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The transport coefficients of a normal Fermi liquid in the extreme low-temperature limit
and the leading finite-temperature contributions to the transport coefficients are studied

using the quasiparticle transport equation.

The scattering amplitude for quasiparticles on

the Fermi surface is expressed in terms of Landau parameters, using an approximation
which takes into account s- and p-wave scattering; the calculated values of the transport
coefficients in the extreme low-temperature limit for liquid He® are shown to be in good

agreement with the experimental values.

Finite-temperature contributions to the trans-

port coefficients are expressed in terms of the solution of the transport equation in the
extreme low-temperature limit, and explicit calculations are performed for the case of
liquid He®, Assuming Landau parameters with [ =2 vanish, an estimate of the Landau
parameter F¢ for liquid He® is obtained by comparing the theoretical and experimental
values of the leading finite-temperature contributions to the transport coefficients.

I. INTRODUCTION

Recent experimental work on the transport prop-
erties of liquid He® and dilute mixtures of He® in
He* has led to renewed interest in the problem of
solving the quasiparticle transport equation and of

determining the quasiparticle scattering ampli-
tude. Historically, the first method of solving
the transport equation was that of Abrikosov and
Khalatnikov, ! who calculated the limiting low-
temperature behavior of the coefficient of thermal
conductivity K and the coefficient of viscosity 7.
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This method was applied by Hone? in a calculation
of the spin-diffusion coefficient D in the low-tem-
perature limit, and by Emery?® in calculations of
finite-temperature contributions to the transport
coefficients. A second approximate solution to
the transport equation is based on the variational
method?; using this method, Baym and Ebner?®
were able to give a more consistent account of the
transport properties of dilute mixture of liquid He?
in He* than was possible using Abrikosov and
Khalantnikov’s and Hone’s solutions of the trans-
port equation. Rice’s® calculations of the trans-
port coefficients of almost ferromagnetic Fermi
liquids and Pethick’s”>® calculations of finite-
temperature contributions to the transport coef-
ficients of a normal Fermi liquid are also based
on the variational method. Recently, exact ana-
lytical solutions of the transport equation in the
limit T - 0 have been obtained by Brooker and
Sykes® and by Jensen, Smith, and Wilkins. !°
Emery and Cheng'! have described an approxi-
mate method for solving the transport equation
which in the limit 7 - 0 gives results little differ-
ent from the exact solution; these authors have
also used this method to calculate finite-tempera-
ture contributions to the transport coefficients.

In this paper, we show that the leading finite-
temperature contributions to the transport coef-
ficients may be calculated using exact solutions of
the transport equation in the limit 7-0.!2 These
solutions depend on the scattering amplitude for
quasiparticles on the Fermi surface, which also
determines the values of the transport coefficients
in the extreme low-temperature limit. In previous
calculations, ®'%!* the scattering amplitude has
often been replaced by the forward-scattering am-
plitude; the latter may be expressed in terms of
Landau parameters, !5 some of which may be de-
termined from measurements of the equilibrium
properties of the liquid. However, recent cal-
culations using exact solutions of the transport
equation and the forward-scattering approxima-
tion for the scattering amplitude lead to values
for the transport coefficients® which are consis-
tently higher than the experimental values, the
difference between theory and experiment being
as large as a factor of 3 in the case of the
spin-diffusion coefficient of liquid He®. Replacing
scattering amplitudes by forward-scattering am-
plitudes is equivalent to assuming that all scatter-
ing is s wave; this is clearly inconsistent with
the Pauli principle, which requires that the trip-
let scattering amplitude contain no contributions
from even partial waves.'® We shall show that
good agreement between theory and experiment
may be obtained if one assumes that the singlet
scattering amplitude contains only an s-wave con-
tribution and that the triplet scattering amplitude
contains only a p-wave contribution. This approx-
imation is more consistent with the requirements
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of the Pauli principle than is the forward-scatter-
ing approximation, and, moreover, it introduces
no new parameters into the calculation. The net
effect of including the p-wave amplitude is to in-
crease the amount of scattering. The increase is
particularly large for collisions between quasi-
particles of opposite spin in which the relative
momentum of the two quasiparticles is turned
through an angle = 7. The transport coefficient
most affected by the change in the approximation
for the quasiparticle scattering amplitude is the
spin-diffusion coefficient, which depends strongly
on the amplitude for these processes.

Besides the solution of the transport equation in
the limit T—- 0, the other essential ingredient in
the calculation of the finite-temperature contri-
butions to the transport coefficients is the fre-
quency-dependent quasiparticle scattering ampli-
tude for small momentum transfer processes.
This frequency-dependent interaction contains the
effects which are attributed to scattering by para-
magnons in other calculations.® By comparing the
calculations with the experimental data for liquid
He3, we are able to obtain an estimate for the
Landau parameter F\¢, The calculations show
that to within the limits of accuracy of the experi-
mental data and of the theoretical calculations,
Landau theory provides a consistent account of
both equilibrium and nonequilibrium properties of
liquid He?® if one neglects Landau parameters with
1=2.

