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Thermal conductivity measurements have been made on hcp single crystals of helium 4 be-
tween 0.36°K and 1.6°K. Data on crystals grown at 53.4, 85, and 125.8 atm exhibit a strong
orientation dependence in the umklapp region, and Poiseuille flow at temperatures below the
thermal conductivity maximum. In the umklapp region, the data are described by two ther-
mal conductivities, K| =A| exp(©p/2.587) and K|| =4 exp(©p/4.62T), the components of the
thermal conductivity tensor perpendicular and parallel to the ¢ axis. At 85 atm, A =1.12
% 107% W/cm ° K and AH =2.31x 10~ W/cm °K. The umklapp data permitone to determine the
orientation of the single crystals. The thermal conductivity in the Poiseuille region is pro-
portional to dzTG, where d is the sample diameter. The normal-process relaxation time
determined from these data, 7)=(2.1%0.4) (GD/T)3 x10~" sec, is in good agreement with

the results of second-sound experiments.

I. INTRODUCTION

Solid helium crystals have proved to be a par-
ticularly suitable laboratory for testing phonon-
gas transport phenomena. Solid He® and He*
samples can be made with extraordinary chem-
ical and isotopic purity over a wide range of den-
sity and pressure. Thermal conductivity data
have been taken from below 1°K to the melting
temperature from 25 to about 2000 atm.' Until
recently, all measurements were made on samples
grown at constant volume by the blocked capillary
method.' Such samples are probably polycrystal-
line and not defect free. Measurements on poly-
crystalline samples do not exhibit Poiseuille flow?
or anisotropy effects.® Good single crystals of
solid helium can be grown by the constant pres-
sure technique developed by Shal’nikov* and
Mezhov-Deglin. ® Mezhov-Deglin has made a
series of thermal conductivity measurements®=7
on single crystals of hcp He* grown at four pres-
sures: 60, 85, 153, and 185 atm. He has ob-
served Poiseuille flow and verified the d? de-
pendence of thermal conductivity on sample di-
ameter for this phenomenon; he has also ob-
served anisotropy in the thermal conductivity at
temperatures above the low-temperature maxi-
mum.

In this paper we report the results of an in-
vestigation of the thermal conductivity in single
crystals of hcp He* grown at constant pressures
of 53, 85, and 126 atm.® These measurements
are more extensive and, we believe, more ac-
curate than the earlier results of Mezhov-Deglin.
They admit to a simple analysis by which the
microscopic scattering rates can be determined.
It is possible from the analysis of the data in the
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high-temperature umklapp region to determine
ApZ (the umklapp® mean free path in the Ziman
limit?) and the angular orientation of the samples.®
The analysis of the data just below the low-tem-
perature maximum yields Ay (the normal pro-
cess® mean free path).

In Sec. I we review the relevant theoretical re-
sults which we will use in discussing the con-
ditions to be met in doing the experiment and in
analyzing the results. In Sec. III we discuss the
apparatus and experimental procedures. In Sec.
IV we discuss the data and its analysis.

II. BACKGROUND

At low temperatures the phonon gas in a dielec-
tric solid can be described by a set of macro-
scopic equations derived by Guyer and Krum-
hansl.? !° They discuss in detail the solution to
these equations and the implication of the solution
for thermal conductivity measurements. The re-
sult of that discussion which is relevant to the
present experiment is that at low temperatures,
there are three temperature regions in which the
thermal conductivity K has qualitatively different
behavior: the boundary region, the Poiseuille
region, and the Ziman region. We review the be-
havior of K in each of these regions.

(1) The boundary vegion. This region occurs at
lowest temperatures when \jy>d and ARZ >d;

AN is the N-process mean free path, ARZ is the
resistive process mean free path computed in the
Ziman limit, and d is the sample chamber diam-
eter. The thermal conductivity in this region is
given by

K, =§cvcad, (1)
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where C,, is the specific heat per unit volume, ¢
is the Debye velocity of sound, and ¢ is a con-
stant on the order of 1. Measurement of K in
this region provides a measure of crystal quality.
(2) The Poiseuille region. This region occurs
just below the low-temperature maximum when
one of the inequalities reverses, a\y << d and
ARZ >d?/xy. The thermal conductivity in this
region is given by

K,=5C %d/Ty (2)

and provides a direct measure of 7y, the normal-
process relaxation time. In this region the ther-
mal conductivity mean free path is greater than

d by the factor & (d/aN).

(3) The umklapp region (Ziman limit). This
region occurs just above the low-temperature
maximum when AN <R and AR <d, where AR
is the mean free path due to all resistive scat-
tering processes. The thermal conductivity in
this region is given by

z

Y

KZ =3 CchR (3)
where xRZ is the resistive process mean free

path computed in the Ziman limit. In this ex-
periment since the only resistive scattering
mechanism is umklapp scattering, we have
XRZ =y Z,

As the temperature is increased further above
the Ziman region, the limit 3y < ARZ which ob-
tains in the Ziman region breaks down. The
thermal conductivity is given by Eq. (3) with
)\RZ replaced by xRK, the resistive mean free
path computed in the kinetic limit. The data pre-
sented in this paper do not go to sufficiently high
temperature to reach the kinetic region.

The solution to the coupled macroscopic equa-
tions? in the region of Ty 4 is

VA
_1
=3 CL‘C)\R G(u), (4)

_ 2J,(id/2B)
(id/2B)J, (id/2p)

w=d?/p?, and B2 =aNAgZ/5. Above Tmax, &>1
and G(p)~1, and Eq. (4) goes over to Eq. (3).
Below Tijax, ¢ <1 and G(u)~ /2, and Eq. (4)
goes over to Eq. (2). It is only in the region of
Tmax that a single analytic expression for K exists
which depends sensitively on all of the scattering
rates characterizing the phonon gas.

The thermal conductivity of hcp helium crystals
at temperatures above Tp,4¢ exhibits a very large
temperature-dependent anisotropy which has al-
ready been reported.® Anisotropy in K can arise
from two causes, anisotropy in the velocity of
sound and anisotropy in the phonon scattering rate.

where G(u)=

In the usual derivation of an equation for K, e.g.,
Eq. (3), it is assumed that ¢ and the scattering
rate are isotropic. If these conditions are re-
laxed, the most general relation which can be
written relating the heat current density Q and the
temperature gradient VTis

QB=—Eycp(T)c R™)g e VT, (5)

where R(g) is the umklapp scattering rate; (R™?)
is the B,y g - space matrix element of R.? It is
weighted in the direction of the heat current flow
by a factor cos?6. If R is isotropic, then any
anisotropy of K is due to anisotropy in the veloc-
ity of sound. Equation (5) admits the possibility
in principle of anisotropy in K.

There is a further strong condition imposed on
K by crystal symmetry K is a tensor of rank two
which relates Q and V T, and therefore, it must
obey the requirements 1mposed by the symmetry
of the crystal structure on such tensors. For a
cubic crystal, K has three equal diagonal com-
ponents; there is no anisotropy. For a hcp crys-
tal K has the form"!

0 0
Kl
K= 0 Klo s (6)
0 0 K

where the z axis is along the ¢ axis of the crystal
and the x-y plane is perpendicular to the ¢ axis.
If 6 is the angle between the direction of the heat
current and the ¢ axis of the crystal, the thermal
conductivity in the direction of Q is given by

= 1 cos?6 + sin? @ . 7)

Kl(T)

For a polycrystalline sample, the thermal con-
ductivity is given by an angular average of Eq. (7),

K =3K (T)K (T)/[2K |(T) + K (T)] . (8)

The thermal conductivity should be given by Eq.
(7) at temperatures where K can be regarded as
a bulk property of the solid, i.e., the umklapp
region. In both the Poiseuille and boundary re-
gions, Kis limited by the geometry of the sample,
and Eq. (7) does not apply.

