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Intensity and linewidth measurements of light scattered by the isobutyric acid in water sys-
tem are reported for various equilibrium states in the critical neighborhood of the temperature-
concentration diagram. By extrapolation of these data to zero scattering angle and then to
(unrealized) states below the phase separation temperature one may determine a common

'Qseudospinodal curve" T (X) described by T —Ts QQ - lX-X I
/P where X is the con-

centration, and we find P~ =0.37+0.04. As expected on the grounds of the homogeneity hypo-
theses, the value of P4 is essentially the same as the previously observed value of the ex-
ponent p for the coexistence curve. Empirical equations of the form I& 0

tx: fT —T {X)j~sp
and Doc [T- T (X) p' are used to effect the extrapolations to determine Ts (X). Here IC 0sp Sp
and D are the extrapolated zero-angle scattering intensity and the diffusion coefficient, while

y and y are corresponding critical exponents. We show theoretically, however, that a value

P~ & 2 is inconsistent with the general validity of these empirical formulas, which should thus

be discarded as over-all representations of the variations of D and I~ 0. A tentative test
is made of a more general scaling equation for Ig 0 by a convenient plot. Moderate success
is obtained. The measurements confirm the exponent values y=1.24+0.03 and y =0.67+0.03.
The distinction between pseudospinodal curves, determined by extrapolation from stable
thermodynamics states, and a true spinodal curve which (if it exists) can only be observed by
measurements on metastable states, is emphasized.

1. INTRODUCTION

Recent developments in laser self-beating spec-
troscopy' have enabled us to study the transport
properties and correlation effects of time-depen-
dent concentration fluctuations of binary liquid
mixtures in the neighborhood of the critical mix-
ing point. In this paper we report extensions of
the previous experiments' 4 for the system iso-
butyric acid in water, including intensity and
linewidth studies along the critical isotherm and
on the coexistence curve. In addition, we pre-
sent some considerations concerning the so-called
"spinodal curve" of this system.

According to the Ornstein-Zernike and the De-
bye theory'~ ' of critical opalescence, the relative
scattered intensity due to concentration fluctua-
tions of a binary critical mixture is approximated
by the relation

C dn 2 ~/~c
C n dC (T/T ) —1++K'l''

C 6

in which C denotes the concentration and n is the
index of refraction of the mixture. As usual Tc

is the critical mixing temperature, E is the Debye
interaction parameter, while K= (4n/X) sin(-,'e)
where A is the wavelength of light in the medium
and 8 is the scattering angle. Although the ex-
perimentally observed K' dependence of the scat-
tered intensity is well represented by this for-
mula, we do not find a linear relation between
limK 0' ' and T- Tz, '~' rather at the critical
solution concentration we have

iim I =I (T)= — = f(7 —t), (2)
K-0

where g is the chemical potential, while ~= T/T,cPf is a constant related to the osmotic coefficient,
and y is the usual critical exponent. According
to the classical theory, y=1, although it may be
noted that Debye' himself used the van der Waals
gas only as an example; in fact yc 1 is not incon-
sistent with the K' dependence he predicted for
critical mixtures. '~ ' We shall not employ the
more general scattering formula introduced by
Fisher, ' which entails the extra exponent g to de-
scribe the K dependence at T~, because within
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the limits of our experiments, which do not in-
clude the most immediate neighborhood of the
critical mixing point, we have found that g =0.

The linewidth r of quasielastically scattered
light for critical mixtures has been predicted by
Fixman' and Felderhof' to behave as

r DK-'(1+6 K'L'),

and

where

D(X, T) =d[T —T (X)]
sp

(X, T) =f [r —r (X)]~,
C~0 sp

(x)= T /T
sp sp c

(6)

(7)

where D is the diffusion coefficient and L' =l'/
[(T/Tc) —1]. The previous experimental results" '
indicate that at the critical solution concentration
one should more generally write

r =~*(sq/sC) K'[1+ bg 'K'], (4)

'r vs
~(T —T ) and $ o-(T-T )r c s c

where vr and vs are the corresponding exponents.
The subscripts r and s denote determinations
from linewidth and intensity studies, respectively.
Although the correlation ranges gr and $s[=(—', )'~'L
if vs = -', ] should have a similar physical meaning
as well as the same order of magnitude, we have
introduced the constant b in (4) to allow for pos-
sible differences in the apparent molecular inter-
action ranges between intensity and linewidth
measurements should the situation demand it. In
fact this additional complication turns out to be
unnecessary because we have found that the mo-
lecular interaction ranges deduced from intensity
and linewidth studies are quite comparable for
binary liquid mixtures of small molecules even
though there may be some difference between vs
and vr.