In Sec. II, we discuss the quasiparticle trans-
port equation and separate out finite-temperature
contributions to the collision integral. The so-
lutions of the transport equation are described in
Sec. III, where we give expressions for the lead-
ing finite-temperature contributions to the trans-
port coefficients. The form of the quasiparticle
scattering amplitude for quasiparticles on the
Fermi surface is discussed in Sec. IV, and the
s- and p-wave approximation for this scattering
amplitude in terms of Landau parameters is de-
scribed. The results are applied to the particular
case of liquid He® in Sec. V, and Sec. VIis a
discussion of approximations made in the calcu-
lations and extensions of the work to other prob-
lems.

II. QUASIPARTICLE TRANSPORT EQUATION

In this section, we consider the quasiparticle
transport equation and separate out the terms in
the collision integral which are due to the fre-
quency dependence of the effective interaction be-
tween quasiparticles; these terms give rise to
the leading finite-temperature contributions to
the transport coefficients. For definiteness, let
us consider the thermal conductivity; the standard
linearized quasiparticle transport equation! %
with the usual binary collision term may be writ-
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ten in a convenient vector notation as
|X)=1) . (1)
The components of |X ) are given by

X;=n(1 —ni)[(8i+ TS)/kBT]Vi cu, (2)

where &; is the energy, measured with respect to
the chemical potential, of a quasiparticle of mo-
mentum f)i, velocity v, and spin 0j. nj is the
Fermi distribution function and # is a unit vector
in the direction of the temperature gradient. S is
the entropy per particle. The deviation from
local equilibrium of the number of quasiparticles
in the state ¢, 6n; is given in terms of the com-
ponents of the vector | ®) by the expression

ﬁﬁi:—ni(l—ni)(tbiIVT|/kB2T3), (3)

where VT is the temperature gradient. The
product operation in (1) corresponds to summa-
tion over the momentum and spin of a quasipar-
ticle, and multiplication by 1/kgT. The com-
ponents of the vector I|d>) are given by

= -2 34,
(r]@)), = (e 7) 2Z3)4w12 n

X(l—n )(1—7[ )5-’ - - -—6
3 P+ Dy, Pg+Pa 014050340,

X0(8,+8,— 83-8,)(®, + B, — &= &,). (4)

Here, W,,* is the transition probability for a
collision in which two quasiparticles are scat-
tered from the states 1 and 2 into the states 3 and
4. The sum over states 3 and 4 in Eq. (4) is to
be taken only over distinct states of the pair of
quasiparticles. In terms of this vector notation,
the thermal conductivity K is given by

KT=(X|®) . (5)

The energies of most thermal excitations differ
from the chemical potential only by quantities of
the order of kg T, and therefore, in the extreme
low-temperature limit, the dependence of W ,*
on the magnitudes of the quasiparticle momenta
may be neglected. W,,3* then depends only on 6,
the angle between p, and p,, and ¢, the angle be-
tween the p,p, plane and the p,p, plane; the tran-
sition probabilities are denoted by Wj4(6, ¢) and
W44 (6, ¢) for collisions between quasiparticles of
like spin and unlike spin, respectively. (For
definiteness the spin of quasiparticle 3 is here as-
sumed to be the same as that of quasiparticle 1.)
At low temperatures, further simplifications of
the transport equation are possible. Firstly, for
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the purpose of calculating both the value of the
transport coefficients in the extreme low-temper-
ature limit and the leading finite-temperature
contributions, the density of quasiparticle states
may be put equal to its value at the Fermi sur-
face. Secondly, the TS term in (2) and the tem-
perature dependence of the chemical potential
may be neglected, since both these terms give
rise to corrections to the transport coefficients
which are of order T2 relative to their behavior
in the extreme low-temperature limit.

With the above simplifications and after trans-
formation of the summations in (4) into integra-
tions over 6, ¢ and the quasiparticle ener-
gies?»% %1% the transport equation in the extreme
low-temperature limit may be written

|X) =1 | (), (6)
where |®(®) is the solution of the transport equa-

tion in the extreme low-temperature limit, and
It | &) has components

m*3 sin6déd¢o W(8, ¢)
81r"ﬁ‘5(/’eBT)2 4q cosz 6

X d8,d8,d8 nn,(1-n,)(1-n,)
xX5(6,+6,-8,-8,)(®, +®,- ®,— D), (7)

where 2W(0, ) =W4y(0, 0)+ 3 W4(6, ¢), and m*
is the effective mass. From the invariance of W
under rotation of the quasiparticle momenta and
rotation of the spins, it follows that & must have
the same angular dependence as X and must be
spin-independent. & may, therefore, be written
in the form

¢, =, @)(®n'H®/m*XW))c(x,), (8)

where x; = 8§;/kgT, and c(x;) is a dimensionless
function which in the extreme low-temperature
limit depends on the temperature only through its
dependence on x;. (W) is defined by the relation

(W) = [[d(cos8)dp/4dncos36 1w (6, ¢). 9)

