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A generalization of the Boltzmann equation for a classical Lorentz gas with hard-core inter-
action is presented. The N-body streaming operator is evaluated directly from the dynamics,
thereby avoiding the binary collision expansion. A cluster expansion is developed in a form
that results in exponential decay of the dynamical correlations and regularizes all divergent
diagrams. Virtual collisions, represented by virtual binary kernels, are related to config-
uration-space restrictions, which in turn are responsible for the collisional damping. A

prescription is given for the convergent l-body collision integral.

I. INTRODUCTION

An outstanding problem in the kinetic theory of
dense gases is the derivation of higher density
corrections to the Boltzmann equation' ' and to
the transport coefficients. ' ' A related problem
is the generalization of the Boltzmann equation
for the Lorentz gas, ' a system composed of a
large number of fixed scattering centers and a
small number of no»interacting scattered particles.

The Lorentz gas provides a useful model for the
study of the kinetic theory of dense gases. It con-
tains many of the features of dense-gas theory,
yet it is more tractable due to the linearity of the
multiple collision integrals in the particle distri-
bution function. Hauge and Cohen" studied a spe-
cial case of the Lorentz gas known as the Ehren-
fest wind-tree model. They obtained all contribu-
tions to first order in the density beyond the Boltz-
mann term for the self-diffusion coefficient. Van
Leeuwen and Weijland" evaluated the self-diffu-
sion coefficient for a two- and a three-dimensional
hard-sphere Lorentz gas obtaining the first loga-
rithmic density-dependent terms. This paper dis-

cusses a divergent-free generalization" of the
Boltzmann equation for a Lorentz gas with clas-
sical hard-core interaction. "

The appropriate variable describing the Lorentz
gas is the particle distribution function

It is the integral over all scattering center posi-
tions f„... , g&, of the joint particle-scattering
center distribution function, D(1, .. ., N; t ). We
assume that D obeys the Liouville equation and
has the initial value

D(1, ..., N;0)=Z 'W(1, ..., N)f(r, p;0), (1.2)

W(1, . .., N) =e

where 4 is the total potential energy of the scat-
tering centers and the scattered particle.

The initial value of D [Eq. (1.2)] allows a ran-
dom distribution of the scattering centers consis-
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tent with the exclusion of any overlap of the hard
cores. The function W(1, .. ., N), isunitywhennone
of the hard cores are overlapping, and is zero
otherwise.

We describe briefly the & method'4 for deriving
an equation satisfied by the particle distribution
function. Using the initial-value solution of the
Liouville equation and the initial-value assumption
on D, we may write the Laplace transform of the

pa, rticle distribution function fe(r, p) as

we discuss may also be applied to dense gases
and need not be restricted to hard-core potentials.
For a given momentum of the scattered particle,
we decompose the configuration space into regions
in which a collision with a scattering center may
or may not take place. Since the interaction is
strictly pair wise, it suffices to decompose the
relative position of the particle with a single scat-
tering center, r&

= r —g&. The entire space of
r, denoted by /&, consists of the regions

f (r, p ) = I' (r, p )f (r, p; 0),

r, (r, p)

A. =e(o- b )8(.r ):. the particle aims to
collide with scatter-
ing center j in the
past; (2. 1)

= f"

fdic

" dg S (I, . .., N)Z -'W(1, . . . , N),
1 N &

''' ' N
(1.8)

where Se(l, . .. , N) is the Laplace transform of the
time displacement operator, or the streaming
operator. " The equation satisfied by the particle
distribution function is

ef (r, p) f(r, p;0)-+v ~ (8/er)f (r, p)

Z. =8(o b. ) e(-. '. ): the particle aims to
collide with scatter-
ing center j in the
future; (2. 2)

the particle over-
laps scattering
center j; (2. 2)

I =8( -ob ). 8( ~. . ) 8-(~'. ):

=K (r, p)f (r, p),

K (r, p)= S -'(I —S )I

N =8(b. —o).: the particle does not aim
to collide with scattering
center j. (2. 4)

S = [e + v ~ (8/8 r ) ]
- ' .