2. SPINODAL AND PSEUDOSPINODAL CURVES

In order to describe the behavior of the thermal
diffusivity with density and temperature for SF„
Benedek" has recently proposed an extension of
Eq. (5) by introducing the so-called "spinodal
curve" which is generally supposed to represent
the limits of stability of the metastable, uniform
one-component phase. We have examined a futher
extension of his formulas to the two-component
system of isobutyric acid and water, 4 in an at-
tempt to describe both the linewidth and the in-
tensity measurements in the critical region. The
proposed extended versions of (2) and (5) are
simply

where

lim r/K =D(T)=o.+(Sq/SC) =d(r 1), (5)
2

z-0 P, T

in which a* is a transport coefficient and the con-
stants d, b, and y* can be determined by the ex-
periments. As usual we may express the temper-
ature dependence of the correlation lengths by the
relations

is the reduced temperature on the assumed spin-
odal curve at mole fraction X of one component.

As shown below, analysis of our somewhat pre-
liminary data does indeed seem to indicate that
Eqs. (6) and (7) provide fair representations of
the available experimental facts. However, a
closer theoretical examination reveals that such
a postulated form may imply stringent and unre-
alistic restrictions on the equation of state. If
indeed the spinodal curve exists we may suppose
it has the form

T —T (X) = A
~

X-X 1/P'
c sp c (6)

=(f/T )[(T-T )+a~X-X
~ ] .

Now let us consider the expansion of IC 0 '(X, T)
in powers of (X- Xc) at some fixed temperature
in the single-phase equilibrium system above
Tc(b.T = T —Tc & 0). We evidently have from (9)
the result

(») 1+ ——jx-x
~

f r
C0 'T T hT c

c

(10)

Now on very general grounds we expect the func-
tion IC p(X, T) (and hence its reciprocal) to vary
perfectly smoothly, and indeed even analytically,
with the concentration difference X—Xc at finite
positive T —Tc." In particular, Ig p(X, T) should
have a Taylor series expansion in powers of
X-Xc above Tc (which would be at least asymp-
totic"). It follows from (10) that P~ should have

as X-X~, where A is a constant and we have in-

troduced the exponent Pf in the event that Pl is not
equal to P, the corresponding exponent describing
the coexistence curve. Then the expression (7)
for the reciprocal zero-angle intensity may be
transformed to

I (X, T)=(f/T )(T —T +T —T )CO ' c c c sp
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a value equal to the reciprocal of an even integer
such as —,

' or —,'. Indeed P~ should really be equal
to —,', since a smaller value, such as P~= —,', would
imply that the quadratic term in X —Xe should
vanish identically leaving only a quartic term.
This is most implausible"; in principal, this point
could be checked experimentally by making mea-
surements above Te at a number of concentrations
close to Xc. In practice, of course, it is difficult
to vary the mole fractions in controlled small in-
crements at constant temperature. "

The above considerations regarding the value of
P~ apply equally to the diffusion coefficient, and
to the thermal diffusivity in a one-component sys-
tem. " Indeed for SF, Benedek did estimate P~ to
be about —,'. On the other hand, from the viewpoint
of the homogeneity or scaling hypotheses"~ "~ '
we should certainly expect that, if a spinodal curve
exists, it is described by P~=P. " For the iso-
butyric-acid-water (IBW) system we know that

P is rather close to —,', ' and our own data, if ex-
trapolated at fixed X using (6) and (7), yield P t
= P (see below). As demonstrated above, a value
P t = —,

' implies through Eqs, (6) and (7) a non-
smooth and nonanalytic variation of IC ()(X, T)
and D(X, T) above Tc (Specif.ically, the fourth
derivative would be divergent or discontinuous at
X=Xc.) This is unacceptable" and we conclude
that (6) and (7) are inconsistent with a "spinodal
curve" having an exponent P& close to —,'. (In any
event, the opposite conclusion would be suffi-
ciently startling that much stronger evidence
than direct numerical fits to these equations
would be needed to support it. ) Conversely if
we found P~ = —, at the same time as P = &, Eqs.
(6) and (7) would be satisfactory as regards
smoothness and analyticity but the implications
regarding the homogeneity and scaling hypotheses
would be rather drastic.