In the boundary region, the heat current is car-
ried by the phonons traveling along the axis of the
sample. The thermal conductivity in the boundary
region depends upon the phonon velocity ¢, along
the axis in the form?!?

= %Cvcd(c/ca)2 . (9)
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III. EXPERIMENTAL

The apparatus used for growing the crystals and
measuring their thermal conductivities is shown
in Fig. 1. The He? pot had a volume of 250 cm?,
and was filled from the bath of He* surrounding the
exchange gas can by means of a needle valve con-
necting the bath with the manometer line to the
He*® pot. The pot could be pumped to a temper-
ature of about 1. 0°K and operate for 36 h or more
between fillings. In taking data, a crystal was
grown and all data were taken between two fillings
to avoid subjecting the crystal to the rapid tem-
perature changes associated with filling the He*
pot. The He® pot had a volume of 6.7 cm?® and was
machined from a single piece of electrolytic cop-
per, including the §-in.-thick plate on which the
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FIG. 1. Experimental arrangement. M is the ex~
change gas can, P is the He! pot, and G is the He® pot.
H and Q are the pot heaters. A is the sample chamber,
and F is the filling capillary. B,C,D, E, 3,4, and 310
are the resistance thermometers, and J is the He®
manometer pot. L is the He pumping line, and R is
the He® recondensation line.

sample chambers were mounted. Fins on the
bottom of the He® pot reduced the Kapitza tem-
perature difference between the He® and the cop-
per at high-heat inputs. The small (17-cm?) He*
pot attached to the He? pot was used for growing
crystals, and will be referred to as the “He*’pot”
in this paper to distinguish it from the large He*
pot. Both pots are equipped with heaters and with
germanium resistance thermometers R; and R,.
The carbon resistance thermometer R, was used
at the lowest temperatures. The separate manom-
eter pot, filled with He® and connected to oil and
mercury manometers, is hard soldered to the
plate forming the top of the He® pot, and serves as
the primary vapor-pressure thermometer. This
He® manometer system could be used up to 2. 5°K
with the amount of pure He® available, above which
temperature the germanium thermometers were
calibrated in the He* bath. The He® system was
provided with a continuous recondensation capa-
bility, but this was never used during calibration
or data taking, as it tended to cause fluctuations
in temperature while taking points.

The sample chamber was filled with helium by a
length of 0. 025-in. -o0.d. X0.014-in. -i.d. cupro-
nickel capillary extending from the Dewar head to
a point just above the He* pot, where it is soft
soldered onto a piece of 0.014-in.-o0.d. X0.006-
in. -i.d. cupronickel capillary which was soldered
to the He* pot with Wood’s metal and then formed
into a free-standing coil, which was connected to
the sample chamber itself. To prevent possible
apparatus vibrations from flexing the coil, a brace
was made by slotting one end of a piece of 0. 083-
in. -o0.d. stainless-steel tubing and gluing the
0.014-in. -o. d. tubing into this slot at the point
where it first becomes horizontal after leaving the
He? pot. The other end of this brace was soldered
to the He* pot with Wood’s metal, and the length of
free capillary between the brace and the sample
chamber was 42 in.

The sample chamber proper is shown in Fig. 2.
The fill capillary is soft soldered into the copper
sleeve at the top of the chamber, and the auxiliary
tube at the side is capped off after air is blown
through the main capillary to check for possible
plugged joints resulting from the assembly pro-
cess. The top of the sample chamber is turned
from electrolytic copper, and is provided with a
heater of No. 40 Manganin wire, with a resistance
of 2000 Q. The sample chamber is made of stain-
less-steel tubing, 0.177-cm i.d. X0.242-cm o.d.
in the small chamber and 0. 268-cm i.d. xX0. 321~
cm o.d. in the large chamber. The three fins
along the chamber wall are 0.010 in. thick and
are hard soldered to the chamber. The bottom of
the sample chamber is made of electrolytic cop-
per, and is soldered with Wood’s metal to the
plate forming the top of the He® pot. The ther-
mometers, marked B, C,D, E, and 310, are - W
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FIG. 2. Sample chamber. B,C,D, E, and 310 are the
resistance thermometers, and the mounting flange is
on the He® pot.

Allen-Bradley resistors cemented with Epoxy
resin into three turns of 0. 005-in. copper foil
soldered together and fastened to the fins with
Wood’s metal. All connections to the resistors
and to the sample heater are thermally anchored
to the He® pot, but this is not possible for the fill
capillary due to the crystal growing process em-
ployed. The effects of this arrangement will be
discussed later in this section.

The thermometers are calibrated against the va-
por pressure of He® given by the T, temperature
scale with corrections for the thermomolecular
effect.'® The heat input Q is measured by a four-
wire potentiometric technique. The data are an-
alyzed by a computer program using logic similar
to that of Bertman ef al.

In growing a crystal, the shape of the pin in the
bottom of the sample chamber is such that growth
of crystals nucleated on it should be substantially
normal to the copper-helium interface until the
crystals encounter the sample chamber wall, since
the conductivity of the copper at the growing tem-
perature is 10° times that of the liquid helium or
of the stainless steel. Thus the crystal nucleated
at the tip of the pin should (in principle, at least)
grow out to the sample chamber walls before any
competing crystal can get past it, and seal off any
competing crystals in a region below the first
thermometer fin. The large area of helium-cop-
per interface created by the sides of the pin also
serve to reduce the Kapitza temperature differ-
ence between the crystal and the copper, which

can be as high as 0. 2°K for some of the data.

To grow a crystal, He® is first condensed into
the He*’ pot and the entire system is brought to
4,2°K. The fill capillary is tested for blockage
by suddenly lowering the pressure in the high-
pressure system and watching resistors Rgand
Rg cool as the material in the sample chamber
cools adiabatically. The proper growth pressure
is then set, and the system is allowed to come to
thermal equilibrium at 4.2°K. The He* pot is
then closed off from the bath, pumped to 0.2°K
above the melting point of the helium sample and
regulated. Once the system has come into equilib-
rium at this new temperature, a miniature needle
valve connecting the He*’ pot to a vacuum pump is
opened by a predetermined amount and enough
power is put into the sample heater to maintain a
temperature difference of about 0. 2°K across the
liquid-filled sample chamber. While the cooling
proceeds, the resistors 3, B, C, D, and E are
monitored sequentially. The passage of the liquid-
solid interface is signalled by a slowing and sub-
sequent speeding up of the rate of cooling of a
given resistor, due to the evolution of the latent
heat of fusion at the interface. Once the resis-
tors are calibrated, the passage of the interface
is more simply noted by the passage of the re-
sistors through the appropriate resistance val-
ues. When the crystal is complete, the evolution
of latent heat is reduced because of the smaller
area of the fill capillary, and the top of the crys-
tal cools rapidly. At this point the power into
the sample heater is reduced linearly with time
by a circuit due to Crooks, !4 while the He*’ pot
is now pumped more rapidly until its temperature
is at the X point. The temperature of the He* pot
is now brought to just above the X point and regu-
lated, while the He*’ pot valve is gradually opened
to maximum. When the thermocouple gauge on
the He*'-pot pumping line reads less than
20-mTorr pressure the pot is closed off, the He*
pot is cooled to 1.6°K, and data are taken.