The requirement that f~ (r, p ) obeys Eq. (1.7) for
arbitrary initial-particle distribution function, re-
sults in the expression for K& (r, p), Eq. (1.8)."
The generalized collision operator Ke (r, p) de-
scribes the change in fz (r, p) due to all interac-
tions with the scattering centers.

The remainder of this paper is concerned with
the evaluation of the generalized collision operator.
In Sec. II, the (Laplace transformed) streaming
operator is evaluated directly from the hard-
sphere dynamics. The successive interactions
of the particle with the fixed scattering centers
are represented by products of binary kernels
(bins. ry collision operators). " In Sec. III, the
operator I'q (r, p), which determines the time
evolution of f (r, p; t ), is expressed as a cluster
expansion. We find that the effect of multiple
collisions give rise to a collisional damping such
that the dynamical correlations decay exponen-
tially for large distances. In Sec. IV, we derive
a convergent generalization of the Boltzmann col-
lision integral for a hard-sphere Lorentz gas.

The unit-step function is defined by 8(x) =1 for
x& 0 and 8(x) =0 for x ~ 0. The collision param-
eters are the hard-core radius cr, the impact
parameter 5&, and the time the particle moves
freely from the initial position to the hard-core
boundary

T. =[r. v+(o' —b ')'") vj (2. 5)

The space of r& is the sum of the four regions

l. =A. + Z. +I. +N. ,

The streaming operator is evaluated for all
initial nonoverlapping configurations

modulo a set of measure zero, since the regions
exclude the boundaries t rj t = o and b&

= o. The
entire configuration space of N scattering centers
is expressed as the product

N
(A. +Z. +I +N. ) . .

j=i '

II. EYALUATION OF STREAMING
OPERATOR

The streaming operator is evaluated directly
from the hard-sphere dynamics. The procedure

W(1, . . ., N)S (1, ... , N)

N

g (A. + Z. +N. ) S (1, . .. , N) . (2. 8)
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e may commute W(1, . . ., N) and Se (1, .. ., N)in the

expression for I'z (r, p ) [Eq. (1.6)], since initial
nonoverlapping configurations transform into
final nonoverlapping configurations and vice
versa. " We first decompose the configuration
space into the region where no interactions take
place and the region where at least one interaction
can take place

N
W(l, . . . , N)S (1, . . . , N) = g (Z. +N )S.j )g=1 S B (j)=A. e f S(r. )(R. s

E' j j j (2.12)

We introduce the binary kernel representation.
We have shown that the hard-sphere dynamics
can be decomposed into three elements: unin-
terrupted free streaming, represented by 8&,
free streaming to the hard-core boundary followed
by a rotation of the particle momentum, repre-
sented by S(r )Sj, and free streaming to the
hard-core boundary with no rotation, represented
by S(rj )(-). The latter two dynamical situations
can be represented with binary kernels

N

["I 'I ' ' I' a]j=1 kwj
S B'(j}=A e&. S(~. )(-}S

E'
{2.12)

xA.S (1, . . . , N}. (2. 7)

The first term in Eq. (2.7) contains the condition
that the particle either aims to collide with a scat-
tering center in the future or does not aim to col-
lide. Since S&(1, . . . , N) streams the particle back-
wards in time, it reduces to the free streaming
operator Se =[e+v ~ (8/Sr}] '. In the second term,
the particle aims to collide with scattering center
j (in the past) before encountering any of the other
scattering centers. For times t less than v&, the
particle does not reach the hard-core boundary
and S&(l, . .. , N) generates only free streaming

S (1, .. . , N} f'j dte S(t).
0

(2. 8a)

S (1, . . . , N)

