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A systematic approach to the construction of upper and lower bounds for transport coeffi-

cients is presented for systems described by a linearized Boltzmann equation. The useful-
ness and efficacy of the bounds is tested by applying them to a particular Boltzmann equation
whose solution is known. One easily calculable bound is found to differ from the exact result
by less than 0.03%.

I. INTRODUCTION

The coefficients describing transport phenomena
like viscosity, diffusion, and conduction of heat
or electric charge are determined by a Boltzmann
equation which is a linear inhomogeneous integ-
ral equation. Of course, such an equation can
only be solved exactly in very special cases, and
generally one has to rely on other methods in
order to calculate transport coefficients from the
Boltzmann equation.

It is a cherished' topic of transport theory that
the Boltzmann equation is equivalent to a vari-
ational principle from which one can determine
lower bounds on transport coefficients like elec-
trical and thermal conductivity. That there also
exist principles' which lead to upper bounds for
the same transport coefficients is largely un-
known. Recently, variational principles for a
class of integral equations (which include the
linearized Boltzmann equation} have been dis-
cussed by several authors. '~ 4

In this paper, we show how a variety of bounds
arise from simple applications of the Schwarz
inequality. By applying these bounds to a non-
trivial Boltzmann equation, whose solution is
known, we discuss their relative usefulness and
efficacy. The particular Boltzmann equation is
that of a Fermi liquid with particle-particle scat-
tering as the relaxation mechanism. Recently, '
the bounds have been applied to this Boltzmann
equation with impurity scattering included in ad-
dition to particle-particle scattering.

In Sec. II we derive the variational principles for
a class of integral equations. Section III contains
the application to the calculation of transport
coefficients in a Fermi liquid at very low tempera-
ture. The results are compared with exact ex-
pressions for the coefficients, which have re-
cently' been obtained (Appendix C). In Appendix
A, we sketch Synge's geometrically intuitive
formalism of reciprocal variational principles. '

We also discuss their significance in terms of
an electrical network analogy for the Boltzmann
equation. In Appendix B, it is shown how the
Boltzmann equation for a Fermi liquid may be
reduced to a one-dimensional integral equation.
Appendix C contains the exact solution of this
equation. Connection with Emery's treatment' of
this equation is given in Appendix D. Further
special points are treated in Appendixes E and F.

II. VARIATIONAI. METHODS

Q, B}=J „dt's(t)a(t)=(a, w),

the symmetry property of H implies

(A, HB) = (B,HA), (2. 2)

In this section we discuss the variational meth-
ods in a general context, since they may in prin-
ciple be applied to linear inhomogeneous integral
equations other than the (linearized) Boltzmann
equation. We shall, however, make frequent
reference to the application to transport theory
in order to prepare for the discussion of a speci-
fic example in Sec. III, namely, that of the lin-
earized Boltzmann equation for a Fermi liquid.

We apply variational methods to the solution of
linear inhomogeneous integral equations of the
form

X(t) =y(t)q(t) n f „&t'F(t—, t') 0(t')
=ffq(t). (2. I)

Here, the unknown function is Q(t), whereas X(t),
f(t), and the kernel F(t, t ) are all known (real)
functions of the real variables t and t . We re-
strict ourselves to considering symmetric ker-
nels, i. e. , F(t, t ) =F(t, t). The parameter o
might have been included in the kernel, but we
prefer to exhibit it to make the connection with
Sec. III as direct as possible. The second line of
(2. 1) defines the (real) symmetric integral opera-
tor H. In the convention
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T= f dfX(f)q(f) = (X, q). - (2. 3)

for arbitrary A and B. Everywhere in the fol-
lowing we assume that H is either positive or neg-
ative semidefinite, which is equivalent to assum-
ing that its eigenvalues are all positive (or zero)
or all negative (or zero). The integrations al-
ways run from -~ to +~.

It is shown in Appendix B, that the Boltzmann
equation for a Fermi liquid may be reduced to
the form (2. 1). In that case, t is an (reduced)
energy variable, and Q(t) is related to the devia-
tion from local equilibrium of the distribution
function. The inhomogeneous term X(t) arises
from the driving term of the Boltzmann equation
(caused, for example, by a temperature gradient),
whereas the whole of the right-hand side of (2. 1)
is the result of appropriate simplifications of the
collision integral.

The thermal conductivity, viscosity, and spin-
diffusion coefficients of a Fermi liquid can be
shown (see Appendix 8) to be proportional to a
reduced transport coefficient T defined by

of the normalization of the trial function V(f). "o

When H is negative semidefinite, the inequality
(2. 6) becomes simply reversed, that is,

T = (Q, X) ~ (U, X)'/(U, HU). (2. 7)

H= J+L . (2. 8)

The operator H is then defined by

H = (HJ —1)H = L+LJ (2. 8)

Since the existence of a lower bound (2. 6) only
depends on H being positive semidefinite, one
might hope to obtain other (lower and upper)
bounds on T by rewriting the integral equation
HQ =X in a form H Q =X such that H differs from
H but fulfills the requirement of symmetry and
positive (or negative) semidefiniteness.

This may in fact be achieved in the case where
H may be written as the sum of two symmetric
positive semidefinite operators J and L, one of
which (J, say) possesses an inverse J '

Let us assume that the integral operator H is
positive semidefinite, so that all its eigenvalues
are positive or zero. Then for an arbitrary func-
tion U(f) and arbitrary parameter X

((Q- Xv), H(Q —Xv)) & 0. (2. 4)

Using the symmetry property of H, we get

(q, Hq) —2~(v, Hq) + x'(v, Hv) o. (2. 5)

The left-hand side of (2. 5) is a minimum, when
X=(U, HQ)/(U, HU). With this value of X, the in-
equality (2. 5) becomes the Schwarz inequality

(q, Hq)(v, Hv) - (v, Hq)',

Instead of attempting a direct solution of the in-
tegral equation, we shall derive various upper and
lower bounds on the (reduced) transport coeffi-
cient T.

As mentioned in Sec. I, the lower bound on T
(first used in transport theory by Kohler) has re-
ceived a great deal of attention in the literature.
This bound can be thought of as arising from a
Schwarz inequality being applied to the basic in-
tegral equation HQ =X. ' We shall therefore de-
rive it by a traditional proof of the Schwarz in-
equality.

A. Upper and Lower Bounds

the second line showing that K is positive semi-
definite and symmetric. Applying the operation
(HJ ' —1) to th-e integral equation HQ =X, leads
directly to the desired form

H Q=(HJ '-1) X=X . (2. 1O)

The Schwarz inequality (2. 6) implies the existence
of a lower bound on (Q, X ) and hence an upper
bound on (Q, X). In terms of the original H and
X this bound is seen to be

V HZ-'-IX
t

If the positive semidefinite H can be written as
a sum of a positive definite J (possessing an in-
verse) and a negative definite L, then H becomes
negative semidefinite (a proof of this is given in
Appendix F). As a consequence, the inequality
(2. 11) becomes reversed

We now list various ways of decomposing H in
the sense of (2. 8). As we discuss the resulting
bounds, we shall point out their connection to
previous work.

