is difficult to estimate accurately, but
according to Wheatley" the error in the value of o,T'/e' is unlikely to be greater than 15%. In the mea-
surements of a,/T there is an additional source of error due to uncertainties in the temperature scale.
We assumed T*=T, although recent work by Abel and Wheatley" indicates that if one writes the relation
between T and T* in the form T = T~+ b, the value of b, is & 0. 3m 'K. Uncertainties of this order of mag-
nitude will have an appreciable effect on the evaluation of o.,(T), since all the measurements on zero sound
were carried out at temperatures below 10m'K. The first-sound results, which were obtained at some-
what higher temperatures, will be little affected by changes in the temperature scale. Anderson" esti-
mates that the uncertainty from all sources in the value of a,/T' amounts to less than 15%. The other
sources of error in the evaluation of 1+—', F,s are all very much smaller. m*/m was determined from mea-
surements of the specific heat C& at low temperatures. Besides the problem of the temperature scale,
the main difficulty here is the extrapolation of the data to T = 0. The value of m*/m we used (m*/m = 3.0)
is the average of the two values obtained by Nota, Platzeck, Rapp, and Wheatley" who fitted C&/T ~ to
functions of the form y —PT~ and y+ I'T~' ln(T*/8c), where y, P, I", and 8c are constants. The two values
of m "/m differ by only 2%, which is a measure of the uncertainty in the extrapolation. Adjustment of the
temperature scale could also lead to a downward shift of m~/m by a percent or so, and the total uncertainty
in the value of m /m is therefore of the order of a few percent. The uncertainties in the values of c„c„
and pF' are all negligible compared with the other uncertainties. Taking into account the uncertainties in
v/$27'& and t, we conclude that a generous estimate of the uncertainty in the value of 1+-,' E,s is 2(%.
Thus, from the attenuation data we find F,s =0.4+1. We also note that the calculations of Abrikosov and
Khalatnikov do give a consistent account of the data if one takes into account the experimental uncertain-
ties.

E,s may also be estimated from the velocity of zero sound. ' Rearranging the Eq. (A4) for c, (= s,&E), and
making use of Eq. (4) for c, one finds

c, (1+Eo ) (1+Eo ) — 35s, so
(s, »I) . (21)

From the measurements of Abel, Anderson, and Wheatley, ' (c, —c,)/c, = 0. 035 + 0.003. Substituting this
value into Eq. (21) and using the value of Fos obtained from the measured first-sound velocity, one finds"
F, =0+0.4. Uncertainties other than that in (c, —c,)/c, are small and may be neglected in estimating the
uncertainty in the value of F, .

The two estimates of F, we have obtained are consistent with each other, but the uncertainty in the value
of F, obtained from measurements of the velocity is somewhat less than the uncertainty in the value ob-
tained from the attenuation.

4. EFFECTS OF HIGHER&RDER LANDAU
PARAMETERS

The effects of higher-order Landau parameters
on the properties of zero sound may easily be in-
vestigated by extending the analysis described in
Sec. 2. These parameters are relatively unim-
portant for the case of liquid He' because the zero-
sound wave contains rather small admixtures of
the higher-harmonic distortions of the Fermi sur-
face. The leading contribution to cp as a result of
Ef being nonzero is of the order of (Ef s/
s02(I 1))c0, and the corresponding contribution to
n, is of order Ef s/s02(~-2) relative to the result
for the strong-coupling limit [ Eq. (16)].One expects
that for liquid He', the most important higher-
order Landau parameter will be F, . If one puts"

F,~ = 1, the change in the velocity of zero sound for
liquid He' at low pressure is of the order of one
part in 10', and the corresponding change in the
attenuation is of the order of one part in 10'; the
effects of Landau parameters with l &2 are there-
fore expected to be negligible.

5. DISCUSSION

Using exact expressions for the attenuation of
zero sound and first sound, we have given an ac-
count of the experimental data for liquid He'.
These data and those on the velocities of zero
sound and first sound are consistent with F,~ = 0.

In the calculations described above, we have
considered only the collisionless regime, where
the attenuation may be evaluated rather easily. To
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discuss the transition from zero sound to first
sound, it is necessary to exPand vp in terms of
complete sets of functions of Sp a~ angles. The
calculations involve rather lar ge determinants
which will generally have to be solved numerically.