Finally, we note that our whole discussion so
far has concerned stable homogeneous equilibri-
um states and the extraPolation of their proper-
ties, via. Eqs. (6) and (7), into regions of the
phase diagram where the stable thermodynamic
state is one of inhomogeneous two-phase equi-
librium. A true spinodal curve, on the other
hand, as contemplated by van der %aals and his
school, relates to an actual metastable homo-
geneous extension of the single-phase equilibrium
states beyond the point where, in complete equi-
librium, phase separation should have takenplace.
In a one-component system, it is traditionally
supposed that as such a metastable isotherm or
isochore is followed, the compressibility will
increase until it becomes infinite at some point
which then locates the spinodal curve. An in-
finity of the compressibility implies mechanical
instability and further prolongation of the iso-
therm or isochore would necessarily result in
immediate collapse into separated phases. In

the case of a two-component system, (sp/sC)p T
would become infinite on the spinodal curve and
material instability (i. e. , chemical phase sepa-
ration) is implied. Now the ease of producing a
homogeneous metastable state varies from sys-
tem to system although reproducible metastable
states seem difficult to generate near critical
points. But, in any case, it is by no means ob-
vious that a metastable isotherm or isochore
even when experimentally realized, need approach
a point of over-all mechanical or material insta-
bility. On the contrary it seems not improbable,
in view of present knowledge of nucleation phe-
nomena, that the lifetime for the decay of the
metastable state through a local inhomogeneous
process or homogeneous fluctuation, will de-
crease rapidly to unobservable, sublaboratory
times at a point on the (average) isotherm or
isochore where the compressibility [or
(sp, /sC)p T] is still quite finite. If this is indeed
the case the spinodal curve could not be observed
(and its definition would be purely a matter of
convention).

Experiments designed to investigate these
points by attempting to realize metastable states
near a spinodal curve. are certainlv worthwhile.
%e wish to stress, however, that to our know-
ledge such studies of metastable states near a
critical point have not been made. In the pres-
ent experiments (and those of Benedek") only
equilibrium states have been observed; phase
separation always took place below the appro-
priate temperature Tp(X). Accordingly, it would
be preferable to call the locus Tsp(X) determined
by extrapolation of equilibrium data below Tp(X)
using Eqs. (6) and (7), a "pseudospinodal" curve.
Such a terminology does not prejudice the ques-
tion of the existence of a true spinodal curve.
Equally if a true spinodal curve does exist, its
identity or nonidentity with the extrapolated form
is not taken for granted. More generally one
might consider extrapolations using postulated
equations with more satisfactory analytic fea-
tures such as might be generated by scaling and
homogeneity analyses. """ '" In general, dif-
ferent pseudospinodal curves might be found de-
pending on the property studied and on the as-
sumed equation. It is clear, however, to re-
iterate, that measurements of equilibrium states
such as ours and Benedek's cannot answer ques-
tions about the true spinodal curve.

3. EXPERIMENTAL

The system, isobutyric acid and water, was
selected for study because the coexistence curve
Tp(X) had been determined previously' and light
scattering experiments had already been per-
formed at two different concentrations. ' 4 The
isobutyric acid (IB) (Fisher certified reagent
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grade) was purified by preparative gas chroma-
tography and then fractionally distilled. De-
ionized and doubly distilled water was used as
the second component. The intensity of scat-
tered light was measured in two photometers
with different optical geometry and at two dif-
ferent wavelengths, X, =435.8 nm and 632.8 nm.
Measurements at the Hg line were carried out
in the photometer" with an angular range ex-
tending from 11' to 140'. The temperature
of the sample cell could be controlled to within
0.001'.

Both scattered intensity and quasielastic Ray-
leigh linewidth measurements were made at the
632.8 nm wavelength using the laser homodyne
self-beating spectrometer which has been de-
scribed elsewhere. ' In most of the present work,
we have used a dc excited laser with an output
power of 20-25 mW. Our spectra were obtained
either with a General Radio 1900A wave analyzer
with a low pass filter, or with a spectrum analy-
zer using a Varian C-1024 time averaging com-
puter.