(1)J=a, L =H —a, where a is the smallest pos-
itive eigenvalue of H. " Clearly J and L are pos-
itive semidefinite and the inverse J ' =a-' exists.
From (2. 11), we get, upon substitution, the upper
bound

or, since HQ=X,

r=(q, x) -(v, x)'/(v, Hv) . (2. 6)

This lower bound on T is seen to be independent

~=(Q, X) ~— (X, X) — ' . (2. 12)a '
(U, (H —a)HU) g

Of course, a could be a number less than the
smallest positive eigenvalue in cases where this
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was not immediately known. If H is negative def-
inite, we subtract the largest (negative) eigen-
value and get just the reversed inequality of (2.12}.

(2) d =f, I. = - o,F, where f is the function f(t),
and the operator E is defined by

Fv= J dt F(t, t )U(t ).

Both f and F are assumed to be positive semi-
definite. It follows that H is positive semidefi-
nite for z &0 and negative semidefinite for o&0.
Inserting these choices in (2. 11), we get

(f 'X, Fv}T» (X,f 'X)+,
(V FV)' (~,FU FV), (2. )

for o &0. If o &0, the inequality sign in (2. 13)
becomes reversed. When n =0, the bound (2. 13)
is simply the exact result since the exact solution
of the integral equation (2. 1) with n = 0 is Q(t)
=f '(t)X(t) "

(3)j= c, I. = o G, where c is the function

c(t)=f(t}—o f dt~F(t, t ),

X(t)=I(t)+ fdt I(t, t ),

where I(t) =c(t)Q(t), and the antisymmetric

I(t, t') =nF(t, t')[Q(t) —Q(t')] .

As in the previous example (3), we have

(2. 15)

c(t)=f(t) —n fdt F(t, t ) .

In terms of (I(t); I(t, t )), the exact transport
coefficient T is

We have here introduced the notation

((A, B)) = fdtA(t)B(t)/c(t)

+-.'f fdtdt [A(t, t')B(t, t')/c F(t, I')]

inequality. The basic integral equation (2. 1}may
be written

and the symmetric positive semidefinite operator
6 is defined by

GV = f d'tF(tt')(U(t) U(t'—))

for any two pairs of functions (A(t); A(t, t )) and
(B(t); B(t, t )). Provided c(t) &0 and ~F(t, t ) &0,
we have for any pair of functions (S(t);S(t, t ))

[As in (2), f and F are assumed to be positive
semidefinite. ] Provided c(t) &0 [which, since
fdtF(t, t ) &0, is certainly the case for negative
o, , but may also hold for some positive n], we
obtain the bound

((s, s)) 0.

In particular,

((I-s, f-s))o-0,

(2. 17)

T = {X,Q) - JdtX'(t)/c(t)

fdt fdt F(t, t')(U(t) —V(t'))

2
x Jf F(t, t')(v(t)-v(t'))

-1
+ J' '

[fdt F(t, t')(U(t) —U(t'))]

for z &0. For z &0, the inequality sign in (2.14)
is reversed, and for z =0, we recover the exact
result as before. The bound (2.14) is a special
case of the more general type of bound derived
in Ref. 3, to which we shall direct our attention
in the next paragraph. It is, however, a highly
useful special case and in fact the only bound of
this more general type we have had occasion to
use in the application to the Boltzmann equation
of a Fermi liquid.

The derivation of this more general bound due
to Prager and Strieder' proceeds in a slightly
different manner from the previous ones, but as
we shall see the result is again simply a Schwarz

or ((I,I)) —2((I, S))+ ((S,S))» 0 . (2. 18)

p'rom the inequality (2. 18), we observe that we
can get an upper bound on 7 = ((I, I)) by choosing
trial functions (S(t); S(t, t )) such that ((I, S))
= ((I, I)). This is achieved under the conditions
that S(t, t ) is antisymmetric [like I (t, t )] and
that

s(t)+ J's(t, t')dt'=x(t) (2. 19)

[cf (2. 15)]. The con. dition (2. 19) and the anti-
symmetry of S(t, t ) together ensure that

((~, ~)) =((~, s)),

so that from (2. 18) we get the upper bound

(2. 20)

v'=((I, I)) & ((s, s)),
s' t)or T& fdt + ,'f fdtdt'—

(2. 21)

(2. 22)

provided that the antisymmetry condition and
(2. 19) are satisfied. The trial function S(t) may
be eliminated by virtue of (2. 19) so that the upper
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7'- fdtX'(t)/c(t)

—[fdt[x(t)/c{t)]fs(t, t'}dt')2

xf„,' f fd-t dt' s'(t, t')/~F(t, t')

+ fdt[c(t)] '[fdt S(t, t')]')-' . (2. 23)

Like the other bounds, (2. 12)-(2.14), and (2. 6),
this expression is explicitly independent of a con-
stant multiplying S{t,t') Inequ. ality (2. 23) is due

to Prager and Strieder. ' With the special choice

s(t, t') =F(t, t')[U(t} —&(t')]

it reduces to (2. 14).
If, as in many applications, c(t) is identically

zero, (2. 19) and (2. 22) still aPPly, Provided the

terms containing I(t) and S(t) are left out. The
bound (2. 23), however, has no meaning in this
case.

Finally, the connection between (2. 22) and the

Schwarz inequality can be made. In the notation
of Appendix A, we write ((I, S))= I ~ S and ((I, I))
= lI [ . The condition (2. 20) then becomes )I [

= I ~ S/il [, and the inequality (2. 2I) may be writ-
ten as the Schwarz inequality lI ~ Sl ~ lI l lS l.

bound contains only one trial function S(t, t ). To
ensure that the bound is as small as possible, we
substitute everywhere in it ps(t, t ) for S(t, t )
and minimize with respect to the constant p, . The
resulting minimum upper bound is

f(t) =v'+t', and F(t) = —,'t/sinh ,'t . — (3. 2)

T = fdtX(t)Q(t) (3.3)

The solution' of (3. 1) can be determined as a
function of o. in terms of a rapidly converging
expansion. For the sake of completeness this
solution is included in Appendix C. In the present
context we shall only state the result for the (re-
duced} thermal conductivity K

K = —,
' (l2 —v')