On combining (1), (2), (7), and (8), the transport
equation in the extreme low-temperature limit
reduces to's%s1°

x=§(x2+7r2)c‘°’(x)—>xK

t (1+e_x)

x [~ at
P eh1) (1 s @)

cO(x 1+ 1), (10)

where (l—éxKKW):%(W(l—cose)). (11)
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The transport equations for spin diffusion and
viscosity may be reduced to equations similar to
(10) provided one makes the appropriate modific-
ations in the angular and spin dependence of &
[Eq. (8)]; the equations for the corresponding
functions ¢ (x) are the same as Eq. (10) but
with the factor x absent on the left-hand side and
Ak replaced by Ap, in the case of spin diffusion,
or by Ay, in the case of viscosity. ip and Ay are
defined by the equations

(1- AD)<W) = %(WH(B, ¢)(1 - cosb)(1-coso), (12)

(1- xn)<W> =3(W(6, ¢)(1 - cosb)?sin?¢) . (13)

Only in the extreme low-temperature limit may
W,,%* be taken to be independent of variables other
than 6 and ¢; at finite temperatures the depen-
dence of W,,** on the quasiparticle energies and
momenta must be taken into account, %%7!! In
liquid He® and almost ferromagnetic Fermi liq-
uids, the strongly frequency-dependent screening
of the quasiparticle scattering amplitude for
small momentum transfer processes gives the
major finite-temperature contributions to the
transport coefficients. Physically, the strong
dynamical screening of the quasiparticle inter-
action can be understood as follows: Because of
the large static magnetic susceptibility of liquid
He®, a localized quasiparticle of a given spin is
surrounded by a large dressing cloud consisting
predominantly of quasiparticles of the same spin.
This dressing cloud greatly enhances the static
interaction between quasiparticles. However,
the long-wavelength response of the dressing
cloud falls off rapidly as the frequency increases,
and as a result of this, the enhancement of the
interaction also decreases.!” The full expression
for the long-wavelength effective interaction may
be determined using Landau’s form of the Bethe-
Salpeter equation and is given by'®

S a - -
ARy, By X5 808,300, +A (), By, X3 80015+ Ty,  (14)

where for definiteness we take p, — D,={ to be the
small momentum transfer. Here pu -=£l- 5 (¢
=1, 2), x is the angle between the §,q and D,q
planes, and s =w/vpq, where w is the energy
transfer corresponding to the momentum transfer
q, and v is the Fermi velocity. 6 is the unit
matrix in spin space and 0’s are the Pauli ma-
trices. For convenience, we make the scattering
amplitude dimensionless by multiplying it by the
density of quasiparticle states at the Fermi sur-
face, v(0)=m*pp/n2r% (pf is the Fermi mo-
mentum. )

In liquid He® and almost ferromagnetic liquids,
finite-temperature contributions to the transport
coefficients coming from small momentum trans-
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fer processes are greatly enhanced by the dy-
namical screening of the effective interaction.
Finite-temperature contributions arising from
other sources are not expected to be enhanced, &
and should be small compared with the contribu-
tion from small momentum transfer processes.
Thus, here we shall consider only the contribu-
tions to 7 |®) [Eq. (4)] coming from processes in
which the momentum transfer ¢ is less than some
cutoff value ¢, (<pp). Since the Fermi functions
in (4) restrict all quasiparticle momenta to lie
close to the Fermi surface, the summations over
momenta in (4) may be replaced by integrals as
follows:

2) 0e v ow +6(8+8 -8.-8
> > p1+pz,p3+p4(‘+ 2= 8- 8)
_ Pabs
alg <q)

*

-.m PF :dﬂz dﬂq fwd ch 2d

&% ) A ) dn J-%0), 1%

0

x [ d8,6(8,~ 8- w)5(8,-8,+w) . (15)
The 6 functions restrict the range of integration
over ¢ to values greater than lwl/vF, since the
energy transfer in a collision in which the mo-
mentum transfer is ¢ cannot exceed vpdq, (g pF).
The integrations over the angular variables may
be simplified in the way described in Ref. (8) and
the integration over ¢ may be converted into an
integral over s =(w/v pg). The contribution to
Il®) from small momentum transfer processes
contains a part which contributes to I® | &):
This part depends on the cutoff g.. There is also
a term linear in T which we write as (T/Tf)
XI1W | &), where Tp=pp?/2m*kp. The integra-
tions over the variables s and ¥ which occur can
be separated from the integrations over &, and
w, just as they were in the variational calcula-
tion.® ") may then be written in the form

M_o K, ) o K

(1)
11 I

+E2q Ip o (16)
where the Z’s contain only the s and y integra-
tions. The =’s are essentially averages over s
and x of the frequency-dependent part of the quasi-
particle transition rate and are defined in Ap-
pendix A. In =], the appropriate average con-
tains the familar factor (1 — cosf), and gives by
far the more important contribution to the trans-
port coefficient. The components It *’| &) and
I 1®) are given by

(1) m - a p®
(I] '@))1=—in'u£wdx2
x[ . dalainlnz(l_ns)u-n4)QjK. )
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Here, w=w/kBT,x =X W, X=Xy =W,

3 71774

K
Q =c&4)—cu2),

and QHK=c(x )+c(x2)—c(x3)—c(x4), (18)

1

where c¢(x) is defined in Eq. (8).