D= lim I'/K'=d[(T/T ) —1+t&]
K 0 p

where the appropriate parameters d, y*, and

tp are also presented in Table I.
First, we may note that the fitted exponents y

and y * do remain relatively constant with chang-
ing concentration. Second, although the tem-
perature dependence of the reciprocal intensity
IC 0

' and the diffusion coefficient D differ con-
siderably (y *cy ), Figs. 1(a) and 1(b) demon-

015

4. TREATMENT OF DATA

The experimental data were handled as follows:
All intensity readings were corrected for densi-
ty, dust, and attenuation and then related to a
scattering standard (Cornell 60) in order to com-
pare our results from different samples in the
presence of slight changes of the incident light
intensity from day to day. We were not able,
however, to compare scattered intensities mea-
sured in different photometers at different wave-
lengths directly, except by superimposition of
the scattering curves using K as the appropriate
variable. For a given temperature and concen-
tration, we first extrapolated each set of inten-
sities or linewidths to zero scattering angle. De-
tails concerning this procedure have been given
in previous work. ' 4

We shall analyze the data first by assuming
that Eqs. (6) and (7) are valid, since these equa-
tions provide a way of determining Pf. Fig. 1(a)
shows a plot of the zero-angle extrapolated recip-
rocal scattered intensity IC 0

' versus the tem-
perature distance from the phase separation
temperature Tp. The measured points can be
represented by the equation

0
-05

T
15

'~
I

O

OI
Y

0
EtiO

I
I

I

I
I

I
I

I
I

I
I

I

05 10
r-7, ['C ]~

0 5 1.0
T-Ts [ C]

15 2.0

f =f[(T/T )-1+f ]
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in which the constants may be determined either
graphically, or numerically by a least-squares
method. The data taken at X, = 632.8 nm together
with results from X, =435.8 nm and at other con-
centrations are summarized in Table I. In Fig.
1(b) a similar plot shows the temperature de-
pendence of D as fitted to the formula

FIG. 1. (a) Reciprocal scattered intensity extrapolated
to zero angle for isobutyric acid in water versus T —Tp.
The curves represent functions of the form I& 0
=f f(T//T ) —1+ t ]& with the parameters listed in Tablep S
I. (b) Plot of a=limK OI'/K as a function of
T- T . The curves represent functions of the formp'
a=d((T/Tg —1+tT]~ with the parameters listed in
Table I.
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TABLE I. Values of T -T, the exponents y and y, and the coefficient d [see Eqs. (11) and (12)].

p sp'

223

Sample
IBW

Mole fraction
IB acid t, T ['C]

dx10
[kHzA. ] tZ ~ T [C]

04
05
07
32
12
13
25

0.0906
0.0966
0.102
0.114
0.130s
0.1405
0.1615

0.30
0.12
0.045

~ 0
0.045
0.133
0.45

1.26

1,30
1.24

1.27

& 1.1

6.85

4.8p

6.0

0.30

0 ~ 133

0.67

0.68

0.67

strate that, to within the limits of error of our
measurements, an extrapolation of either curve
at a given concentration intersects the tempera-
ture axis at the same point. In other words, we
observe that ts =tZ . This is remarkable since,
as noted above, one might well have expected dif-
ferent pseudospinodal curves to characterize the
intensity and the diffusion coefficient. In any
event since for a given concentration the ex-
trapolated values of ts and tp coincide to within
a fairly small experimental error, we can con-
struct the pseudospinodal curve explicitly by
subtracting Tpts or TptI from the phase sepa-
ration temperature Tp(X). [Again it should be
emphasized that this construction rests on the
assumed empirical formulas (6) and (7) and need
not tell us anything about any true spinodal curve. ]
In order to characterize the shape of the pseudo-
spinodal curve in the neighborhood of the critical
mixing point we employed a logarithmic plot of
the temperature differences

the exponents and 0.03-0.05' in the temperature
constants for tsTp and tZ'Tp.

We have previously reported intensity and line-
width studies at the critical solution concentration'
and at one additional concentration. 4 Now we will
discuss measurements along the critical isotherm.
A plot of the reciprocal scattered intensity extrap-
olated to zero angle at the critical temperature
versus the molar concentration X, of IB is shown
in Fig. 3(a) and a similar plot of D = lim& 0r/
K' versus X2 is in Fig. 3(b). The reciprocal
scattered intensity extrapolated to zero angle was
found to be approximately proportional to (X,'
—X, )'" along the critical isotherm. Although
we have not explicitly corrected the intensity