2n+1 1
n'(n + 1)' n (n + 1)- n

~ ~ ~

(3.4}

The convergence is so fast that it is sufficient for
most purposes to include only the first term with

n = 2. A simple approximate form for the (re-
duced) thermal resistance is

I/A = 1.41 [1—o, /(7. 7 —0. 3n)] . (3.3}

Finally, z is a ratio of two angular averages of
the collision probability se. Both the angular av-
eraging and the collision probability itself, are
in principle, different for each of the three trans-
port processes considered. An actual calculation
of n requires knowledge of the interaction between
the quasiparticles in the Fermi liquid. In the
following, we shall consider z to be a known pa-
rameter which reduces the problem of calculating
transport coefficients to that of solving (3.1) and
inserting the solution in

III. BOLTZMANN EQUATION OF A FERMI LIQUID

Ne now proceed to apply the bounds of Sec. II
to the Boltzmann equation of a Fermi liquid. In

Appendix 8, it is shown how this equation may be
simplified to the following linear inhomogeneous
integral equation of the form (2. 1):

x(t) =f(t)Q(t) —n fdt'F(t t')Q(t'). - (3.1)

Here Q(t) is related to the deviation from local
equilibrium of the distribution function. The in-
tegration over the (reduced) energy variables t
and f always runs from —~ to + ~. The inhomo-
geneous term X(t) in (3. 1) originates from the
total time derivative of the distribution function
(the driving term), whereas the right-hand side
of (3. 1) arises from the collision integral.

For the case of thermal conductivity X(t) is t/
cosh , t whereas it is (cos—h—,'t) ' in the case of
viscosity and spin diffusion. The functions f(t)
and F(t) are even and positive and in all three
cases given by

Q(t) =v '(1-—', a) 't/cosh ,'t . -(3.6)

The corresponding (reduced) thermal conductivity,
found by AK, is from (3. 3)

(3. 7)

Using variational methods, we were able to rule

The viscosity and spin-diffusion coefficients
are given by a similar series involving odd n

(Appendix C). The Boltzmann equation (3. 1) has
thus been solved exactly in the sense that for a
given value of n the transport coefficients can be
determined with any desired accuracy.

Prior to our discovery of the exact result (3.4),
we applied variational methods to the integral
equation (3. 1) in order to decide whether previous
attempts to get an approximate solution were re-
liable. Abrikosov and Khalatnikov" (AK) esti-
mated the thermal conductivity K by neglecting
t' with respect to v' in f(t). By virtue of the ap-
proximation f(t) ~f(0) = v' the solution of (3. 1)
with X= t/(cosh ,'t) is readil—y found to be



BOUNDS ON TRANSPORT COE FFICIENTS 327

out (3. t) over the whole range of n from 0 to 6.
By consideration of the integral equation (3. 1)
alone, one would not expect the approximation
t «v to be a good one, since X(t) is an odd func-
tion, which peaks at t —2. 5.

It was possible to find upper and lower bounds
so close together that the resulting uncertainty in
the determination of the transport coefficients
was satisfactory for practical purposes. Af ter
the discovery of the exact result (3. 4), the inter-
est in these particular bounds was, of course,
diminished. We think, however, that they serve
to illustrate the power of variational methods and
also throw some light upon the best choices of
trial functions to be used in the bounds. Before
we indicate some of these results, we shall ex-
amine the specific conditions for the various
bounds to exist.

A. Existence of Bounds

cosity or (3. 11) for thermal conductivity is suf-
ficient for (2. 12), (2. 13), and (2. 6) to exist with
the provision that the equality sign does not apply
in the case of (2. 12).

On the other hand, as we noted in Sec. II, ex-
istence of the bound (2. 14) requires that

c(t}=f(t) —o.fdt'F(t, t')

be positive definite. For the explicit choices
(3. 2) for f(t) and F(t, t ), c(t) =v'(1 —o)+t'.
Thus, the bound (2. 14) exists under the stricter
condition z & 1.

B Some Exact Results

For the case of thermal conductivity, i. e. , with
X(t) = t(cosh~ t) ', it is possible to find an explicit
solution of (3.1) for two special values ~ = 0 and
o = 2. By setting n = 0 in (3.1), we obtain im-
mediately

In Sec. II the bounds were derived on the as-
sumption that H was positive semidefinite. To
investigate the validity of this assumption in our
particular case, we Fourier transform the in-
tegral equation (3. 1) with respect to the variable
t/v (see Appendix C for details). The integral
equation then becomes a differential equation

Q(t) =x(t)/f(t),

with the corresponding thermal conductivity

K=-,'(12- ~') . (3. 12)

or

~

~

d
1

0
) 2

slnhq
dq' cosh'q cosh'q

(3. 8)

(3.8)

The solution for z = 2 can be determined from
our knowledge of a solution to the homogeneous
equation obtained from (3. 8) by setting X(q) = 0.
Such a solution is easily seen to be g = (cosh q) '
(it may also be obtained in the manner of Appen-
dix C). By standard methods of differential
equations we arrive at the complete solution for
Q 2'

If z & 0, the operator 8 has only positive eigen-
values. When a &0, we set n =n(n+1), where n
is positive but not necessarily an integer. The
lowest eigenvalue of 8 is then —n'+1. The cor-
responding eigenfunetion is an even function of
q(~(coshq) n). The integral operator H is there-
fore positive semidefinite provided —n + 1 ~ 0 or

(3. 10)

Since the spin-diffusion coefficient and viscosity
coefficient both involve only even functions Q(t),
(3. 10) is the necessary condition for the bounds
to exist. The thermal conductivity, however, in-
volves only odd Q(t), which allows us to consider
only those eigenvalues that correspond to odd
eigenfunctions. The lowest such eigenvalue for
n & 1, is 1 —(n —1)', [with corresponding eigen-
function ~sinhq(coshq) n]. The condition that
this eigenvalue be non-negative implies

g 1
+c, sinhq+ +C2cosh q

' ~ coshq cosh q
'

where c, and c, are arbitrary constants, to be
determined by the boundary conditions. Since K
must be finite we set c, =0. The value of c, is
immaterial. Since only the odd part of g, con-
tributes to K, we may set it also to zero. The
resulting solution Q, (q) =q(coshq) ' has the
Fourier transform

Q, (t) = —,'(sinh —,
' t/cosh' —,

' t), (3. 13)

which gives a (reduced) thermal conductivity that
is simply

K= 1.

For the ease of spin diffusion and viscosity, the
only simple solution is the z = 0 solution.