As mentioned earlier, the geometry of the sam-
ple chamber bottom is supposed to yield a single
unstressed crystal in the measuring region of the
sample chamber, and some good crystals have
been obtained in this way without any other pro-
cessing. (An example of such a crystal is that
in Run 11-1.) In general, however, the highest
conductivities below T,,x were obtained when
the He*’ pot was shut off during the growth pro-
cess, and the temperature of the He® pot raised
and regulated in such a way that the interface
was stopped just above RB for annealing. We
annealed for three hours for convenience, but
there is nothing to indicate that this time could
not be shorter. Annealing with the interface
anywhere within the sample chamber (but not
within the fill capillary) gave good crystals most
of the time, but the position just above Rp
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seemed to be the most reliable. This may be
due to the removal of defects created by the
rapid freezing of the material around the nu-
cleation post.

Several constant volume crystals were 2lso
grown during the experiment by bringing both
pots into thermal equilibrium at 0.05°K above
the liquidus temperature and then cooling the
He* pot as rapidly as possible to block the fill
capillary with solid He* before freezing the main
sample. No attempts at annealing these crystals
were made, as polycrystalline specimens were
desired for use in assigning orientations to the
constant pressure crystals through the use of
Eq. (8). Very low boundary conductivities were
obtained for these crystals, which suggests that
the specimens were indeed highly polycrystalline.

Once the crystal reached 1. 6°K, data were
taken by the method of Bertman ef al., '® with
modifications necessitated by the placement of
our filling capillary. In the region above 1.0°K,
heat was fed into the sample heater sufficient to
maintain a temperature difference of 0. 1°K be-
tween the He® pot and the top of the sample cham-
ber. Both temperatures were monitored while
the power level was being set. The temperature
of the He* “pot” was made equal to thatof resistor
E to avoid possible errors due to heatleaks down
the filling capillary, which was the only con-
nection to the sample chamber which was not
heat-sinked to the He® pot. In the region below
1°K, the He* pot was allowed to pump at full
speed, which maintained a temperature of 1.0°K.
As the peak conductivities were approached, the
temperature differences between adjacent fins
were reduced from their high-temperature val-
ues by Kapitza boundary resistances, reaching
minimum values of about 1 m°K for the data at
the peak of the curve. Data were taken down to
about 0. 36°K, where the resistors used went
over 1.1 MQ. The error signal from the He*-pot
thermometry bridge was used to provide auto-
matic temperature regulation of the He® pot during
measurements, freeing the operator to take the
data with a second bridge.

The heat leak down the fill capillary into the
sample chamber can create experimental error
leading to apparent conductivities higher than the
true values at the lowest temperatures. This ef-
fect was corrected for in the data presented in
this paper by calibrating the thermometer resis-
tors on each crystal immediately after taking the
thermal conductivity data. The temperature of
the He* pot was also regulated to assure that its
temperature remained the same for datum points
and for calibration points.

Our thermometry was done via ac Wheatstone
bridges with lock-in signal detection such that
power into the measuring resistors was never
more than 107'2 W. The bridges were sensitive

to a AR/R of one part in 10*, Calibration points
of Ry against He® vapor pressure gave a fit with
an rms deviation of less than 1072 °K, with the
largest contribution at low-vapor pressures as
expected. All measuring resistors were fitted
to the vapor pressure calibration points as a
check for possible errors in transcribing calibra-
tion data, and these fits were found to agree with
each other to better than 10~* °K. Sample cham-
bers were carefully measured, and the L/A term
in the conductivity is accurate to + 0.7%. The
heat input Q is known to +0.1%. With these fig-
ures and the consistency of the data, we feel that
the thermal conductivity results given in this
paper may be taken as being accurate to better
than +2% in all ranges. Relative values of ther-
mal conductivity points within a given run should
be accurate to within +1%.

IV. RESULTS AND DISCUSSION
A. Umklapp Region

Measurements of the thermal conductivity were
made in single crystals of hcp He* grown in the
manner described above at constant pressures of
53.4, 85, and 125.8 atm. Representative results
on good single crystals are presented in the Ap-
pendix. The most extensive data are at 85 atm,

a pressure we chose because it is also the pres-
sure at which Mezhov-Deglin’s data are most
complete. The discussion in this section will be
primarily about our 85 atm data. Where it is
illuminating to consider the results obtained at
other pressures, we do so.

27 crystals were grown at a constant pressure
of 85 atm. Of these, ten were grown in a sample
chamber of diameter d=1.77 mm, and 17 were
grown in a sample chamber of diameter d =2. 68
mm. Of the 27 crystals grown at 85 atm, 21 were
not “split” in the umklapp region.® As used in this
paper, a crystalis “split” at some temperature T
if the K values of the upper and lower halves of the
specimen differ by more than 10%. In Fig. 3 we
show the data on four representative crystals
grown in the 2, 68-mm-diam sample chamber.
The basic feature of this data which we want to
emphasize in the early part of this discussion
is the wide range of variation in K at fixed T
above Ty ax. As has been pointed out, this vari-
ation is evidence for a strong scattering anisot-
ropy in the umklapp region.® It is possible to use
this anisotropy to determine the orientation of the
crystals in the sample chamber.

Of the 21 “unsplit” crystals which we regard as
giving good umklapp data, the highest umklapp
thermal conductivity was observed in crystal
11-12, the closed triangles in Fig. 3. This crys-
tal had an umklapp conductivity about equal to
that of MD-I which at the time of the previous pub-
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FIG. 3. Typical thermal conductivity results at 85
atm. Data from these crystals are presented in the
Appendix.

lication® had the highest 85-atm umklapp conduc-
tivity measured. The lowest umklapp thermal
conductivities were obtained in crystal 10-10.
These data may be inserted into Eq. (8) to yield
a prediction of the thermal conductivity K of a
randomly oriented polycrystal for each of the two
possible assignments of K| and K| to crystals
11-12 and 10-10. These predictions have been
plotted in Fig. 4. Comparison of the two pre-
dictions with the polycrystalline data of crystal
10-2 leads to the identification of the highest K
with Kj in Eq. (6) and the lowest K with K in
Eq. (6). The thermal conductivity perpendicular
to the ¢ axis of the crystal is that of crystal 11-12,
and can be represented analytically by

<)
G I\l

0.70| 0.80 030
T (°k™)

FIG. 4. Choosing K, and K| . The closed triangles
are data from Run 11-12; the open triangles from Run
10-10. The dashed line represents the prediction of
Eq. (8) for K if Run 11-12=K| and Run 10-10=K ; the
dotted line is the same prediction if Run 11-12=K” and
Run10-10=K, . The open circles are data from a
typical polycrystal, Run 10-2.

'5e14‘2 K/TW/cm°K. (10)

K (T)=1.12x10
Similarly, the thermal conductivity parallel to
the ¢ axis of the crystal is that of crystal 10-10.
Thus K)|(T) is given by

-4e7. 94°K/T

K“(T)=Z.31><10 W/cm °K. (11)

These limits are plotted as solid lines in Fig. 5
along with typical 85-atm umklapp data from both
sample chambers. It should be possible to con-
struct the umklapp K of any crystal lying between
11-12 and 10-10 by taking the linear combination
given by Eq. (7) for a single 6 at each T in the
umklapp region. We find that a unique 6 can be
associated with each crystal which gives K(T)
from Egs. (7), (10), and (11) exactly. Thus itis
possible to determine the angular orientation of
the crystals in the sample chamber. The crys-
tals shown in Fig. 3, for example, are at 7°,
61°, 82°, and 90°. The solid curves drawn
through the data in Fig. 5 are constructed from
Eq. (7) using these angles. Angles were obtained
from the umklapp data for each crystal and will
be used to label crystals in subsequent discus-
sion.