Making appropriate changes in the spin and an-
gular dependence of &, one may decompose the
vector I") | &) in the case of spin diffusion and
viscosity in a similar fashion. For viscosity, one
needs only the term involving

n
QII =c(x1)—c(x3) , (19)

and in the case of spin diffusion, one needs

Q0 =clry)clr,),
Q. Poctr)mclx)relx,) —clx,) (20)
I 1 2 3 4"

and QIHD=c(x1)—c(x3) .

The corresponding =’ s for viscosity and spin dif-
fusion are defined in Appendix A. The physical
significance of the various terms will be discuss-
ed in Sec. III.

1. SOLUTION OF TRANSPORT EQUATION

In Sec. II, it was shown that the transport equa-
tion (1) can be written in the form

|x) =I(O)|d>) +(T/TF)I(1)|<I>> , (21)

if higher-order terms are neglected. Equation
(21) may be solved by perturbation theory; as-
suming a solution of the form |®) = | ()
+(T/Tp) &) 4 «- . one finds
| Xy =1 |ty (22)
0 =1 I‘I’m> +Iu>|q,(0)> . (23)
KT is given by Eq. (5), and has the form (X | ()
+(T/TpXX 19W); the second term may be rewrit-
ten by using the following relations which follow
from Egs. (22) and (23)
(X | @Wy=(9( | [0 | 1))
== (3 1) |t (24)

Thus, the leading finite-temperature contributions
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to the thermal conductivity are given by

1 ( 1 > _ T <‘b(°)|1(1)|¢(0)> (25)
KT \KT T TdONZ  *
KT "\RT)._, Tp (XI13®)

Similar expressions may be obtained for the
finite-temperature contributions to (D7)? and
(nT)~2. To the order to which we are working, the
result (25) may be written

1/KT =(3' |I| &) /(X | &) (26)

which is the same as the variational expression
for (KT)! evaluated using as a trial function the
exact solution to the transport equation in the ex-
treme low-temperature limit. Equation (25)
shows that the first-order changes in the transport
coefficients may be calculated using the zeroth-
order solution; this result is analogous to the
well-known result in quantum mechanics that first-
order shifts in energy levels may be evaluated
using the wave functions for the unperturbed sys-
tem.

The equation |X) =I(®| &) was first discussed
by Abrikosov and Khalatnikov' and it has been
solved analytically by Brooker and Sykes, °® and by
Jensen, Smith, and Wilkins!®; these solutions are
discussed in Appendix B. By making use of the
fact that  has the form given in Eq. (8), the
finite-temperature contributions to the transport
coefficients, given in Eq. (25), may be rewritten
in the following way:

_1_(_1>
KT " \EKT) ,_,
3 I
c(5) m*° 2 K,_K)
- 810%——= Py %k iZ_) v, & )T (7

for the thermal conductivity,

o~ (57)
“\n7T2
DT? DT T=0

B S I
*4
=_1a7r;(3)—”i—6 B (E -y.DE.D)T (28)
al\. 1 (2
bp 1+F0 i=I

for the spin-diffusion coefficient and

- ()
2 ~ | 2
nT ") 7o
*2
- 90 (3 w2, Mz I (29)

| )
pF B 11 71

for the coefficient of viscosity. Here, ¢(n) is the
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Riemann ¢ function of order ». The coefficients
y; are the values of (@O 1;(1 ] $1O%) /(X | $LO)2
normalized to give the results of the variational
calculation”® when the yy’s are put equal to unity
and the remaining y’s are put equal to zero. Ex-
plicit expressions for the 9’ s are given in Ap-
pendix C, where we also give the results of cal-
culations of v using analytical approximations and
also numerical expressions for c¢®.

The most important term in the finite-tempera-
ture contribution to the thermal conductivity is
the term involving -yIKEIK As mentioned pre-
viously, =;™ is an average of the frequency-de-
pendent part of the quasiparticle transition rate
weighted by a factor 1 - cos6. This weight factor
is easily understood physically since head-on col-
lisions (6 =7) are the most effective at reducing
the energy current, whereas, collinear collisions
(6 =0) leave the energy current unchanged. In the
case of spin diffusion, the dominant finite-tem-
perature contribution to (D7)-2 comes from small
momentum transfer collisions accompained by a
spin flip. This is given by the 'yIDEID term
which is also weighted by a factor 1 - cosé that
measures how effectively a collision reduces the
spin current. The term involving 'ymD EIIID
comes'® from scattering processes involving
quasiparticles of the same spin; such processes
leave the spin current unchanged, but they do al-
ter the form of the quasiparticle distribution func-
tion and thereby affect the value of the spin-dif-
fusion coefficient. In the case of viscosity, the
finite-temperature contributions to (n7)"2are
rather small since small momentum transfer
processes contribute little to the change in mo-
mentum flux; this accounts for the absence of a
term of the form y =M.