(3. 11} C. Lower Bounds on K

The condition (3. 10}for spin diffusion and vis- In the following, we discuss bounds on the ther-
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mal conductivity obtained with various trial func-
tions in (2. 12)-(2.14) and (2. 6). We first con-
sider the lower bound (2. 6). An obvious choice
of the (odd) trial function U(t) is to take it to be
equal to X(t), which results in

54I4

54iZ

54103~ 4000 40PI

(3.15)

U, (t) =sinh —,'t/cosh'~ t . (3. 16)

Using this in the lower bound (2. 6), we can get
an analytical expression by virtue of the identity

HU, (t) =(v'+P)(1- —a) U, (t)+2oX(t), (3. 17)

which follows from the fact that Q(t) =
& U, (t) is a

solution of (3.1) when n =2. The lower bound on
K is conveniently written as an upper bound on
K ' as follows:

This lower bound" is just ~» times the estimate
(3. 7) of AK, whose approximate solution was
proportional to X(t) [see (3.6)].

A significant improvement over (3. 15) is
achieved by using a trial function containing a
variational parameter. We choose U(t) =te sIt-I
and vary a to get the highest lower bound. Both
these lower bounds are shown on Fig. 1 in which
K ' is plotted against Qt. The difference between
this variational lower bound and the exact K is at
most 1%. In Table I we have summarized our
numerical results for both upper and lower bounds
for n =0, 1, and 2, the region 0&~ &2 being that of
main physical interest.

Since we have an exact solution for 0'- = 2, we can
can use it as a trial function, i. e. ,

I.O

=a
I 2 3 4 5 6

FIG. 1. Various bounds on the (inverse) reduced
thermal. conductivity K plotted (dashed lines) as func-
tions of the parameter n. The exact solution is shown

by the full line, and the approximate solution of AK

(3.7) as a dash-dotted line. All upper bounds on E
are calculated with (2.6) and lower bounds with (2.12)
using the trial function indicated on the figure. To
show how close some of the bounds lie to the exact
solution we have blown up small regions around 0'=4
by factors of ten and a thousand.

(3. 18}

The constant 3/v' in this trial function

U(t) =pU, (t).(I-~)(3/v') U. (t)

a trial function which is a variable linear com-
bination of an exact solution at e=2, U, (t), and a
function which mimics the behavior of Q(t) for o
near 6,

U, (t) =X(t) =t/cosh st .

On Fig. 1, this bound would be a straight line
tangential to the exact K ' curve at z = 2.

The best easily calculable result is found using

is chosen so that (U, X) is independent of the vari-
ational parameter p. Note that by allowing P to
be greater than unity, U(t) can even mimic Q(t)
for small n. The result is a lower bound on K

TABLE I. Bounds on the (reduced) thermal conductivity. The lower bounds are based on Eq. (2.6), except when
otherwise noted. The exact result is listed in the bottom line.

Trial function

U&=t/cosh $t

-citl

Uq=sinh 2, t/cosh 2t

Lower

0.556
0.710

0.704

0.699

Upper

0.710a

0.884b

o.71ob
0 730c

Lower

0.667
0 821c

0.821

0.823

Upper

1.030a
0.973b

0.829
O.834'

Lower

0.883
0.988

0.993

Upper

1.1oob

PU, + (1-P) (3/7I ) V,

Exact result (3.4)

0.710

0.710

0.827

0 ~ 827

aFrom (2.14) bprom (2.12). cprom (2.13)
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which nowhere deviates more than 0. 03%%uz from the
exact result (3.4)

K ~ ~9(1 ——,
' u )

'

The choice of trial function ensures that the lower
bound (3. 19) is equal to the exact K = 1 at n = 2

and diverges at z =6 just like the exact result
(3.4)." The inequality (3. 19) has been written
so as to illustrate the corrections to the AK re-
sult (3. 7) and the simple variational result (3. 15).

D. Upper Bounds on It'

It is evident that the bounds (2. 12)-(2.14) are
generally more complicated to evaluate than the
lower bound (2. 6). We shall first consider (2. 14)
which gives an upper bound on K for 0 & n & 1 and
a lower one for cy &0. As before an obvious
choice is U(t) = t/cosh ~t, which permits a simple
evaluation of (2. 14). The resulting upper bound
has been calculated for 0 ~ n & 1. The values for
z = 0 and ~ = 1 are exhibited in Table I. One can
calculate the point z =1, since the integrals in
(2. 14) are well defined, even though c(t) = 0 for
t =0. The general variational principle used to
derive (2. 23) still holds for o. = 1, since c(t) never
becomes negative. This upper bound by itself
excludes the estimate of AK for O~z ~1. At n
= 0, it coincides with the exact solution, but
deviates increasingly from the exact K as z in-
creases from 0 to 1. We could improve on this
situation by taking a trial function U(t) with a,

variational parameter like te-~ ~t ~ and then min-
imize the upper bound with respect to a for a
given value of a. . We have not carried this
through, since the result is rather obvious, when
we consider the upper bound one gets by using

U(t) = U, (t) = sinh-,' t/cosh'-, ' t

in (2.14). Since U, is proportional to the exact
solution of the integral equation with n =2, we
can again reduce the two-dimensional integrals
in (2.14) to one-dimensional ones and work out
the bound rather easily. Numerical results are
given in Table I. We see that at n =1 the trial
function U, gives an upper bound that lies even
closer to the exact solution than the lower bound
(2.6) with U= U, . This substantiates our belief
that we can do as well with a variational trial
function like te ~ t) in the upper bound (2.14)
as we previously were able to in the lower bound
(2.6) .

The bound (2.12) may be used to determine an
upper bound on K over the whole range of 0. from
0 to 6. Since only odd functions Q(t) are of in-

terest for the thermal conductivity, we subtract
from H the lowest eigenvalue belonging to an odd
eigenfunction. In the region 0 & n & 2 the lowest
eigenvalue (belonging to odd eigenfunctions) of
the operator H defined in (3.8} and (3.9) is 1;
for 2 & o, & 6 it is [1—(n —1)']with n(n + 1) = n. The
eigenvalues of H are equal to those of H except
for a factor v'. We have calculated (2.12) with
two different trial functions,

U = U, =X and U = U, = sinh-,'t/cosh'-, ' t .

The results are shown on Fig. 1 as lower
bounds on K '. The bound with U=X is shown
in full. It lies rather close to the exact solution
for n & 3, but deviates for smaller a. The bound
with U= U, lies too close to the exact solution to
be exhibited in full. It coincides with the exact
solution at a =2 (the values for n =0 and 1 are
listed in Table I) and has its largest deviation
from the exact solution when o is between 3 and
4. Both these bounds are shown in the first blow-
up of the region around n =4.

Finally, we have calculated the bound (2.13)
with the trial function U(t) =X(t). We get

K ~ (12 —v')/3+~ [a/(6 —n)] (3.20)

for n &0. For a &0, the inequality as usual be-
comes reversed. This result is a considerable
improvement over (3.15) which was obtained
using the same trial function in the bound (2.6).
(The reasons for this improvement are discussed
in Appendix E. } The bound (3.20) is a good ap-
proximation to the exact (reduced) thermal con-
ductivity, since it is seen to equal the first two
terms of the exact result (3.4). Emery' obtained
(3.20) as an approximate result. The connection
between his treatment and the variational method
is discussed in Appendix D.