For the case of liquid He', the single relaxation-
time approximation works remarkably well: Our
calculations indicate that the effective relaxation
times in the hydrodynamic and collisionless re-
gimes differ by only about 5%. The essential rea-
son for this is that in both the zero-sound and

first-sound regimes the dominant contribution to
the attenuation comes from the quadrupolar (l = 2)
distortion of the Fermi surface. In a weak-cou-
pling Fermi system the single relaxation-time
approximation works less well because the har-
monic content of the sound wave alters greatly in
the transition from zero sound to first sound. The
single relaxation-time approximation will also be
poor for "weak-coupling" modes such as the
transverse zero-sound mode in liquid He'. ' '~ "

The method we have described may be used to
calculate the damping of other collective modes in
the collisionless regime. One such problem to
which the method has been applied is that of calcu-
lating the attenuation of phonons in dilute solutions

of He' in liquid He', this calculation is of interest
in evaluating the thermal conductivity of the solu-
tions. " Results of these calculations will be re-
ported elsewhere.

Note added in proof. Calculations of the atten-
uation of zero sound using somewhat more re-
strictive assumptions than the ones made here
have been carried out by L. R. Corruccini, J. S.
Clarke, N. D. Mermin, and J. W. Wilkins [Phys.
Rev. 180, 225 (1969)]and by B. S. Lukyanchouk
[Zh. Eksperim. i Teor. Fiz. 56, 1238 (1969)].
Dr. G. A. Brooker has informed me that he and
J. Sykes (unpublished) have studied the propaga-
tion of sound in a normal Fermi liquid and arrive
at results which apparently agree with our own.
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APPENDIX A: QUASIPARTICLE
TRANSPORT EQUATION

The standard quasiparticle transport equation may be written in the form'

((d —q ~ v )v +q. v Qf,
~

v =- ff[v- ]/(sn '/sh ) .
('"p ''I

(Al)

u& is the angular frequency of the wave, v p is the velocity of a quasiparticle of momentum p, fp p~ is
Landau's quasiparticle interaction function and I [vp] is the collision integral. The velocity and attenua-
tion of sound may be found from the eigenvalues of Eq. (Al).

In the absence of collisions, the eigenfunctions depend only on the direction of p, and may be expanded
in Legendre polynomials. Equation (Al) then reduces to'

V OO V g

2l + 1 ll' l' 2l'+ 1
l =0

(A2)

where nff, = J 2" P (i(,) "
Pf, (p) .ll', 2 l p,-s l' (As)

Some useful properties of the All& are discussed in Appendix B. If Landau parameters with l &2 are
neglected, the eigenvalue problem is

s', '(s„(s,( ~ (s'.* A, 's, ( (( ~ ' )(((,( —l s', *(s (s.( = ((, (A4)

S S y Swhere A, =E, /[1+ —,F, ]. The corresponding eigenvector is

Vj 3 =SoVoy (AS)
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V s s 2
l ~ (E, +A, s, )(I g s)

2l+1 /0
(1

s
)

(A6)

Equation (A5) follows directly from the equation of continuity. Substituting Eqs. (A5) and (A6) into (11),
and making use of Eq. (A4) and the completeness relation for Legendre polynomials one may obtain Eq.
(12).

An alternative way of deriving an expression for the attenuation in the collisionless regime is to evaluate
directly the shift in the eigenvalue of Eq. (Al) due to the collision term. In the absence of collisions vp
depends only on p, =p ~ q, and, therefore, to lowest order in ((uv'} ' one may evaluate the collision term in
(Al) neglecting the dependence of v = v(p, p, ) on p. After multiplying the equation by —sn p /el~ and in-

p
tegrating over the magnitude of p one finds

OO oo F S (
(s-P) 2 ~IP (y) —P 2

2 I) vfPI(P) = — 2 )I 1+
2f I IvfPI(P), (A7)

where and

OO s

vfPI(g)= jd8 — g, v(P, P, ) .
E=O P 8$ (As)

Equation (A7) is identical in form with the equation one obtains using a generalized relaxation-time ap-
proximation in which the relaxation time is allowed to depend on f. However, we stress the fact that (A7)
is correct only to lowest order in (u&r) '.