—f dt e S(r . )(R.s(1, . . . , N; t —r . ) .(2.8b)
Tj

The free-streaming operator is denoted by S(t)
= exp(- fv ~ 8/Sr), and the momentum rotation
operator is denoted by

For times t greater than 7j, the particle reaches
the hard-core boundary, undergoes a real collision,
and continues streaming (with interaction) along

In the real collision kernel Sz B&(j ), Aj ensures
that the particle aims to collide in the past, S(r ).
generates free streaming to the hard-core boun-
dary, Q rotates the particle momentum, and S&

generates further free streaming. In the virtual
kernel S&B~(j), the rotation operator is replaced
by (- 1). The virtual (or noninteracting) binary
kernel is introduced to simplify the representation
of those regions of configuration space where no
collision occurs. In the example of Eq. (2.11),
which may be written

f 2 dfe S(f) =S S B (j), (2.i4)

the virtual kernel is employed when the particle
aims to collide with a scattering center but does
not stream freely for a time long enough to reach
it. A second use of the virtual binary kernel is to
represent the dynamical situation where a collec-
tion of scattering centers is prevented from inter-
rupting the particle's free streaming to the hard-
core boundary of scattering center j.

We demonstrate the latter use of the virtual bi-
nary kernel by transforming the configuration space
restrictions in Eq. (2.7) into a sum of products of
virtual collision operators. These conditions (of
not interrupting the particle motion} may be rewrit-
ten

[A e(7 —~. ) +Z +N ]A.
k

A A
(R.v =v —2v o o', (2. O)

(2. iO)

= W(1, . .. , N) II [1-A e(r. —r )]A. .
k g 1

(2.15)

The free streaming in expression (2.8a) over the
time interval 0&t & vj can be represented as free
streaming for an infinite time minus free stream-
ing for time t &7j

f j die s{f)

=S —f dte S(r. )S(f —r). {2.11),
7j j

The right-hand side of Eq. (2.15) is the product of
the factors: One minus the condition that a scat-
tering center interrupts the particle motion. The
function W(1, . . . , N) ensures the exclusion of hard-
core overlap. The conditions of interrupting the
particle motion can be represented with the virtual
binary kernel as in Eq. (2.14). Let the sum of
products of virtual kernels be denoted by
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-1
(1, . . ., j —l, j ~ 1, . . . , N)= (1

— Z 8 (8))
k~j (2. 16)

The equivalence of the above representation
of W(1, . . ., N)Sz (1, . . . , N} with the binary col-
lision expansion" is readily demonstrated-

The configuration space restrictions in Eq. (2. 15)
can be written

W(l, ~,Nl II (-A„S ( . — ))
k~j

xA. e j S(~. )=W(1, . . ., N)

xS o(l, . . .,j —l, j+1, . . ., N)A e fS(s ).

Equation (2. 17) is verified by expanding the sum of
products in Eq. (2. 16) and applying the streaming
operator in B~(k) to all r -dependent terms to its
right-hand side: S(7)F (r ) =F(r —v s. ). Equations
(2. 14), (2. 15}, and (2. 17) demonstrate that all con-
figuration space restrictions in the streaming op-
erator, except the restriction of no overlap, can
be represented with virtual binary kernels.

As a result of the above manipulations, the
N-scatterer streaming operator can be written

W(1, . . ., N)S (1, . .., N}

N -1
lv(l, . . . , N)s (v —r 8 (j)

j=1
-1

)V(1, . . . , N) S (1 —Z [8 (j) ~ 8 (j)])
j=1 (2. 20)

Using the nilpotent property of the binary kernels,
the expansion of Eq. (2. 20) in products of bina, ry
collision operators B(j ) =B&(j}+B~(j} reduces to
the sum of all products with distinct adjacent la-
bels, i. e. , the binary collision expansion. The
streaming operator can also be written in pseudo-
potential form"

W(1, . . . , N)S (1, . . ., N)

W(1, . . ., N) S (1, . . ., N) = W(1, . . . , N)
B(j)S -'=e(o-h. )6 (r-. ) (61.—If, (2. 22)

x S +S Q (ol, . .. j S— l, j+1, . . . , N)

x[8 (j) 8 (j)S W(l, . . . , N)S (1, . . . , N)]).
(2. 16)

W(1, . . . , N)S (1, . . ., N)
N -].