E. Spin Diffusion and Viscosity

The only difference involved in determining the
(reduced) spin-diffusion and viscosity coefficients
in terms of n is that X(t) = (cosh —,'t) ' rather than
t(cosh-,'t) '. Now all trial functions are taken to
be even and the range of 0. is a ~ 2. The func-
tional form of the bounds as well as the exact
solution is similar to what we have found in the
case of thermal conductivity. Whereas t(cosh —,t)
which appears in the thermal conductivity, has
its maximum at t =2.5, (cosh —', t) ' is centered
about t = 0. Accordingly, the approximation of
AK, in which the t dependence of f(t) = w'+t2 is
neglected, is more appropriate. For the same
reason the upper and lower bounds with U(t)
=X(t) = (cosh —,'t) ' lie considerably closer to the
exact solution than the corresponding bounds for
the thermal conductivity. In Table II we illustrate
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this by comparing the values of these bounds for
n = 0 and a = 1 with the exact result and the esti-
mate of AK.

IV. CONCLUSION

The application of the variational methods to a
particular Boltzmann equation demonstrates that
the calculation of lower and upper bounds may
provide a useful alternative to seeking exact so-
lutions. It is evident that knowledge of one exact
solution (i. e. , the o = 2 solution in the case of
thermal conductivity) can be very helpful as a
guide to choosing trial functions in both the lower
and upper bounds . An advantage of the varia-
tional approach' is that (approximate) simple
closed forms for the transport coefficients may
be obtained.

The integrations necessary to calculate the
bounds could in all but one case [U(f) = te ~ ~ f ~ in
(2.6)] be performed analytically. Of the upper
bounds (2.12) was the easiest to evaluate. The
treatment of Sec . III also shows that the custo-
mary choice of trial function U(f) =t/cosh2f may
give a rather poor approximation. The introduc-
tion of a variational parameter in the trial func-
tion makes it possible to obtain bounds that are
very close to the exact result, the best and most
easily calculable being the variable linear com-
bination of two trial functions.
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FIG. 2. Three-dimensional
illustration of the significance
of (Al) . I" is a plane through
the origin; L' is a straight line
perpendicular to thxs plane.
Their intersection is I. It
follows from the figure, that
S' 'S"/IS"

f
=—OA II ( (S'I.

(g' gn)'/S" 2 ~ I' ~ S (Al)

where 5' and 5 are arbitrary vectors belonging
to L ' and L, respectively.

In order to apply (Al) to the integral equation
(2.1) we rewrite it

X(f) =c(f)Q(f)

principles .' Next, we mention a useful electrical
network analogy to the Boltzmann equation.

In a vector space we define a scalar product
5, ~ S, and a positive definite norm 8'=5 R. Let

and L " be two linear mutually orthogonal
subspaces. Linear means that if 5,' and 5', be-
long to f ', the same is true for r5,'+ (1 —r)5', ,
where r is any real number. Orthogonal means
that any vector 5,'- 5,' connecting two vectors be-
longing to L' is orthogonal to any vector 5, —5,"
connecting two vectors belonging to L . We de-
fine L" in such a way that it contains the origin
gll 0

Let us assume that the two subspac es have an
intersection f. Only one such intersection can
exist owing to the orthogonality and the positive
definite norm .

The norm of the intersection then has the fol-
lowing lower and upper bounds (compare Fig. 2)

APPENDIX A: CONNECTION WITH SYNGE'S
FORMALISM

+ c fdt 'F(f, t ') [Q(f) Q(t ')] . —(A2)

In this appendix we first show how the bounds
(2.6) and (2.22) fit into the framework of Synge's
general formulation of reciprocal variational

TABLE II. Comparison of the exact result and the
estimate of AK with bounds on the (reduced) spin-
diffusion and viscosity coefficient. The upper bound is
based on (2.14) and the lower bound on (2.6) .

We then make the following identifications:

Vector: 5 = (S (t), S(t, t'));

S(t) and S(f, t') are real functions.

Scalar product:

S, 0, = f dt S,(t)S,(t)/c(t)
e =0

Lower Upper

a=l
Lower Upper

nF(t, t') (A3 )
Bound with the
trial function
U = (cosh 2 t)

Exact solution

Estimate of AK

0.304

0.333

0.405

0.333 0.608

0.639

0.811

0.676

In the notation of Sec. II, see Eq. (2.16), this
would be written ((S„S,)). In the subspace L'
all vectors 5' obey

S'(I)+fdf'S'(f, I') =X(f),
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where s'(t, t') = s-'(t', t) .

S"(t, t') S"(t) S"(t ')
aF(t, t') c(t) c(t')

In the subspace I, "all vectors 5" obey

(A5)

Sils

s, lIc, c„vis„

(A2), i. e. ,

)l"~
Q I a 0

FIG. 3. Network analog of
(A6) in the simplest case, cor-
responding to Fig. 2.

If c(t) &0 and aF(t, t') & 0 the norm is positive.
L" is seen to contain the origin, and it is easily
verified that L' and L are linear and mutually
orthogonal.

If, in (A4) and (A5), we put 5'= 0"=I = (c(t)Q(t),
I(t, t')) and eliminate I(t, t') we obtain the integral
equation (A2), the solution of which therefore is
determined by the intersection between L' and

L . The norm of the intersection is seen to be
I'=(X, Q), i.e. , equal to the transport coefficient
T. Using (Al) we now obtain the bounds (2.6} and

(2.22).
As all linear integral equations the Boltzmann

equation has an electrical network analogy. In

fact, the set of linear equations analogous to

X.=c.Q. +Q G. (Q. —Q ) (A6)

can be interpreted as Ohm's laws for a network
of the type shown in Fig. 3, Q~ being potentials,
Gg, and e; are conductances, and X~ externally
supplied currents. The analog of the transport
coefficient, i.e. , QQIXt, is the total power
dissipated in the resistors. The quantities S;
and St)t corresponding to S(t) and S(t, t') in (A4)
and (A5) are currents in the branches of the net-
work. It is immediately seen that the two sub-
spaces I.' and l." analogous to (A4) and (A5) are
current distributions obeying Kirchhoff's first
and second law, respectively.

APPENDIX B: REDUCTION OF THE BOLTZMANN EQUATION

%e here show how the Boltzmann equation for a Fermi liquid may be reduced to a one-dimensional in-
tegral equation. The notation of AK" is used as far as possible.