IV. QUASIPARTICLE SCATTERING AMPLITUDE

To determine the solution ¢® for calculating the
v’s and the transport coefficients in the extreme
low-temperature limit, one needs an expression
for the transition probabilities Wj4 (8, ¢); these
may be expressed in terms of the corresponding
scattering amplitudes, which we denote by
Ayy(8, ¢)/v(0) and Ay4(6, ¢)/v(0):

A,, (6, 0) !2
27 44
= —e— | (30)
2
A, (6,0) ’
2| 4Y
Wy @, ¢”7‘ o (31)

The amplitudes A44 and A,y may be decomposed
in terms of the singlet and triplet amplitudes, Ag
and Ay:
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Ay, (6,0)=4,(6,0), (32)
A, 6,0)=2[4_(6,0)+4,06,0)] . (33)

The angle through which the relative momentum
of the two quasiparticles is scattered is given by
¢. Therefore, it follows from the Pauli principle
and invariance under the parity transformation
that Ag can contain only even partial waves and
At can contain only odd partial waves; that is,

A (6, 9)= 2 C,(6)P,(cos9) (34)
l even

A,(0,9)= 21 C,(6)P(cosd). (35)
1 odd

The coefficients C;(6) are defined by these equa-
tions.

The scattering amplitudes for ¢ =0 are given in
terms of the Landau parameters by means of the
equations!®

A (6,0=2, (Als - 3Ala)Pl(cose), (36)
A,(6,0-2, (Als+Ala)Pl(cosl9), (37)
. Fl
where All = —li——- , ({=aors). (38)
1 +Fl /(21 +1)

Information about the Landau parameters F 5,
F,S, and F,% may be obtained from measurements
of thermodynamic properties of the liquid, and
these can in turn provide one with information
about the scattering amplitude, but only for ¢ =0.
However, the ¢ dependence of the scattering am-
plitude may be determined completely if one as-
sumes that only s and p waves contribute to the
scattering. The scattering amplitudes are then
given by

As(9, qb)zAs(G,O), (39)

A, (@, ¢)~A,(6,0) coso (40)

or AH(G, ¢)z2l (Als +Ala)cos¢Pl(cosﬂ), (41)

~ 1 S a
Ay, 0~ 3[4 -345

+(Als+Ala)cos¢]Pl(cose). (42)
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Equations (41) and (42) are exact for ¢ =0 and 7,
and Eq. (41) is also exact for ¢ =37. For liquid
He®, there is experimental information only about
Landau parameters with / <2, and in applying
formulas (41) and (42) for the scattering amplitude,
the series will be truncated after the second term.
In previous calculations for liquid He® based on
semiphenomenological considerations, it has been
customary to replace the scattering amplitudes by
their values for ¢ =0%'%!* such an approximation
clearly violates the requirement that the triplet
amplitude contain only odd partial waves, and,
furthermore, leads to results for the transport
coefficients which are consistently higher than

the experimental values.® In Sec. V we shall use
the s- and p-wave approximation in calculations
for liquid He3,

V. APPLICATION TO LIQUID He3

A. Extreme Low-Temperature Limit

The transport coefficients of liquid He® in the
extreme low-temperature limit, calculated using
the s- and p-wave approximation [Eq. (41) and
(42)] for the scattering amplitude and exact solu-
tions of the transport equation, are shown in
Table I. For comparison, we also give results
obtained by replacing the scattering amplitudes by
their values for ¢ =0 (forward-scattering approx-
imation). In all calculations, only Landau pa-
rameters with / <2 were taken into account. We
also ignored the fact that the measurements of the
transport coefficients at low pressure were made
at slightly different pressures. For the Landau
parameters, we used the values AS=0.91, A,S
=2.0, Aoa =—2.0 at low pressure and the values

AS=0.99, AS=2.5 A%=_2.7 at high pressures
(27 atm).?° For A,%, we used values obtained
from the forward-scattering sum rule, '*»2! assum-
ing Landau parameters with > 2 may be neglected
(A 2=-0.91 for low pressures and A,?=—0.173 for
high pressures), and at low pressure we also used
the value of A, (=~ 0. 55) obtained from finite-
temperature contributions to the thermal conduc-
tivity, as described in Sec. V B.

The results using the s- and p-wave approxima-
tion for the scattering amplitude are in much
better agreement with experiment than are results
obtained using the forward-scattering approxima-
tion; the spin-diffusion coefficient is particularly
sensitive to the approximation one uses for the
scattering amplitude, since for spin diffusion, the
important processes are ones for which ¢~ 7, and
the amplitude for these processes is poorly ap-
proximated by its value for ¢=0. The over-all
effect of using the s- and p-wave approximation is
to increase the amount of scattering. The scatter-
ing of quasiparticles of like spin is actually de-
creased, but this is more than compensated by the
increase in scattering of quasiparticles of op-
posite spin when ¢~ 7.

The two values of A,2 for liquid He® at low pres-
sure were both estimated assuming F;S;2=0 (!
> 2); the difference between these two values gives
some indication of how good an approximation it is
to neglect higher Landau parameters. One piece
of information which bears directly on this as-
sumption is that the observed velocity and attenu-
ation of zero sound in the liquid are not inconsis-
tent with F,S =0, 22,23

To give some idea of the sensitivity of the re-
sults to changes in the value of A,2, we give in
Figs. 1-3 a plot of the transport coefficients at

TABLE I. Comparison of theoretical and experimental values of the transport coefficients of liquid He® in the
extreme low-temperature limit.