The method used to determine 6 assumes that
the measurements cover the full range of pos-
sible crystal orientations. The fact that only the
limiting conductivity curves of Fig. 5 are good
straight lines in the umklapp region, as pre-
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FIG. 5. Typical umklapp data at 85 atm. The upper
and lower limiting lines represent K| and K | as given
by Egs. (10) and (11). The intermediate curves rep~
resent angles of 15°, 30°, 45°, 60°, and 75°, as de~
termined from Eq. (7). The data points are from
crystals oriented at 0° (O), 14° (v), 28° (), 46° (O),
61° (@), 75° (&), and 90° @),
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dicted by Eq. (7), indicates that this assumption
is valid for our 85-atm data. Nonetheless, it
would be useful to have our identification verified
by an x ray or birefringence experiment. '¢

We may interpret the qualitative dependence of
K on 6 in terms of the phonon spectrum of the
solid. We suggest that parallel to the ¢ axis the
phonon spectrum near the Brillouin-zone bound-
ary rises to about 18-27°K, whereas perpendic-
ular to the ¢ axis the phonons near the Brillouin-
zone boundary have energies on the order of
30-45°K. These results are qualitatively in
agreement with the predictions of Nosanow and
Werthamer!” for the velocities of sound in hcp
He* crystals of 250 m/sec parallel to the ¢ axis
and 305 m/sec perpendicular to it. Coupled with
our estimates of the Brillouin-zone boundary
behavior, this means a not unusual phonon spec-
trum.

Our data at 53.4 and 125. 8 atm are not as ex-
tensive as the 85-atm data, and do not cover the
full range of crystal orientations expected from
Eq. (7), as we did not obtain two limit curves
giving a straight line in logK versus 1/T at
either pressure. Slopes of all umklapp curves
at these pressures were consistent with the con-
clusion that the exponents in

K, =Ae exp(eD/blT) (12)

and KU"=A |le exp(eD/b ”T) (13)

scale directly with ©p,i.e., thatd and b, are
independent of pressure. Values of b were de-
termined to be b1 =2.58 and b1 =4.62 from the
85-atm data. Ranges of the slopes at 53. 4 and
125. 8 atm suggest that most of the 53. 4-atm
crystals were grown at low angles, and that most
of the 125. 8-atm crystals were grown at high
angles. This is in agreement with expectations,
as 85-atm crystals grown at similar rates of
solidification (less than 1 cm/h for the 53.4-atm
crystals and 2-3 cm/h for the 125. 8-atm crys-
tals) displayed similar ranges of preferred ori-
entation. Comparison of the magnitudes of K at
the same ©/T but at different pressures show
that A] and A} increase with increasing pressure,
but the data are too few to permit any quantitative
observations on the pressure dependence of A |
and 4. A probable 0° crystal (Run 8-1) at 53.4
atm indicates that A(53.4atm) = 0.61 A (85 atm);
the 125. 8-atm curves suggest that A (125. 8 atm)
may be = 3/2 A (85 atm), but these numbers and
identifications should be confirmed by a complete
study of K(6, T) and K at these pressures before
being considered reliable.

B. Geometrical Region

The geometrical region of the thermal conduc-
tivity includes the boundary and Poiseuille-flow
regions discussed in Sec, II. Low umklapp con-
ductivities at 53.4 atm resulted in very low-
temperature peaks in the K -versus- T curve, and
no useful information was obtained on geometri-
cally limited conductivity atthis pressure. At
85 and 125. 8 atm, however, data were obtained
on both the boundary-limited and Pouiseuille-flow
regions, although the transition between them
lies nearly at the low-temperature limit of our
apparatus at these pressures. Not all crystals
displaying good (unsplit) umklapp conductivities
could be used for analysis in these regions, as a
crystal with a good umklapp conductivity some-
times displayed a split boundary and/or Poiseuille
region. The Poiseuille region was the most
prone to splitting, as expected by the relative
effect of small amounts of defects on a boundary-
limited and a Poiseuille-flow mean free path.
Small differences (less than 10%) in the conduc-
tivity of the two halves of a given crystal were
usually present at some temperatures in even the
best crystals, usually at and just below the peak
in the K -versus- T curve. For this reason only
crystals with conductivities matched to within
10% throughout the temperature range were se-
lected for analysis, and only the best half of each
crystal was used. While this procedure cannot
guarantee that a small uniform concentration of
defects may not still affect the results, it does
tend to eliminate crystals containing localized
concentrations of defects and crystals with large
numbers of defects. It was noted that, at a given
pressure, crystals meeting the above criterion
also agreed well with each other in the geometri-
cal region, despite large variations in the um-
klapp conductivity, whereas crystals showing
splits invariably displayed lower geometrical K-
versus-T curves than the values given by unsplit
crystals. The differences in boundary-limited
thermal conductivity between good crystals of
varying orientation may be accounted for by the
prediction of Eq. (9) that K in the boundary region
goes as ¢;~%. The relation K| >K) in the umklapp
region implies that cj >c, in agreement with
Nosanow and Werthamer, !” which implies that the
boundary K| should be less than the boundary K.
This prediction is borne out by the data in Fig. 3,
as all the crystals presented are considered to be
good single crystals. This relationship is also
qualitatively obeyed by the data on good crystals
at 125. 8 atm, although the range of angles is much
smaller in this case.

Finally, we note that the anisotropy in the bound-
ary region is very mild, particularly when com-
pared with the umklapp anisotropy of the same
crystals. This anisotropy at the lowest tempera-
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tures is consistent with the expectations given
above, but this fact could be fortuitous in view of
the possibility that small amounts of defects may
remain in some or all of these crystals.

In Fig. 6 we show the data on crystal 11-12
(d=2.68 mm, 6=90°) in the geometrical region
on a logK -versus-logT plot. The curve shows two
distinct slopes, with a slope of 3 at the lowest
temperatures and a slope of about 6 at tempera-
tures just below Ty 4%, the temperature at which
the peak of the thermal conductivity curve occurs.
The thermal conductivity at the lowest tempera-
tures approaches the prediction of Eq. (1) using
the Debye sound velocity, as expected in the
boundary region. The increased slope in the K -
versus- T curve below Tyax is characteristic of
Poiseuille flow. A logK -versus- logT plot was
prepared for each crystal to determine the tem-
perature dependence of the Poiseuille-flow ther-
mal conductivity, and straight-line fits to the
Poiseuille-flow data were made to determine the
exponent N in the expression Ka TN, A value of
N=5.75+0. 35 was found to cover both halves of
all good single crystals (unsplit in the geometrical
region) grown in the 2.68-mm-diam sample cham-
ber, with the higher values of N occurring at the
higher orientation angles §, where the Poiseuille
region in the data covers a larger temperature
range. Lower values of N were observed in the
smaller chamber, where low orientation angles
and low boundary-limited conductivities combined
to interfere with the Poiseuille-flow mechanism.

100 T T T T

Run 11-12

30

Log K (watts/cm °K)
o )

I I
-0.5 -04

= R Ry
Log T (°K)

FIG. 6. Thermal conductivity of Run 11-12, 6=90°.
The T° line is fitted to the data points; the T3 line is
calculated for the boundary region assuming a Debye
velocity of sound.