In the absence of any explicit time dependence the kinetic equation for the distribution function n, =n(p„
x} of Landau quasiparticles with momentum p, is

Bg, Bn, Be, Bn,' = f(n, ).
Bp, Bx Bx Bp

The collision integral 1(n, ) is

f(p„x) = fdr, i fd7, fdp, w(p~s, .p, ip, i)[-n n, (1 —n, ~ ) (I —n, i)+n, in, i (1 —n, )(1 —n, )]

x 5(pi+ps —ps' -ps')5(ca+as ei' es'). (B2)

In Eq. (B2) w(p, p„p, ipse) is the collision probability for two quasiparticles of momenta p, and p, to scat-
ter to p, i and ps'. The bracket contains the usual occupancy factors for the process (p„ps)-(p, i,p, l) and
the reverse process. The 5 functions express conservation of the local equilibrium values of the total en-
ergy and of the total momentum involved in the collision. The integration over v, I and v, i are phase-
space integrations [d v = 2dp/(2vk)'] . We also integrate over all possible va.lues of the momentum p, .

It is convenient to expand the distribution function about its local equilibrium value in order to discuss
the linearized version of Eq. (Bl)

n(p, ) =n, (e, )+ " g- (e,).
p~

The equilibrium distribution function is given by n, (e,) = (exp[(e, —u)/k T ]+I] . The expansion about lo-
cal equilibrium ensures that the collision integral is zero when P = 0, consistent with the assumption of
local equilibr ium.

In the following we specialize to the case of thermal conductivity. In the presence of a thermal gradient
the left-hand side of (Bl) becomes (to linear order in Vx 7)

8&I BÃf} t 1 ~ Bf
y

Sp, Sx 4cosh'-'t kT x Sp, (B4)
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Here we have introduced I =(e, —p)/kT as a reduced energy variable. When linearized with respect to g

the collision integral becomes

I(s&) = (kT) Jffdr &s dr 2 idp2 [t/)& + g2 —g& I —g2 t] u)(pzp&, 'p& tp2 I )

& 5( p&+p2 —p &
z —p2 I )5(6& + z2 —s

&
I —z2 e )no& F02(1 —n„I)(1 —n» I ), (B5)

since np (e,) = n&» —(kT) n»(1 —n»)t}p„with n» ——no(e, }. We note that I(n, ) according to (as) is an in-
tegral over nine variables. The momentum and energy conserving 5 functions reduce this number to five.
By performing two more integrations we can obtain an expression for I(n, } in terms of an integral over
two angular variables and one energy variable.

Following Ref. 13 we choose the two angular variables to be the angle 8 between p, and p, and the angle

y between the plane of p, and p, and that of p, i and p, i. The differential element d7yI may be expressed
in terms of dp, ~, dp, i, and dp as described in Ref. 13. Using dp, i =(m*/pF) de, ' and dp, & =(m*/pF)de„
together with the definitions x = (e,l —p)/k T and y = (e, I- p)/kT we then get

dr, , = (2vk) 'p '(m~/cos28)(kT)'dxdydp. (Bs)

The integration over p, i just removes the (momentum) 5 function. We also write dp, =p, 'dp, sin8d8dy,
=pF m*kTdz sin8d8dp2 where z = (e, —p)/kT and the polar axis is p, . Then I(n, ) may be written as a six-
dimensional integral (the energy integrations run from —~ to + ~)

I(n, } = (Sv'If') '(m+)'kT v 'f d-q& j —,'d(cos8) [w(8, y)/cosz 8] (2v) ' f de, fff dxdydz

x [{{t(I) +g (z) —f I (x) —g (y1)] 5(f +z -x —y)n(f)n(z)[1 —n(v)] [1—n(x)] (B7)

where n(t) =(e I+1) 1. The angular variation of g, is set by the left-hand side of the Boltzmann equation

g~ = $(f)[(Se,/ap, ) ~ (8T/sx)) o= cos8,

where 8, is the angle between Se, /sp, and Vx T. Similarly g, ~cos8„where 8, is angle between Be, /&p,
and Vx T. By virtue of the addition formula for spherical harmonics we observe that (1/2v) j' "dp, cos8,
= cos 8 cos 8 g with similar results for g, I and g, I ~

A characteristic time To is introduced through

1/r, = [m*'(k T)'/Sw4 g'] (ur(8, y)/cos-, ' 8), (as)

where ( ~ ~ ~ ) denotes angular averaging (1/2n') fv

deaf,

d(cos8). [2v, /v' is the relaxation time for a quasi-
particle" at the Fermi surface (I =0).] Q(t) is defined by

g (&) =2r, (cosh-,'t)Q(t) [(se/sp) v (kT)].
p X

The Boltzmann equation (Bl) then assumes the form

(as)

f m+'(kT)' dy " d(cos8) ~(8, cp}
2

4 cosh' & t 8&I'

x 5(f yz —x —y)n(f)n(z)[1 —n(x)] [1—n(y)] [Q(t) cosh-,' t —Q(x)(cos8+cos8, I + cos8, I) cosh-,'x] .

(B10)

Using the identities

fgdxdydz 5(t+z —x —y)n(t)n(z)[1 —n(x)][1 —n(y)] = zn(t)[1 —n(t)](v'+I')

h ' I —'( —f)—
and ffdy dz 5(t +z -x - y)n(t)n(z) [1 —n(x)] [1- n( y)] = n(t)[1 —n(t)] cosh-,'x sinh-,' (x —t)

(all)

(B12)

we can perform two of the three energy integrals. This reduces the Boltzmann equation to the desired
simple form [Eq. (3.1)]
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t/coshzt = (v'+t')Q(t) —rt fd«F(t «)-Q(«)
(B13)

with F(t) = —,
' t/sinh —,

' t and a given by

= 2( [w(8, g7)/cos 2 8] (cos8+cos8&l+ cos82 g))/(w(8 y)/cos & 8) (B14)

Finally, we use cos8,I =cos' —,
' 8+sin'& ecosoc and cosa, i =cos'-,' 8 —sin'-,'8 costp both of which are conse-

quences of the addition theorem of spherical harmonics and the fact that all momenta are at the Fermi
surface. The parameter o. occurring in (B14}is then simply

o. = 2([w(8, p)/cos-,'8] (1+2 cos8))/(w(8, y)/cos-,' 8) .

When the transition probability w(8, S) is known as a function of 8 and y, u may be determined from (B15)
and inserted in (B13), which is solved for Q(t)

We have only to relate Q(t) to the thermal conductivity «, defined by

J= —KV'T . (B16)

Under the condition of zero mass current the heat current S is

J = Z (e- —p) = n(p, x) .
p g p ~p

Since n =no- (kT) 'no(1-no) g and g is given in terms of Q from (B9), we get under the assumption that
the density of states and the Fermi velocity are constants at the Fermi surface

3= (m*k /v')f')(kT)' fdt t-,' V 'V (kT)2r, cosh —,'t Q(t)(-1/4kTcosh' —', t) = KVT, -
X

where t/'p is the Fermi velocity. Then

« = —,'C V 'r, (3/2w')K .