Pressure KT DT? 'r;T2
erg/cm 107 cm? 10~%poise
sec °K? /sec oK?
a
0.28 atm Experiment 35 1.4 2

Theory s- and p-wave approx:ima.tionb 33 1.6 1.6

s- and p-wave approximation® 39 1.9 2.2

forward-scattering approximationb 47 4.3 2.3

forward-scattering approximation® 54 4.6 2.8

27 atm Experiment? <12 0.17 e
Theory s- and p-wave approximation® 8.6 0.16 0.54
forward-scattering approximation® 13 0.49 0.76

3Experimental data are taken from Refs. 20 and 26.

bValues in this row are calculated using the value of
A,? obtained from finite-temperature contributions to

thermal conductivity.

CValues in this row are calculated using the value of
Aia obtained from the forward-scattering sum rule.
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FIG. 1. Plot of the calculated value of KT in the ex-
treme low-temperature limit as a function of A1a. The
calculations were performed using the s- and p-wave
approximation for the scattering amplitude, and the

values of A;5,A%, and A5 for liquid He® at low pressure.

low pressure for values of A,% between 0 and - 1.
The results are not overly sensitive to the value
of A\%, and one can see from the results given in
Table I that neither of the two values of A,% ob-
tained from experiments on liquid He® leads to
results for the transport coefficients which differ
appreciably from the experimental values.

B. Finite-Temperature Contributions

The most reliable data of finite-temperature
contributions to the transport coefficients are
those of Abel, Johnson, Wheatley, and Zimmer-
mann?! on the thermal conductivity of liquid He®
at low pressure and those of Anderson, Reese,
Sarwinski, and Wheatley?® on the spin-diffusion
coefficient of liquid He® at low pressure. Plots of
the data, as recently reanalyzed by Abel and
Wheatley, % are given in Ref. 8.

For the case of liquid He®, the theoretical re-
sults depend sensitively on the value of the Landau
parameter F\2  about which there is no direct
experimental information. In comparing theory
and experiment, we assumed that all Landau pa-
rameters with [ > 2 could be neglected, and then
determined the value of F,@ which led to agree-
ment between theory and experiment. From the
thermal conductivity data, we found F,%=-0. 46

2.0

07216 cm? sec ' ok?)

FIG. 2. Plot of the calculated value of DT? in the ex-
treme low-temperature limit as a function of 4;%. The
calculations were performed using the s~ and p-wave
approximation for the scattering amplitude, and the

values of A,%,A,%, and A,S for liquid He® at low pressure.

2.0r

&)

27206 poise K
>

FIG. 3. Plot of the calculated value of nT? in the
extreme low-temperature limit as a function of A%.
The calculations were performed using the s- and p-
wave approximation for the scattering amplitude, and
the values of A,°,A,%, and A5 for liquid He® at low
pressure.

+0. 14, and from the spin-diffusion data, we found
F,%=-0.39+0. 14; the quoted errors include only
the contribution from statistical uncertainties in
fitting a straight line to the experimental data.
These calculations were performed using values
of ¥ obtained from numerical solutions of the
transport equation. The values of X used in cal-
culating ¥ were obtained using the s- and p-wave
approximation for the scattering amplitude dis-
cussed in Sec. IV. We consider the value of F,%
obtained from the thermal conductivity data to be
the more reliable of the two estimates since ex-
perimentally the linear temperature dependence
of (DT)"? is not so well defined as that of (KT)™*.

VI. DISCUSSION

One conclusion of the work reported here is that
Landau theory is able to give a consistent account
of the observed magnitudes of the equilibrium
properties and the transport coefficients of liquid
He? if one takes into account only Landau param-
eters with I <2, provided one uses an approxima-
tion for the quasiparticle scattering amplitude
which includes both s- and p-wave contributions.
No doubt improved measurements of the proper-
ties of liquid He® will show that the simple approx-
imation for the scattering amplitude is inadequate;
in particular, we note that the viscosity in the ex-
treme low-temperature limit will be rather sensi-
tive to d-wave components in the scattering am-
plitude.

In this paper, we have not discussed the validity
of using the quasiparticle transport equation to
calculate finite-temperature contributions to the
transport coefficients. It is known that expres-
sions for finite-temperature contributions to the
specific heat based on a quasiparticle model can
give incorrect results, 2’ but one can show that
similar difficulties do not occur in the quasipar-
ticle transport equation, at least within the
shielded potential approximation. 28



185 TRANSPORT COEFFICIENTS OF NORMAL FERMI LIQUID: He?3 381

If one accepts the validity of the quasiparticle
transport equation, one may calculate higher-
order contributions to the transport coefficients.
There are T21InT contributions to (KT)™!, (DT)?,
and (nT)-2coming from corrections to the quasi-
particle density of states, but these are largely
canceled by contributions of the same order
coming from changes in the renormalization con-
stants, which enter the expression for the effec-
tive interaction. The reason for this is that the
largest of the logarithmic terms in the quasi-
particle self-energy vary as w’lnlwl.?® This re-
sult is very similar to the well-known cancellation
of density-of-states corrections and renormaliza-
tion constants in the electron-phonon problem. *
There may well be other T21nT contributions
associated with Friedel oscillations in the dress-
ing cloud of a quasiparticle.