For crystals where Poiseuille flow is the dom-
inant mechanism in determining K in some tem-
perature region, it is possible to apply Eq. (2) to
the K data for the Poiseuille region and determine
7v and \y. Results of this analysis using the
parameters of Table I are presented in Table II.
We find that the data on crystals exhibiting a def-
inite Poiseuille-flow region (those grown in the
large sample chamber) can be represented by

xN(T, 85 atm)=(4.0+1.0)x107377% cm (14)
at 85 atm, and by

xN(T, 126 atm)= (7.7+0.7)X 10737 3 cm (15)
at 126 atm. These results are in good agreement
with the estimates of A\p/(T') obtained from the
analysis of second sound data and Mezhov-Deglin’s
Poiseuille-flow data by Ackerman and Guyer.
These authors obtain the rule

- -12 3
TN(T) =2x10 (GD/T) sec. (16)
At 85 atm this formula gives a =c 7y(85 atm)
=3.8x10737-% cm, and at 126 atm AN =CTN(126
atm)=6,7x10"37-% cm. The present data can be
represented by

7'N(T)=(2.1¢0.4)><10"2(9D/T)3 sec. (1)

There is no question that the present data are far
better than those available to Ackerman and Guyer.
Thus it is best to regard this earlier result as
lending support to the above calculations rather
than vice versa. The determination of 7y(T) by
Ackerman and Guyer relied very heavily on the
second-sound data. The confirmation of that de-
termination by the present experiment lends
strong support to the view taken by Ackerman and
Guyer in their analysis.

We further note that over the limited range of
pressures explored in this experiment the scaling
of Ty with 6p® is verified.

In Fig. 7 we have plotted TN=)\N/C from several
crystals at 85 and 126 atm as a function of the an-
gle 6 defined by the behavior of K in the umklapp
region. The 126-atm data, which are on large-
angle crystals, are plotted as open triangles.

The 85-atm data in the large sample chamber are
plotted as closed circles; the 85-atm data in the
small sample chamber are plotted as open circles.
Note that Poiseuille flow is not fully developed for
the points representing datain the small chamber,
as K versus T never exceeds about 7° for curves
taken in this chamber. There is some slight
evidence in this plot for an angular dependence to
7N. On the other hand, the velocity of sound is
known to be at least as anisotropic as the effect
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TABLE I. Parameters used in analyzing the data. The values of molar volume and of ©p, are taken from D. O.

Edwards and R. C. Pandorf, Phys. Rev. 140, A816 (1965).
cp=Kp GD/(GWZN) 1/3?1', where N is the number of atoms per unit volume.

185

The values for the velocity of sound are calculated from

Growth pressure (atm) 53.4 85.0 125.8
Molar volumes (cm®/mole) 19.47 18.31 17.36
GD(°K) 31.7 36.7 42.4
Debye sound velocity (m/sec) 338 384

TABLE II. Poiseuille-flow results. The values of Ay, A’, and T’ are obtained from the equation Ap(6p, T) =7\0/T3
“Graph error” represents the estimated uncer-

=A"©p/T)=cpt’ ©p/T)*, where TN(©p, T) is obtained from Eq. (2).
tainty in choosing the Poiseuille region values of K/T® from graphs of K/ T® versus 7.

Graph A A

Angle K/T® Ao A T error Peak BDY

Run deg) [W/em(CK"] (107 cm) (1078 em) (107" sec) %) (cm) (cm)

9-72 28 40.7 3.32 6.72 1.75 2.5 0.457 0.240b
10-232 38 41.0 3.30 6.68 1.74 2.4 0.477 0.225
10-242 36 40.7 3.32 6.72 1.75 1.7 0.466 0.227
11-1 7 80.0 3.87 7.83 2.04 2.5 0.784 0.315
11-3 61 77.6 3.99 8.07 2.10 1.9 1.016 0.331
11-4 14 80.0 3.87 7.83 2.04 1.2 0.802 0.326
11-7 82 71.5 4.33 8.76 2.28 2.1 1.277 0.289
11-12 90 61.7 5.01 10.13 2.64 1.0 1.201 0.291
11-14 78 31.2 7.70 10.10 2.32 1.0 1.111 0.296
11-15 85 28.7 8.37 10.98 2.52 2.8 1.116 0.287
11-18 72 34.3 7.01 9.20 2.11 0.9 1.110 0.303
11-19€ 72 32.8 7.34 9.63 2.21 1.5 1.019 0.295

2poiseuille flow not fully developed for these runs, made in small sample chamber.

leads to erroneously high A BDY’s.
bBoundary region not reached in this run.

Lack of fill capillary correction

CThis crystal may have a small concentration of defects.

1 1 1 N 1
Tu=T'(8,/T)%= 2%
261

T/(107'2 sec)
P
N D
T 1
HH
1 1

2
3
H

we observe. Since we have made on effort to ac-
knowledge this anisotropy in our calculations, we
do not feel that we can draw any conclusion about
the anisotropy in 7y. Residual defects may be
present in some or all of these crystals, and if
present would result in apparent values of 7y
higher than the true values.

In Fig. 8 we have plotted the K data in the geo-
metrical region from crystals grown at 85 atm in
sample chambers of two different sizes. The
open circles are data on a sample chamber 1. 77
mm in diameter; the closed circles are data on
In Fig.
The

1.8k ] a sample chamber 2.68 mm in diameter.

%‘ '§I 8 we have also plotted two auxiliary curves.
6 | L . , , open triangles in Fig. 8 are the data on the small-
~0 15 45 60 75 90 er sample chamber scaled up by the ratio of the

36
6, (degrees)

FIG. 7. Normal-process collision times. Note that
Poiseuille flow is not fully developed in the three runs
represented by open circles. The error bars represent
graphical uncertainties in selecting 6 and K/ T from
the data rather than errors in individual data points.

sample chamber diameters, (d,/d )=(2.68/1.77)
=1.51. The closed triangles in Fig. 8 are the
data on the smaller sample chamber scaled up by
the ratio of the diameters squared, (d,/d)?
=(2.68/1.7T77=2.29. We note that at lowest tem-
peratures the data on the two sample chambers
scale as d. At temperatures near Ty 5% they
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FIG. 8. Dependence of thermal conductivity on sample
chamber dimensions. O —Run 10-24, d_=0.1773 cm.
@ — Run 11-3, d,=0.2682 cm. V — (Run 10-24) X d,/dy).
¥ — (Run 10-24) x (dy/d )%

ol

scale as d?. This result is a confirmation of the
d® dependence of K in the Poiseuille-flow region
[Eq. (2)].

It should be noted at this point that the possibil-

ity exists that Poiseuille flow is not fully developed

in our larger sample chamber (d=2.68 mm), and
that repetition of this experiment with larger or
higher-quality crystals might lead to higher val-
ues of K o TN than N =6, as claimed by Mezhov-
Deglin® and predicted by Herring.® While this
possibility cannot be entirely ruled out, a num-
ber of points seem to indicate that this is not the
case. Our 2.68-mm-diam sample chamber is
larger than the 2.47-mm-diam chamber for which
Mezhov-Deglin reports his results. Our data are
highly consistent, both between halves of the
same crystal and from run to run in those crys-
tals believed to be good single crystals (see the
Appendix and Fig. 3). Our data are also quan-
titatively supported by the second-sound results
of Ackerman and Guyer which were obtained in
sample chambers with smallest dimensions of
7.7 mm or larger in which there were single
crystals filling most of their volume. Our large
sample chamber also seems to produce crystals
of minimum dimension approximately equal to
the sample chamber diameter as discussed be-
low.

In Figs. 9 and 10 we have plotted the thermal
conductivity mean free path, defined by

)\K=3K/Cvc R (18)

as a function of T for four crystals grown at 85
atm in the large sample chamber, Fig. 9; and
four crystals grown at 126 atm in the large sam-

1.5

T T

Pressure =

—
85 atm

T T T

365

e §=14°
o g:=61°
s g-82°
v §:90

X (cm)

€ 7 8
T (°K)

FIG. 9. Experimental mean free paths at 85 atm
in large chamber.

ple chamber, Fig. 10. The common character-
istic of these plots is that at lowest temperatures
Ak is approximately d (see Table II). This re-
sult is very satisfying in that it strongly suggests
that the low-temperature thermal conductivity is
limited by the sample chamber boundary and not
by some crystallite dimension. The crystals fill
the sample chamber singly in the transverse di-
rection and have a length at least equal to the di-
ameter of the sample chamber, At temperatures
near Tmax we find thermal conductivity mean free
paths of several centimeters (see Table II). For
example, in the 90° crystal at 85 atm in the large
sample chamber, Ag is approximately 1.5 cm.