Here we have introduced the specific heat CV = k'T m*kF/(311'} and defined

K = f dt (t/cosh-, ' t) Q(t) .

(B17)

(B18)

Once Q(t) is obtained as a solution of (B13)we insert it in (B18) and get « from (B17).
The coefficient of spin diffusion D and viscosity t) are obtained by substituting (cosh2t) ' for t/cosh —,t

as the inhomogeneous part of (B13) and otherwise leaving the equation unaltered. The meaning of n is,
however, different. For the case of viscosity it is obtained from (B15)by replacing (1+2cos8) with
(1-3 sin csin —,8) and using the appropriate w&. For spin diffusion a similarly involves cos8(1 —cosy&)
+cosy' and wD (see Wheatley" for a discussion of the difference between w«and wD). The characteristic
time 7, is given by Eq. (B8) with w& and wD, respectively, instead of w.

The transport coefficients p and D are then given by

g= —,nm*V 'ro-,'Y, D= —', (yo/y)V 'v, d, where Y, d= f (cosh~t) Q(t)dt .

Here n is the number density and X, /y, the ratio of the Pauli susceptibility for the noninteracting system
to that of the interacting one.

APPENDIX C: EXACT SOLUTION OF (3.1) f(t)y (t)=X f dt'F(t —t')y (t') (Cl)

We here derive the exact result6 (3.4) for the
reduced thermal conductivity K = f dt X(t)Q(t)
= (X, Q)." Consider the homogeneous equation
obtained by setting X=O in (3.1). We may write
this as an eigenvalue equation f«f(t)e (t)s (t)=5 (C2)

and seek to determine the eigenvalues Q and

eigenfunctions yn(t), which we shall normalize
according to
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A complete set of eigenfunctions yn, if known,
may be used to expand the unknown solution Q(t)
of the inhomogeneous equation (3.1) or for more
rapid convergence Q{t) —X'(t)/f(t)

Q(t) =X(t)/f(t)+Q a q& (t). (C3)

a = [a/(X —a }]{X,rp ), (c4)

By inserting (C3) in (3.1}, using (Cl) and (C2) we
determine

an equation which arises when scattering against
impurities is included in the collision integral of
the Boltzmann equation in addition to the parti-
cle-particle scattering. Here P = (2/ v') r, /simp,
where simp is the relaxation time characterizing
the elastic impurity scattering.

If P = m' —1 (m an integer) the solutions may be
expanded in terms of a complete set consisting
of the associated spherical harmonics P„m(tanhq)
with n =m, m+1, .... The resulting transport
coefficients are then given by

and hence T(a, P) =c(m)

K=(X,X/f)+a+ (X, q )'/(X —a).
n ' n n

(c5)

We Fourier transform the Eq. (Cl) according
to

q (t)=(2v) fdqq& (q)e (C6)

The Fourier transforms of f(t), F(t —t'), and
X(t) are v'(I —6'/Bya), v/(coshy)', and —2@i

sinhy/(coshy)', respectively. The integral equa-
tion (Cl) then becomes the differential equation

d2
, + 1—,y (q}=0.

q2 cosh2q ~n' (C7)

provided X =n(n+1), with n a positive integer,
(CV) is just the equation for the associated
sPherical harmonics Pn'(tanhq), which form a
complete set. By virtue of the normalization con-
dition (C2) the eigenfunctions of (C7) are now de-
termined to be

= c P '(tanhq)
n n n

with c =[(-1} /x ] (2n+1)/n (n+1} . (C8)
n

The integra!. s in (C5) may be transformed into
integrals over the transformed functions to
yield2o

K=—,(12 —v )+4a
n=2, 4, ~ ~ ~

2n+1 1
n'(n+1)' n(n+1) —a

(c9)

which is Eq. (3.4).
For the spin-diffusion and viscosity coefficients

we get (cf. Appendix B)"

4a
F,d= —, +

2n+1 1
n'(n+1}2 n(n+1) —a '

(C 10)
The results (C9) and (C10) are special cases

of the general solution of an integral equation like
(3.1) with f(t) = v'+ t' replaced by v'(I+ P) +t' (P
positive). We have elsewhere' considered such

2n+1 (n —mi1
A

n(n+1) —a v2n(n+1) (n+m)! nm '
n)m

m =(1+P)'i'. (C11)

We have listed expressions for c(m) and A m in
Table III for the cases m=1, 2, and 3.

Inthe more generalcase, where 1+P = v' and is
not necessarily an integer, one may use the set
(1 —x') / Cnu+ I/ (x) where x = tanh q and n = 0,
1, 2 . The function Cnew+1/2(x) is a Gegen-
bauer polynomial. " When vis aninteger the set
series with the same structure as (Cl1)." The
nth term in the series belonging to a fixed v (or
p) is a lengthy expression involving I' functions of
various combinations of v and n and we shall
therefore not quote it here.

Simple approximate (but quite accurate) expres-
sions for the transport coefficients T(a, P) are
given in Ref. 5 as the result of applying the varia-
tional methods discussed in the present paper to
the appropriate integral equation.

APPENDIX D: CONNECTION PATH EMERY'S
APPROACH

To show the connection to the variational me-
thod we briefly review the method used by Emery
(Ref. 8) to obtain an approximate solution of (3.1).
We discuss only the case of thermal conductivity
since the treatment of viscosity and spin diffu-
sion is identical in form.

Emery noted that the homogeneous part of (3.1)
at a =6 has the solution Q{t)=t{cosh—,'t) ' =X(t),
which is not orthogonal to the inhomogeneous
term. He then approximated for all values of
a the kernel F(t —t') in (3.1) with the separable
kernel F(t, t') given by

I f(t)X(t)f(t')X(t')
fduX'(u)f(u)

This choice ensures that

Jdt'F(t, t')X(t') = Jdt 'F(t —t')X(t')
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TABLE III. The values of c(m) and A in (C11) for m= 1, 2, and 3. The coefficients 4 vanish when n is not

even or odd as specified in the last column.