The perturbation-theory approach we have used
to calculate finite-temperature contributions to
the transport coefficients is applicable to a num-

ber of other problems; for example, it may be
used to calculate the electron-electron scattering
contribution to the electrical resistivity of a met-
al at low temperatures in the presence of elec-
tron-impurity scattering. One is then led to the
amusing conclusion that the standard “approxi-
mate” variational calculation of the T2 term*
leads to the correct result, but only when impurity
scattering dominates.

ACKNOWLEDGMENTS

We are indebted to Professor David Pines and
Professor Gordon Baym for many helpful con-
verstations during the course of this work. One
of the authors (CJP) wishes to acknowledge the
hospitality of the Aspen Center for Physics during
the summer of 1968; at Aspen, he also enjoyed a
number of profitable discussions with Professor
E. Feenberg.

APPENDIX A: DEFINITION OF =

Here we give the definitions of the quantities = which appear in Egs. (27)-(29) for the finite-temperature
contributions to the transport coefficients. These are most easily defined in terms of the quantities =2
and =% (i =a or s), which are given by the equations

. . L Tako i el 2 .
El - fz‘"g—”xT (1—COSX){|61(0yX)|2+f ds E (O;X)SI2 Ia (syx)l + Ial(S,X)IZJ} (Al)
0 0 ’
. . i 2 i 2
and 2 - fz”% {la'(o,x)|2+f1ds ['a (O’X)'S; 1@ (s, x)! }} (A2)

where Gl(s, X) EAi(s, s,X;S). The evaluation of =% is described in Ref. 8. = may be evaluated analytically
using the techniques described in Ref. 8 and if only Landau parameters with 7 <2 are taken into account
one finds

=1 121 2,1 i i i i , 2,1 i

== (A ) [517°A, +1+A4, ]-240A, +(A)-&7"A, +1]+(2/s,)

ii e [d, o4 i it d i i
x [Fy +4,'s, ] [EE (Fy +A,'s, (s, )] + 205, =1)/ 7 [(s,” = Dx(s;)]. (A3)

The last two terms comes from the collective modes and must, of course, be omitted if these modes are
absent. s’ is the velocity, in units of the Fermi velocity, of the spin-symmetric (i =s) or spin-anti-
symmetric (i =a) collective mode whose azimuthal dependence is given by the index m. The = are defined
by the relations

K s ,.a _ K =5 ,=a _D _.a
By O=E+3E, Eg TE +3E, E =22
D gza _ D =zs za _. M - K zs _ma
. =257, Eqp =E+E Eq sEp =E +3E. (A4)

— - K cps

alK and Zj; are closely related to the quantities [w(1 - cosf?)]aV and [w]av, respectively, introduced by
Emery and Cheng. "' Similarly, =% and Z¢ are closely related to their [op(1 - cos6)],y and [@plyy. The
difference in form between our results and theirs is due to the fact that they work in terms of the variables

6 and ¢ whereas we work in terms of s and .
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APPENDIX B: SOLUTION OF TRANSPORT EQUATION IN EXTREME
LOW-TEMPERATURE LIMIT

The solution of the equation 1X) =I®©] 3 may be written®!°

¢ (x) = 20/ (m%+x%) + N p Z} {xf2 )/[(n+1)(2n+3)—)\K]}f2n+1(x) (B1)
n_

for thermal conductivity and

COW) = 2/ +x) s A D {(1,7,, )/l D@+ 1) =21}, () (B2)
v

for spin diffusion (\=)\p) and viscosity (\=)y). Here, fy(x) is an eigenfunction of the equation
t (1 +e'x)

el (1 +e—(t+x))

z(‘ﬁ +x )f -2 fdt f,t+x)=0 (B3)

and (A,B)= [ dx(-dn/d)AWB®), (B4)

where n(x)=(e* +1)"! is the Fermi function. The eigenvalues are ), = 3(n +1)(n +2) and the eigenfunctions
are proportional to the residues of the functions P, L(cothg) e igqx/m" at g=0. The first four eigenfunctions
are

fo(x)=<-g)”2%, fl(x)=<g>”2:—2, fz(x)=<lf,0> 3 - 5 /7], fs(x)~8”2,:17 7< )Z] (B5)

If only the first terms in the sums in (B1) and (B2) are retained, one obtains an approximate solution
of the transport equation first derived by Emery and Cheng'! by a different method.

A
APPENDIX C: EVALUATION OF v 2 x K 5
C(O)zﬂ2 2+——1——<—7> X (C3)
+X° 7 14 2m
The vy are defined by the relations K
-yK _ﬁ 1 1 foo dxc(o)(x) for thermal conductivity, and
j 9 512(5) (x, ct0)2 =
c@=2/(m?+x%)+ (3/2n2)1/(1-1)] (C4)

for spin diffusion and viscosity, one finds the
following results:

xf:dxzf_w a5 |@ [n ) lx,)