T T T T T I T
Pressure =125.8 atm
a Q=72°
v §=72°
1.0} o g =78° .
°r * 6-85° 1
8
7._
/\'6—
€
L 5
~<
ar
®
3-° 35“
y D
2k 4
15 | | I I I i 1
: 4 5 .6 7 8 9 1.0 1l
T (°K)
FIG. 10. Experimental mean free paths at 125.8

atm in large chamber.
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This means that the crystals we have grown are
at least 1.5 cm long. Further the fact that the
umklapp conductivity is unsplit suggests that they
may be at least as long as the spacing between the
extreme thermometers, approximately 5 cm.
Mezhov-Deglin’s best crystal MD-I has a maxi-
mum mean free path of about 1 cm (see Fig. 3 of
Ref. 6). It is clear from Fig. 9 that the amount
of Poiseuille region observed for a given crystal
depends strongly on angle, hence our most recent
efforts have been directed toward growing high-
angle crystals.

In Fig. 11 we have shown an experimental mean-
free-path diagram.

We note that the 7° temperature dependence
which we find for 7)y~! does not agree with the ex-
pectations of theory. For example, for

‘V‘3’|2ml§1| |§z|l§3|5(311+52+53), (19)

where V® is the cubic anharmonic coefficient in
the potential energy, we have T~ T°,2° We
have oriented our efforts in this paper toward a
quantitative description of the results of the ex-
periment., The description has been in terms of
the relatively simple view of the heat transport
process which is summarized in the equations of
Sec. II. Within this framework we find 7y™" o T3,
This is the strongest claim we would like to make
in this paper. We are somewhat puzzled by this
result. But (a) we are not sure that in a quantum
solid the three-phonon process obeys Eq. (19)
and/or that only it contributes to 757*, and (b) we
would not be surprised if as Poiseuille flow ap-
proaches boundary scattering a modification must

Lol

T T

T TTTTTT

Lol

o
T T T TTTT

Ll aaal

Pressure =85 atm

.001 L 1 L L
2 4 6 .8 1.0
T (°K)
FIG. 11. Experimental mean free paths at 85 atm.
Data points for Aexpt are from crystal 11-12, 6=90°.

D is sample chamber diameter. The Ay lines are from
Eq. (10) and (11). The Ay line is from Eq. (14).

L
1.2 1.4 1.6

be made of the physical explanation of the con-
ductivity process, i.e., Eq. (2) must be modified.
Thus our present view is that the 7 which we
have obtained is by far the soundest piece of in-
formation presently available on the behavior of

™
C. Peak Region

In the preceding, we have dealtwith each mech-
anism controlling the thermal conductivity in a
region of the experimental data in which the
mechanism in question is dominant. The next
logical step is to attempt to construct theoretical
fits to the data in the region where more than one
mechanism may be important in determining the
thermal conductivity. Since the bulk of our tem-
perature range lies in the region where the
Ziman limit (\jy <\g) is valid, we shall present
the results of fitting our data to Eq. (4). This
procedure is valid for predicting thermal con-
ductivity values over the peak of the K -versus-T
curve.

We have used Eq. (4) to calculate K(T) at 85
atm: (1) for a 90° crystal in our large sample
chamber, d=2.68 mm, and (2) for a 90° crystal
in Mezhov-Deglin’s small sample chamber,’
d=1.60 mm. To perform these calculations we
use Eq. (2) in the form

- 2
K,=%C, d*/1, . (20)

Note that p in the G(u) term is now given by

where K is given by Eq. (3), and that Eqs. (10)
and (11) permit the calculation of K for any
temperature and crystal orientation.

For the 90° calculations we have used Kz=K)
as given by Eq. (10). For Kp at 90° we have

KP(90°) =860d°T® W/cm °K . (22)

The results of these calculations are shown in
Fig. 12 as the solid curves labeled 1 and 2. As
expected, the two 90° curves (1 and 2) tend to
mesh at high temperatures. At low temperatures
the 90° curves are related by a factor of (2. 68/
1.60)?. The dashed curve 1’ represents K5 alone
for 6=90°,

On the same figure we have plotted a number of
sets of experimental data; our curve 11-12
(6 =90°) and the curves labeled “a” and “b” from
Fig. 2 of Mezhov-Deglin (Ref. 7). The notable
features of the theoretical curves are:

1. The data from Run11-12 (the closed circles)
fits the theoretical curve K(2.68 mm, 90°) very
well over the peak. Itis expected to fit well at
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FIG. 12. Fitting of thermal conductivity data over
peak of curve. Dashed curve 1’ is from Eq. (10). Solid
curves are obtained from Eq. (4) as described in the
text.

high and low temperatures, since this data sup-
plied the parameters used in constructing the
curve, but the fit over the peak suggests both that
the Ziman limit equation (4) is correct, and that
our data are consistent with it. If the data near
the peak were depressed because of the presence
of isotopic or chemical impurities, K computed
from Eq. (4) would rise above the experimental
curve. We take the agreement of the experimen-
tal and computed curves near the peak as evidence
that there is no significant concentration of im-
purities or defects in the sample. Similar com-
putations were made for our other good 85-atm
crystals using values of Kp obtained from the
low-temperature data on each curve, and similar
agreement was obtained between theory and ex-
periment over the peaks of the curves.

2. The data from Mezhov-Deglin’s “a” crystal
(the open triangles) are those of his “best of group
I” crystal, and go far above the computed curve
over the peak. The computed curve 1 has a max-
imum conductivity of about 23 W/cm°K as do our
data. Mezhov-Deglin’s crystal, having a diameter
of 2.47 mm compared with our 2.68 mm, has a
peak conductivity of about 50 W/cm°K. Since the
low-temperature points for Mezhov-Deglin’s crys-
tal lie close to ours, and the umklapp curves
should be identical for the same growth pressure,
we would expect his data to yield a calculated
curve very similar in magnitude and peak shape
to ours. Thus a discrepancy exists between
Mezhov-Deglin’s “a” crystal data and the predic-
tion of Eq. (4).

3. The data from Mezhov-Deglin’s crystal “b”
(closed triangles) should follow curve 2, since it
is a 90° crystal in a 1. 60-mm sample chamber.

The data seem to follow the curve above Tpax,
but fall below curve 2 below the peak. Quite prob-
ably this is due to defects remaining in the crys-
tal.

As a consequence of this analysis, we believe
that while the data of Mezhov-Deglin may be qual-
itatively correct, they cannot be used for detailed
quantitative analysis. We also believe that the
data from the present experiment are internally
self-consistent and of sufficient quantitative ac-
curacy to permit some confidence in the numer-
ical results presented in the previous sections.

There is an alternative way to represent these
results. By calculating K(T,d, 6) from Eq. (4),
it is possible to get Kipax as a function of Tmax
for fixed d and varying 6. Such a curve is shown
in Fig. 13. The five crystals of d=2.68 mm,
pressure =85 atm, that we have used as good sin-
gle crystals have their Kp,5¢x-Tmax regions in-
dicated by the dark areas. A region is required
because Kmax-Tmax is not a single point unless
the crystal is absolutely unsplit, and even our
“good” single crystals can display slight splits at
the peak of the K-versus-T curve. These dark
areas fall on the Ky ax-Tmax line computed from
Eq. (4). It is suggested that such a curve is a
simple test of crystal quality. Those of our crys-
tals that for one reason or another we do not clas-
sify as good single crystals have Kpax-Tax
regions lying below this line. On the same figure
we have indicated the Ky, 5x-Tmax points for each
of the five crystals discussed by Mezhov-Deglin
(Ref. 7), and none of them fall near the appro-
priate line.