Dividing Eq. (A7) by s —p, and expanding in terms of Legendre polynomials one finds

(A9)

If the eigenvalue of this equation is s = s,—i As, ao is given by ques/so.
The eigenvalue problem may be simplified if one assumes that all but a finite number of Landau para-

meters may be neglected. In particular, if one assumes that F~~ = 0 for l & l „one may substitute for v~,

(I & l, ), in the collision term its value in the absence of collisions. One then finds

2l +1, 0
fl' I' 2l'+ 1 ur fl' 2l+ I) ( 2l'+ I j l' l

QO V g

(A10)
l"= l, +1

The results obtained by this method are completely equivalent to those obtained using the method described
in Sec. 2.

AP ENDIX B' ROl RTIES OF Dll'

flffi [Eq. (AS) j may be expressed directly in terms of Legendre functions of the second kind, Qf(s) ~:

I'I fl' (2l + 1) l'

sQ (s) may be written in the form ~
l

sQ&(s) = —Pf(s)y(s) +PI(s) —sg
I 1(s), (a2)

where
2E [-,' (I- I)]

2(l —2k) —1
(2f. l)(f-~) I 2u-1'-

0=1
(as)
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W, =o.

Here E [x] denotes the integer part of x. The first few Q, are given by

00= x,
0,0= Sg, ~&X —3 +~ X&

2

Q20 2 + P2(S)X P Q21 S[2 +P2(S)X lf Q22 4s 20 + P2(s)X
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Using recent exact solutions of the quasiparticle transport equation, we have reexamined
the consistency between Bardeen, Baym, and Pines's phenomenological theory of dilute solu-
tions of He' in He and measurements of the spin-diffusion and thermal-conductivity coeffi-
cients of two solutions in the degenerate Fermi-liquid regime. Previously, Baym and the
author had used lowest-order variational solutions for this purpose. Discrepancies of 10-15%
persist which, beyond experimental uncertainty, must be attributed to oversimplification
in treating the He scattering amplitudes as being independent of spin, velocity, and concen-
tration.

This paper is intended to bring up to date a re-
cent paper by Baym and Ebner'(BE) in which it was
demonstrated that the phenomenological theory of
dilute solutions of He' in He' as given by Bardeen,
Baym, and Pines, ' is consistent with experimental
determinations of the thermal-conductivity' and
spin-diffusion' coefficients of 1.3 and 5. 0% sys-
tems if simple variational solutions of the trans-
port equation are used to relate the He'-He' effec-
tive interaction to the transport coefficients. Pre-
viously, the approximate solutions of Abrikosov
and Khalatnikov' and of Hone' had been used for
this purpose.

More recently, exact analytical solutions of the
transport equation have been determined by Brook-
er and Sykes' and independently by Jensen and
co-workers. ' Using the exact results of Brooker
and Sykes, we have repeated the calculations re-
ported in(BE). That is, we begin by assuming that
V(k), the Fourier transformed He'-He' effective
interaction, may be expanded in powers of k' with
undetermined coefficients which are chosen by

attempting to fit the experimental transport coef-
ficients. In so doing, V(k) is allowed to be only
reasonably rapidly varying. A typical result of
this procedure is the interaction

V(k) = V, (1 —3.389y + 6.353y' —9.576y'+ 5.402y'),

where y = (k/2k, )'; k, is the Fermi momentum of a
5.0% solution of He' in He', k, /S =0.318 A '; and
V, =- 0.078 m, s'/n, . The mass of a He' atom is
m, and the speed of first sound and the number
density in pure He4 at T = 0 are s and n4, respec-
tively. Figure 1 shows this V(k) and also the in-
teraction found in BE as well as the original inter-
action of Bardeen, Baym, and Pines. ' As can be
seen, V(0) is close to the original value of Ref. 2;
it is also very close to the value deduced by Baym'
from thermodynamic arguments, which is V(0)
= a'm, s'/n, = —0.077m~s'/n„o is the fractional ex-
cess molar volume of He' in He'.

The present V(k) shows different behavior from
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