Transport
coefficient

Thermal

conductivity

Spin diffusion
and viscosity

c(m)

4- '/3
20 —27r

2

10 —7r
2

3
—,-4/~1 2

2
~

—2/3x

A nm

2n'

(n+ 2)11 (n 2) 11/(n+ 1) 11 (n 3) 11

27r (n+3) (n —2)

2

7r(n+ 1) . 1 (n —1) . t /n I! (n —2) . I

2(n+ 2) (n —1)

even
odd

even

odd

even
odd

With the replacement of F by F the integral
equation (3.1) becomes

X=fg ——,
' n fX[fdu X'(u) f(u)]

x f dt'f(t' )X(t ') q(t '
) . (D2)

f dt f(t)X(t)Q(t) =~v'(1-~ n)-', (D3)

which shows that F is positive definite for n &6.
We can now solve (D2) for Q(t) with the result

To find Q from this equation we need to de-
termine the constant fdt f(t)Q(t)X(t). This is
done by multiplying (D2) with X(t) and integrating
over t. Then

(Q, X') - 2(U, X') —(U, O' U) . (El)

With H'=HJ 'H-H and X'=HJ 'X —X this in-
equality becomes upon rearrangement

have the appealing property of always being lar-
ger (i.e. , better) than the lower bound (2.6),
provided the trial functions are the sa,me. This
was demonstrated by Arthurs and Robinson'
using their rather different approach for the
special case J=1.

We shall consider the more general case,
where the positive definite H can be written as
a sum of a positive definite J and a negative
definite L. Since H' then is negative definite
(see Appendix F for proof of this), we obtain the
inequality [compare Eq. (2.4)]

q(t) = X(t)/f(t) + (5/12'')[n/(6 —n)] X(t), (D4)
(Q X) ) ([Q U) KJ H(Q U) ]-

+ [2(U, X) —(U, HU)] . (E2}
which corresponds to Eq. (3.10) of Ref. 8.

The value of the (reduced} thermal conductivity
corresponding to the solution (D4) is

fr= —,'(12 —v')+~[n/(6 —n)] . (»)

APPENDIX E: BETTER BOUNDS

We observe that (D5) is just the bound (3.20)
or equivalently the first two terms of the exact
solution (3.4). By his method, Emery there-
fore obtained a lower bound on E for e &0 and an
upper bound for n &0.

Instead of solving the approximated integral
equation directly, we could, of course, apply the
variational methods to it since F is symmetric
and positive definite for o &6. With F replaced
by I' in (2.13) this bound becomes independent of
the choice of trial function U(t) and hence equal
to the (exact) solution (D5) of the (approximated)
integral quation (D2).

The quantity in square brackets is the lower
bound one obtains from (2.4) by setting X =1. If
the normalization of U is chosen such that (U, X)
= (U, HU), this bound becomes identical to (2.6),
Since the first term on the right-hand side of
(E2) is always positive, the bound (E2) with the
chosen normalization of U is always better (i. e. ,
larger) than (2.6). The best lower bound (E2) is
of the form (2. 11), in which the normalization of
U does not appear explicitly. Therefore, a lower
bound of type (2.11) is always better than (2.6),
provided we use the same trial functions.

On the other hand, one does not in general
know whether an upper bound of the type (2. 11),
i. e. , when H' is positive definite, is closer to
the exact result than the lower bound (2.6), for
the same trial function.

APPENDIX F: CONDITIONS FOR H BEING
NEGATIVE SEMIDEFINITE

Although lower bounds of the type (2.11), i. e. ,
when H is negative definite, are in general more
difficult to work with than the simple (2.6), they

In this Appendix, we prove that H'= HJ 'H- H
is negative semidefinite for H and J positive
definite and I =H- J negative definite. We spe-
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cify these conditions precisely (note that H is
positive semidefinite) by the equations

it follows from (F2) for ).„v Xm(n 4 m)
With y = gn a„p~ we have

(p Hp)&0

(p, Zp) & 0,

(s, I y) «,

(Fla)

(Flb)

(Flc)

(9,H'q)=(q, (I +IJ 'I)9)

for arbitrary q. We expand y in terms of a
complete orthonormal set of eigenfunctions ~
obtained from

Jrp = —X Iqn n n
(F2)

and orthonormalized according to

(s,~v„) =&„ (F2)

which is compatible with (F2) in the sense that

+ p — ——Jcp

=pa' —— 1 — . (F4)
1 1

n n

From (F2) we get (p„,Jp„)= —1.„(p„,Lp„), which
together with (Flb) and (Flc) shows that X &0.n
Similarly (y, Hcp ) =(1 —X )(y+, I, y ) together with
(Fla) and (F c) implies that (1- X ) & 0. Hence,
(F4) is either negative or zero, and H' therefore,
negative semidefinite.
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The onset of superfluidity in thin (- 20 A) He II films is discussed in terms of fluctuations

on the Ginzburg-Pitaevskii free-energy functional. The response of the system to an ex-
ternal force is presented in a linearized form. Fluctuations of quantum origin are included

explicitly. The theory indicates that the onset thickness is proportional to the coherence
length, in agreement with experimental observations. An outline for a method for the

calculation of the superfluid density in the bulk within the same simple approximation is
given.

I. INTRODUCTION

Mass flow, '~' heat flow, ' ' and third sound'y'

experiments in thin He II films indicate that for
any given temperature T( T & T&}, the film loses
its superfluid properties when the film thickness
becomes less than a certain characteristic thick-
ness dc(T). These results were summarized re-
cently in Ref. 7 where the unsaturated vapor pres-
sure at the onset of superfluidity was plotted
against the onset temperature (Fig. 2, Ref. 7).
Thermodynamics relates the film equilibrium
thickness d(T) to the unsaturated vapor pressure
P by'

87 'K
7 In(P, /P)

In Eq. (1), d is given in atomic layers (1 a. l.
= 3.6 x 10-'cm) and P, is the saturated pressure
at the temperature in question. We shall work
exclusively with the film thickness d ( T) rather
than the experimental parameter P,/P.

The onset of dissipation in thin films is a fa-
miliar phenomenon in superconductivity. There
it is widely accepted y' that superconductivity does
not exist in two dimensions (2D henceforth}. None-
theless very thin films of superconductor materi-

als exhibit a very high conductivity. "y" The theo-
retical reasonings which interpret these results
were pioneered by Aslamazov and Larkin. " These
reasonings were refined and greatly simplified by
several authors. " " The theory as presented in
this paper is closely analogous to those advanced
for 2D superconductors, in particular to those
considerations" "that were given in terms of
the Ginzburg- Landau equation. Our considera-
tions shall proceed in terms of the Ginzburg-
Pitaevskii equation (G-P henceforth; the equation
is given in Sec. II ) which is formally equivalent
to the Ginzburg- Landau equation. [ In either case,
superconductors (SC henceforth) or superfluids
(SF henceforth), the use of these equations is
justified inasmuch as we are interested in the
behavior of the system near the transition. ]
There are two important differences between the
SC and SF cases. " The first is that in SF one
does not measure the energy dissipation ("resis-
tance") as a function of temperature for a fixed
film thickness; while this is what is measured
in the SC case. Rather, one observes in the
case of He II the appearance of appreciable dissi-
pation for a fixed temperature as a function of
film thickness. The second difference is in the
meaning of "two dimensional. " For SC a 2D
film is one whose thickness d is smaller than the