2
— — K
x[1-nle @) (1 -nte, - 3@}, (c1) VK <1-0.528( 92). 0 037 [22) "
0
0 (c5)
and - 2
K P
WAL T S axc® "I =0'043(2 )
j 24z (3) (1,c °) 0
0 © . _ where usmg Emery and Cheng’s notation, TO/T
X f_mdx f_ a5 |@ ‘"(x)"(xz) =3 (12-7%)+ 5\ /12(3 = Ag) for thermal conduc- P
tivity.
- — D,n
><[1-n(x+w)][1—n(x2-w)]Qj . (C2) b 9
v =11 “3)‘1( QP).O 0297<QP)
I 6 £(3) L TO
Here the @’s must be evaluated with ¢ put equal to r 9 (C6)
¢t If the y’s are evaluated using Emery and D _, 0161< QP>
Cheng’s'! approximate expressions for ¢, n =% ’

0
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’

QP>
71H =0. 0416( 7,

where TO/TQP= Hm2+3xp/4(1 - rp) for spin dif-

fusion, and

0. o42< QP) , (")
"I T

where TO/ pP= =12/12 +3x.n/4 (1- 77) for viscosity.
These resul%s agree with those of Emery and
Cheng. !1>32

The values of finite-temperature contributions
calculated using the above expressions for vy differ
from results obtained using more precise numer-
ical values of |®‘®) by amounts of the order of a
percent or so for values of » appropriate for liquid

He?® 383

He®. These numerical solutions were obtained by
iterating the integral equation for ¢® starting3?
from the solution for A =0; for the values of A of
interest this procedure converges rapidly. To
compare the results of the two calculations, we
give the values of y for the case of liquid He® at
low pressure, using the approximation for the
scattering amplitude described in Sec. IV and with
A%=-0.55. The values of X are \g=1.02 and

X p=-0.125 and the corresponding values of y
obtained using the numerical solutions of the
transport equatmn are y1f = 0. 606(0. 628) 'VII
=0.091 (0. 078) D _0.684 (0. 672), I D_0.028
(0. 031),and VIII -0 075 (0. 081); the values given
in parentheses are those calculated using the ap-
proximate expressions given above.

We also note that for the particular cases
Ak—=3, Ap—1, and A, ~1 the variational results
given in Ref. 8 are exact.
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The attenuation of zero sound in the collisionless regime (w7 > 1) is calculated using per-
turbation theory to treat the effects of collisions. Detailed calculations are performed taking
into account Landau parameters with / =2; the results are applied to the experimental data

for liquid He’.
1. INTRODUCTION

In the second of his classic papers on normal
Fermi liquids, Landau predicted that a new type
of sound, which he called zero sound, could prop-
agate in such systems.! One of the necessary
conditions for the existence of zero sound is that
a typical quasiparticle collision frequency be
small compared with the frequency of the wave;
in other words, zero sound exists in the collision-
less region (wT>>1). Ordinary sound (first sound),
on the other hand, exists in the hydrodynamic re-
gime (w7«1), where the liquid is in local thermo-
dynamic equilibrium,

The velocity and attenuation coefficient of zero
sound in a normal Fermi liquid may be determined
from the eigenvalues of the quasiparticle trans-
port equation. !’ 2 The collision integral in the
transport equation is rather difficult to handle,
and in previous calculations®* it has been common
to replace it by an approximate expression which
involves a single relaxation time and which con-
serves quasiparticle number and total quasiparti-
cle momentum. The first such calculation was
that of Khalatnikov and Abrikosov,® who took into
account only the Landau parameters?® FOS and Fls.
The calculations were extended by Brooker,* who
included the Landau parameter Fzs as well. A
microscopic calculation of the attenuation of zero
sound has been performed by Eliashberg®; in this
calculation a number of approximations were made
and the results were very similar to those obtained
using the quasiparticle transport equation and the
relaxation-time approximation,

The work described here was stimulated by the
fact that the calculations of Khalatnikov and
Abrikosov® apparently do not give a consistent

account of the observed attenuation of zero sound
and first sound in liquid He® — the relaxation time
required to account for the zero-sound data is
somewhat shorter than that required to account
for the first-sound data.” Here, we derive ex-
pressions for the attenuation of zero sound with-
out making the single relaxation-time approxima-
tion and show that one can give a consistent ac-
count of the data. In the collisionless regime,
the properties of the sound wave are little affected
by collisions; one may, therefore, use perturba-
tion theory to calculate the effect of collisions on
the zero-sound wave. This situation should be
contrasted with that in the hydrodynamic regime
where it is important to take into account multiple
scattering effects. Detailed calculations are per-
formed taking into account Landau parameters
with I <2 and the results are compared with the
experimental data for liquid He®, By comparing
the observed attenuation of zero sound with that
of first sound a rough estimate for the Landau
parameter F,S is obtained, but the uncertainty in
its value is rather large as a result of uncertain-
ties in the experimental data. The value of Fzs
is consistent with, but somewhat more uncertain
than, the value obtained from measurements of
the velocity of zero sound.*

In Sec. 2, we describe the perturbation-theory
calculation of the attenuation coefficient, and give
limiting forms of the result when the zero-sound
velocity is very much greater than the Fermi
velocity. The method used is modeled closely on
the standard calculation of the attenuation of sound
in the hydrodynamic regime, ® and is close in
spirit to Gavoret’s® calculation of the acoustic
impedance of liquid He®. The calculation is ap-
plied to liquid He® in Sec. 3. In Sec. 4, the in-