26.2

&T =(T —T )y lf IT
sp c p s, I p

260

versus concentration differences. A relation of
the form

AT ~(X' —X") ' "l/'Rf

sp 2 2
(13)

where X, represents the mole fraction of the
second component of the binary system, could
be fitted by a least-squares calculation with 1/Pt
= 2.7+ 0.3. (The superscript primes and double
primes refer to the right and the left half of the
region under the coexistence curve. ) In Fig. 2

the dashed curve represents a fit of our extrapo-
lated points by Eq. (13) assuming, for convenience,
1/Pt to be 3. The concentration differences can
also be expressed in terms of X2 —Xc, and X2'
—Xc corresponding to two branches of one curve;
one finds only slightly different coefficients on
each side of the critical mixing point. The solid
line represents the coexistence curve as the best
fit of the experimental studies reported in a pre-
vious paper. ' These measurements are only pre-
liminary and bear an uncertainty of about 5% in
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FIG. 2. Coexistence and pseudospinodal curves for
the system isobutyric acid and water. The solid curve
represents earlier phase-separation-temperature

I
determinations (Ref. 3) and has the form AT=10 IX2II
-X& ( 'C. Dashed curve is the pseudospinodal curve

I II
of the form ATsp 2 37+10 IX2-X2 I

'C and connects
the experimental points obtained by extrapolation of
intensity (filled circles) or linewidth (triangles) mea-
surements.
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values for the concentration dependence of the
refractive index, we estimate that the appropriate
correction of the exponent would be less than
10-15% i. e. , about +0.40, by using Eq. (1) and

the Lorentz-Lorenz relation. A similar treat-
ment of our linewidth data in Fig. 3(b) gives
approximately D ~ (X,'- X,")'" In linewidth
studies along the critical isotherm corrections
due to the concentration dependence of the re-
fractive index become less important. Points A
and I3 in Fig. 2 indicate the location of the addi-

tional linewidth experiments made with a sample
(IBW 32) at the critical solution concentration but
below its critical solution temperature. These
linewidth results were found to be consistent with
our usual measurements in which we approached
the phase separation temperatures from higher
temper" tures at fixed concentrations.

5. RESULTS AND DISCUSSION

Now along the critical isotherm, T = T, the
analog of Eq. (9) for D has the form

O.I5 .
ISOBUTYRIC ACID I

T ~ T, ~ 26.086 C

(a)

D=(d/T )(X'-X")y '

More generally from a homogeneity or scaling
assumption we would similarly find that

O.IO-
D (X,'-X,") ', (T= T ). (14)

0 \

0.08 0.10 O.I2 014
M OLE F RAC T ION ISOBUTYR I C ACID

With the observed values y* = 0.67, and I/pT = 2.7,
we find y~/Pf =1.8 which compares quite favorably
with the directly determined exponent of 1.75 indi-
cated in Fig. 3(b). This is evidence in favor of
the scaling of the diffusion coefficient D(X, T).
Similarly, we can obtain a relation for the extra-
polated zero-angle scattered intensity. Assuming
that the exponent y remains fixed in Eq. (9) and
that changes in the coefficient f are relatively
small, one concludes that along the critical iso-
therm one should have

I SOBU T YR I C ACID IN W

26 086 C

IO

Ey 50

C

0
0.08 0 I 0 O. I2 O.I4

INSOLE FRACTION ISOBUTYRIC ACID

I"IG. 3. {a) Zero-angle reciprocal scattered intensity
IC p at the critical isotherm as a function of con-
centration. |b) Plot of a = lim~ p I'/K at the
critical isotherm as a function of concentration.

(X'-X")y'P, (V'=T ).
/

CO 2 2 ' c'
Again this result follows much more generally
from the usual homogeneity or scaling assump-
tions for I& 0(X, T).' Indeed in standard notation,
and with Pf=P, this result simply expresses
Widom's exponent relation 6- 1=y/P. '&" Now
with the observed values y=1.24 and I/PT=2. 7
[see Table I] we find y/PT =3.3, a value somewhat
higher than the value 2.85 estimated directly from
the data shown in Fig. 3(a). (The lower limit
I/PT ~ 2.4 gives y/Pf ~ 2.98. ) In view of the lack
of corrections for the variation of refractive in-
dex and the relatively large value of the exponent,
we do not regard this discrepancy as significant.
%'e do, however, have reasonable confidence in
the precision of the experimentally determined
values of y and y*.