100
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Kmax (watts/cm °K)
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06 0.8 10 (]
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FIG. 13. K, versus T .. for varying orientation
6 at 85 atm. The solid rectangles are the peak regions
of our good single crystals grown at 85 atm. The let-
tered points are the 85-atm crystals of Mezhov-Deglin
(Ref. 7).
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D. Comparison with Mixture Results

Recently, there have been four separate at-
tempts to employ the Callaway equation® to an-
alyze thermal conductivity data on solid He3-He*
mixtures.'* 22724 Since the lattice distortion
+ mass fluctuation?’ scattering cross section o is
not known, the analysis must fix one more than
the usual number of parameters. The steps fol-
lowed are: (1) Data on an isotopically and chem-
ically pure crystal are analyzed to find consistent
sets of parameters which characterize normal
process and umklapp process scattering; (2) Fur-
ther data on isotopically disordered solid mix-
tures are analyzed to fix the set of N-process and
U-process parameters and the strength of the
mass fluctuation + lattice distortion scattering.
Rogers el al.?? have analyzed data on four con-
centrations, each at filling pressures of 60, 90,
and 140 atm. They found for all three pressures

~ - 15 4
TN(T)~5X10 (eD/T) sec. (23)
Bertman et al.'® analyzed mixture data on five

concentrations at 19. 5 cm3/mole (thus the pres-
sure varies with concentration) and found

-rN(T)z 2 ><10-15(eD/T)5 sec. (24)

Agrawal®! has analyzed the 20. 2-cm3/mole data
of Bertman et al. He finds

(T)-~2><10“5(6D/T)5 sec. (25)

N
Most recently, Berman ef al.?3 have analyzed

measurements on mixtures at four higher pres-
sures, 190, 250, 800, and 1725 atm; they find

'rN(T)=3><10"‘6(9D/T)5 sec. (26)

From the point of view of mass defect scattering,
the recent results of Berman ef al. are most sat-
isfactory. They find that as the pressure of the
solid is raised, the strength of the mass fluctua-
tion + lattice distortion scattering approaches the
strength expected for mass fluctuation scattering
alone. Their results are in excellent qualitative
agreement with the prediction by Klemens et al. ?¢
They are in good quantitative agreement with a
recent calculation of Guyer.?’

Three independent direct measurements of 7
have been made. (1) The data of Mezhov-Deglin
on Poiseuille flow in sample chambers of several
diameters and at four pressures.5=7 (2) The sec-
ond-sound data of Ackerman and Guyer.'® (3) The
Poiseuille-flow measurement discussed above.
The data of Mezhov-Deglin and Ackerman and
Guyer have been analyzed in Ref. 18 and 7z/(T)

185

was determined to be given by

= -12 3
TN(T)—ZXIO (eD/T) sec. (27)
The data exist in the temperature range 1.2x10°2
<T/ep<2x10-%, and therefore fix 7)y at T~ 0.6
to 0.8°K at a pressure of 85 atm. The present-
experiment yields

TN(T) =(2.1£0.4) ><10'12(6D/T)3 sec, (28)

which is in good agreement with the result above,
Eq. (27).

Thus the magnitude of Ty/(T') at temperatures just
below the low-temperature maximum is well es-
tablished. The dependence on (6p/T)? is con-
sistent with the data, but not defined by it.

None of the 7)(T) from the Callaway analysis of
mixture data agree with the direct determination
of 7p(T). The recent results of Berman et al.
most closely approach the directly measured val-
ues in the relevant T range.

We have employed the Callaway equation in an
attempt to fit the mixture data at 140-atm filling
pressure of Rogers et al.?? using 7p(7T) as de-
termined by us above. In this analysis, the form
of the Callaway equation suggested by Guyer and
Krumhans)? was used, i.e.,

e [ ) ()
K=5Cyc [TR i.5)*r (13s)F @

where 757! = 7,7 + 717! =Aw* is the mass fluctua-
tion + lattice distortion scattering rate and S
=7N(T)/ 7K. Now

TRK - _f;wA(x)TR(x)dx/ i “Alx)dx,
and

TRZ ([ A/ [7 AT 0o,

where A (x) =x%4e¥/(e¥ +1)2 and x=hw/KgT. We
may therefore use the experimentally determined
7N(T) directly in the analysis without having to
unravel its @ and T dependence. Further, we
have used the polycrystalline average of the
umklapp scattering rates, since the samples
studied by Rogers et al. were formed by the
blocked capillary technique. In particular, we

took
37, (w, )T (w, T)
7 (w T)= 1 Il
v’ 27'”(w, T)+T_L(w,T) ’
where

- 1 . o
7 (w, T)=1.82X10 11T1_3__2614 KT

3

=
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and

10 1 17.9°K/T
—z €

X

(@, T)=1.05x10" sec,

1
T3
T being in °K.

The results of this analysis were not entir~ly
satisfactory. The data at T<2°K were fit reason-
ably well for a scattering strength having the cor-
rect concentration dependence, but about an order
of magnitude greater than that found by Berman
et al. However, this scattering strength was
about a factor of 2 too strong to fit the data at T
> 2°K. In the range T'<2°K, the fit was of the
same quality as that found by Agrawal for the
20. 2-cm?® mole data.

We have also attempted to fit the mixture data
by inserting an extra factor (0.7/7)" in Eq. (28)
for TN(T), on the assumption that the Poiseuille-
flow data, although they give the correct magni-
tude for 7x(T), do not display the correct tem-
perature dependence. All of the higher-power
laws, T%7° yield far worse fits than the 7° from
Eq. (27).

As a consequence of the unsatisfactory nature
of these attempts to fit the mixture data, we must
conclude that we are unable to reconcile 7 N(T)
obtained from Poiseuille-flow measurements with
the Callaway analysis of the mixture data.

E. Comparison with bec He?
We have shown that the thermal conductivity of

hcp He* in the umklapp region is highly anisotropic
and must be described by the tensor

K.L 0 0
thp~ 0 Kl 0 |, (30)
0 0 K

where K |"'=A | exp(-a;/T)and K" ' =A | exp(-a)/
T),A1=9X10% A;j=4X103 g, =14, 2,a;="1.9 for a
crystal grown at a constant pressure of 85 atm.

The anisotropy of the thermal conductivity of
hep He* is explained microscopically by noting
that: (a) The thermal conductivity is proportion-
al to an average of the umklapp scattering rate

weighted in the direction of the heat current by a
factor cos?6; (b) there are essentially two groups
of phonons participating in the conduction process,
a high-energy group and a low-energy group.
When the heat current is propagated perpendicular
to the ¢ axis, the spatial weighting favors the high-
energy phonon group; heat currents parallel to
the ¢ axis are carried by the low-energy phonon
group.

The phonon spectrum of bec He® is like that of
other bce crystals.!” Thermal conductivity of
bee He? is not anisotropic, since the crystal is
cubic. Nonetheless we suggest that two groups
of phonons participate in the conduction process
independent of the direction of the heat current.
Since the Ziman limit obtains for the conduction
process, the two groups of phonons contribute to
the thermal resistivity additively

-1 _ g -1 -1
Kbcc —K> +K< . (31)

In analogy to the hcp case, we write for each
group, K, ~“'=A, .exp(-as ./T). Bertman
et al.'* have analyzed their bcc He® thermal con-
ductivity data using Eq. (30), and find K 57"
=2x 10%exp[-(14/T)]and K.™* =2 x10% exp[- (4/7).
There exist in the phonon spectrum of hcp He*
variations (i.e., two phonon groups) which give
rise to K| and K, of Eq. (30). It is not unlikely
that qualitatively similar variations occur in the
phonon spectrum of bcc He® which give rise to K,
and K_of Eq. (31). We take the quantitative
agreement, A_~A4); and A,*A4 and a_=a) and
a,=a) as evidence that this assertion is correct.
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APPENDIX

The following tables contain representative data from which the numbers in Table II and the conclusions

in the text were obtained.
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Run 8-1

Sample diameter 0.1773 cm,

growth rate < 1 em/h,

growth pressure 53.4 atm,

orientation angle 0°.

Run 10-2

Sample diameter 0.1773 cm,

constant volume growth,

molar volume 18.31 cec/mole,

polycrystalline sample.

Run 10-10

Sample diameter 0.1773 cm,

growth rate 3.00 cm/h,

growth pressure 85 atm,

orientation angle 0°.

K T K T K T

(W/em °K) °K) (W/cm °K) °K) (W/cm °K) °K)
0.0073 1.733 0.076 1.528 0.038 1.563
0.0096 1.630 0.115 1.427 0.054 1.463
0.0121 1.555 0.185 1.330 0.081 1.363
0.0179 1.430 0.306 1.234 0.129 1.262
0.0254 1.331 0.540 1.136 0.227 1.158
0.0383 1.233 0.966 1.040 0.436 1.055
0.0620 1.136 1.27 0.993 0.629 1.003
0.107 1.042 1.61 0.946 0.919 0.951
0.198 0.952 1.90 0.900 1.37 0.899
0.278 0.909 2.03 0.856 1.95 0.850
0.407 0.865 1.96 0.813 2.42 0.804
0.631 0.818 1.76 0.774 2.55 0.760
0.882 0.783 1.51 0.738 2.32 0.720
1.36 0.738 1.17 0.686 1.91 0.684
1.77 0.704 0.973 0.653 1.57 0.652
2.12 0.670 0.818 0.623 1.29 0.624
0.952 0.775 0.705 0.598 1.08 0.600
1.84 0.698 0.591 0.570 0.740 0.548
2.26 0.635 0.506 0.542 0.502 0.497
2.08 0.605 0.413 0.512 0.337 0.443
2.04 0.598 0.333 0.478 0.242 0.396
0.279 0.451 0.192 0.364

0.214 0.412

0.189 0.392

0.162 0.369
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Run 11-1

Sample diameter 0.2682 cm,

growth rate 1.3 cm/h,
growth pressure 85 atm,
orientation angle 7° +4°.

Run 11-3

Sample diameter 0.2682 cm,

growth rate 2.2 cm/h,
growth pressure 85 atm,
orientation angle 61° + 2°.

Run 11-4

Sample diameter 0.2682 cm,

growth rate 1.5 cm/h,
growth pressure 85 atm,

orientation angle 14° +3°.

K T K T

(W/cm °K) (°K) (W/cm °K) (°K) (W/cm °K) (°K)
0.044 1.528 0.090 1.527 0.045 1.529
0.064 1.428 0.148 1.427 0.065 1.429
0.096 1.331 0.251 1.330 0.099 1.331
0.155 1.233 0.454 1.233 0.160 1.233
0.283 1.130 0.901 1.132 0.290 1.131
0.562 1.031 1.95 1.030 0.581 1.032
0.839 0.982 3.00 0.979 0.848 0.984
1.29 0.934 4,62 0.931 1.31 0.936
2.08 0.884 6.92 0.883 2.12 0.886
3.44 0.835 9.83 0.837 3.47 0.837
5.45 0.786 11.9 0.790 5.44 0.788
7.23 0.742 11.7 0.747 7.20 0.744
7.37 0.699 8.96 0.705 7.63 0.702
6.09 0.659 6.76 0.666 6.36 0.662
4.51 0.621 4.79 0.631 4.74 0.625
3.32 0.587 3.61 0.599 3.46 0.592
2.09 0.540 2.72 0.571 2.79 0.570
1.34 0.493 2.05 0.541 2.09 0.541
0.873 0.447 1.57 0.513 1.58 0.513
0.606 0.402 1.21 0.485 1.24 0.485
0.467 0.378 0.929 0.457 0.956 0.457
0.733 0.430 0.740 0.430

0.599 0.403 0.634 0.405

0.534 0.377 0.486 0.378
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Run 11-7 Run 11-12 Run 11-18
Sample diameter 0.2682 cm, Sample diameter 0.2682 cm, Sample diameter 0.2682 cm,
growth rate 2.76 cm/h, growth rate 3.5 cm/h, growth rate 1.43 cm/h,
growth pressure 85 atm, growth pressure 85 atm, growth pressure 125.8 atm,
orientation angle 82° +3°. orientation angle 90°. orientation angle="72°.
K T K T K T
(W/em °K) °K) (W/cm °K) (°K) (W/cm °K) (°K)
0.130 1.527 0.137 1.529 0.540 1.529
0.239 1.427 0.258 1.429 1.01 1.429
0.470 1.330 0.524 1.334 1.93 1.333
1.03 1.233 1.18 1.239 3.95 1.230
2.55 1.132 3.30 1.136 8.34 1.129
6.36 1.035 9.25 1.037 15.2 1.033
9.99 0.985 14.7 0.988 16.7 0.987
14.7 0.939 20.5 0.942 17.3 0.942
19.8 0.894 22.7 0.896 14.7 0.898
21.0 0.850 20.4 0.851 12.3 0.855
18.4 0.806 17.0 0.808 8.44 0.804
14.3 0.766 12.6 0.768 5.63 0.748
10.7 0.727 9.41 0.729 4.04 0.706
7.96 0.691 6.84 0.694 2.97 0.668
5.75 0.659 5.34 0.662 2.23 0.632
4.39 0.629 4.01 0.629 1.73 0.600
3.35 0.600 3.03 0.600 1.39 0.570
2.52 0.571 2.32 0.571 1.12 0.542
1.93 0.543 1.81 0.542 0.916 0.513
1.48 0.515 1.40 0.514 0.739 0.483
1.16 0.486 1.08 0.485 0.609 0.455
0.894 0.459 0.850 0.458 0.507 0.427
0.687 0.431 0.672 0.430 0.422 0.401
0.546 0.404 0.529 0.404 0.363 0.378
0.431 0.379 0.458 0.377
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The transport coefficients of a normal Fermi liquid in the extreme low-temperature limit
and the leading finite-temperature contributions to the transport coefficients are studied

using the quasiparticle transport equation.

The scattering amplitude for quasiparticles on

the Fermi surface is expressed in terms of Landau parameters, using an approximation
which takes into account s- and p-wave scattering; the calculated values of the transport
coefficients in the extreme low-temperature limit for liquid He® are shown to be in good

agreement with the experimental values.

Finite-temperature contributions to the trans-

port coefficients are expressed in terms of the solution of the transport equation in the
extreme low-temperature limit, and explicit calculations are performed for the case of
liquid He®, Assuming Landau parameters with [ =2 vanish, an estimate of the Landau
parameter F¢ for liquid He® is obtained by comparing the theoretical and experimental
values of the leading finite-temperature contributions to the transport coefficients.

I. INTRODUCTION

Recent experimental work on the transport prop-
erties of liquid He® and dilute mixtures of He® in
He* has led to renewed interest in the problem of
solving the quasiparticle transport equation and of

determining the quasiparticle scattering ampli-
tude. Historically, the first method of solving
the transport equation was that of Abrikosov and
Khalatnikov, ! who calculated the limiting low-
temperature behavior of the coefficient of thermal
conductivity K and the coefficient of viscosity 7.