The linewidth measurements on the coexistence
curve have been made by approaching the phase
separation temperatures from the homogeneous
region (as indicated in Fig. 1) and also by making
measurements below the phase separation temper-
ature in the two-phase region. Points A and B in
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Fig. 2 gave an observed D of about 3.2x10' kHz
A'. Alternatively, D may be computed from Eq.
(6) with the result

D=1 3 x10 (T —T ) =2 8x10 kHzA .
p sp

The agreement is surprisingly good in view of the

small temperature distances between ATsp and

AT. For the IBW-13 sample with Tp —Tsp = 0.133'
(Table 1), we obtain a computed D at Tp of

D = 1.3s x10s(0.133) .s~ = 3.4 x 104 kHz As,

which also agrees well with the measured D of

3.4x10' kHz A' [as shown in Fig. 1(b)]. We re-
mark that we have used T/Tp as the reduced tem-
perature in the equations because, experimentally,
we can determine the phase separation tempera-
ture of the sample under investigation more pre-
cisely (to within 0.001 ) than the deviation from
the critics, l solution temperature (which is only

observable directly for X=Xc).
The previous measurements on the coexistence

curve and the above analysis based on Eqs. (6)
and ('f) indicate that P & —,

' and P't & -'„although with-

in the error limits of our experiments it is still
possible to maintain that J3~= —,'. We are, however,
inclined to believe that both P and P~ are some
10/p larger than —,. Nevertheless, if we accept
Eqs. (6) and (7) as valid for the determination of

the pseudospinodal curve and thence of P~, there
is no doubt that Pj (like P) is less than —,'. Con-

versely, as our data have unambiguously led us to
P~ = —,', it follows from the arguments developed
in Sec. 2 that we should discard Eqs. (6) and (7)
as a complete representation of the critical opal-
escence in the homogeneous phase, since even
though our present measurements have not been
sufficiently extensive or precise to demonstrate
the inconsistency directly, the implications re-
garding the behavior across X=X& for T & T~ are
not acceptable. "t"
It is worthwhile to attempt, tentatively, a more

general test of the homogeneity and scaling laws
with our data. If we follow the initial approach
of Green and co-workers" we might plot fc 0 1/

(r 1}~vers-us (X—Xc)/(r 1)PXc Then th.e

scaling relation takes the form'

with ax= (X-Xc)/Xc. We may then plot, say,

aI

r/p
aIC 0 +~x

D(X, T)=Ax Z[(r —1)/Zx ' ].
1.0 t

critical ieochore
(.SX*O, T&Tc )

0.6i-

04

coexi stance

0.2-

; critical i sother m ( T * Tc }

curve (,'tt oc(T- t}i }

S= versus U =
r —1+ Ax

(18)
where a is some conveniently chosen constant.
Such a plot is shown in Fig. 4. The critical iso-
chore (Ax =0, T & Tc) will now be represented by

the point (1,1) in the (S, U) plane. The point at
U = 0 represents the critical isotherm while the

coexistence curve corresponds to the point U

= Umin, Superimposition of the values of IC 0
at different compositons for X &Xc could be ac-
complished with a reasonable degree of precision
by assuming, for simplicity, the values y=4 and

P= —,. [Since only relative intensities are avail-
able at each concentration the constant a in (18}
had to be treated as an adjustable parameter. ]
As evident from Fig. 4, however, the data for
X&Xc (in particular, the squares denoting the
13.09% IB solution) do not appear to scale well
with the same values of y and P. We have not in-
vestigated this point more closely; it may be as-
sociated with the slope of the rectilinear diameter
of the coexistence curve and consequent asym-
metry, as visible in Fig. 2. For a more stringent
test of the scaling hypothesis it would be desirable
to have more extensive data particularly for con-
centrations closer to critical. By the same token
the nine observations made inthelinewidth studies
are insufficient for even a rough test of the cor-
responding scaling hypothesis

= (v' —1) Y [(X—X )/I& —1 I X ],
C, O c c (16) i

-0.4 -0.2 0.0 0.2 04 0.6 08 I.O

U

where the two branches Y+(w) and Y (w) have to
match as their argument w= (X —Xc)/i& —1 IPXc
approaches infinity, or, in other words as the
critical temperature is approached (r -1) at fixed
X WXc. An alternative approach, which avoids
separate branches joined only at zv = ~, is to write

-1 „ lp [( 1)/n /p]
C, O

FIG. 4. A scaling plot of the scattering intensity in
terms of the variables S =S (Ig 0, X) and U= U {X,T) as
defined in Eq. (18). The values y=P and P= s have
been assumed. Filled circles, hollow triangles, hollow
circles, and filled squares represent 9.06, 9.66, 10.2,
and 13.09 mole % of isobutyric acid in water, respec-
tively.
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