= W(1, ~ ~ ~, N)S (1
— r 8 (j) )j=l

(2. 19)

The operator o without labels denotes o (1, .. ., N).
The function W(1, .. ., N) is redundant when placed
to the right of the operator B'r(j )S& 1, since the
conditions on its left-hand side exclude hard-core
overlap. The streaming operator [Eq. (2. 19)]
generates sequences of real collisions, as repre-
sented by the real binary kernels. Each real col-
lision is preceded and followed by restrictions on
the scattering centers which prevent interruption
of the particle motion, as represented by the sum
of products of virtual binary kernels in the cr

operators.

If we solve this recursion relation for W(l, .. ., N)
x Sz (1,.. . , N) and make use of the nilpotent property
of the binary kernels, " then we obtain the repre-
sentation

where 5 is the Dirac 5 function.
The method presented here of evaluating the

N-scatterer streaming operator (beginning with
the hard-core dynamics) leads to the binary col-
lision expansion and circumvents the problem of
evaluating the binary collision operator for all
configurations, overlapping and nonoverlapping.
In the paper of Ernst et al. , " the binary collision
expansion is used as a starting point, and the vari-
ous binary collision operators appearing in the
literature are discussed as to whether they cor-
rectly represent the hard-core dynamics for non-
overlapping configurations. It is of interest to
have these two reciprocal developments relating
the hard-core dynamics and the binary collision
expansion. A rigorous evaluation of the binary
collision operator for hard-core interaction has
not been published, "however, it can be bypassed
using the approach of this paper.

III. CLUSTER DECOMPOSITION

An expansion of the N-scatterer dynamics, con-
tained in the particle distribution function [Eq.
(1.5)] in clusters of I-scatterer dynamics is us-
ually derived from the Ursell-like expansion of
the streaming operator":
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S, (i, . .., N)= Z
BC(1, . .., N)

(3. i)

The sum is over all subsets of the set (1, ..., N).
As a result of this cluster expansion, we obtain
an expansion of the operator re (r, p):

N
1I' (r, p ) = S + Q —,J ~ f dl' ~ ~ dg

1
E! 1 l

x n(l, . . ., l}U (1, . . ., l) . (3.2}

The reduced distribution n(1, . . ., l) is given by

n(1, . . ., l) = [N!/(N —l)! ]

x J ~ .Jdf ~ ~ df Z 'W(1, . .., N) . (3. 3)

The cluster streaming operator U(1, .. ., l) may
be written succinctly

The divergence encountered in the usual cluster
expansion [Eqs. (3. 1}-(3.5)] is a consequence of
allowing the particle to interact with l-scattering
centers in the entire configuration space of the
N-scattering centers. The possibility that other
scattering centers can interrupt (or interfere with)
the particle motion decreases the probability of
long free streaming between successive real col-
lisions. We can expect the virtual collisions to
play a role in the collisional damping (reduction
of the probability of long free streaming), since
the virtual binary kernels have been shown to rep-
resent the configuration space restrictions of non-
interruption of the particle motion.

We discuss a modified cluster expansion that
explicitly demonstrates the connection between
the products of virtual binary kernels in the 0
operators and a collisional damping. We cluster
expand the streaming operator of Eq. (3. 7a) so
that all virtual binary kernels are retained in each
term

U (1, . .., I) = S B(11.. ., l ), (3.4) Z U (I, ..., NIB),
BC(1, . .., N)

(

the expansion of
l

(I —Q [B (j)+B (j)]) '

1

where B(1, . .., l ) = only those products in
U (1, .. ., NlB) = only those products in the

expansion of Eq. (3. 7a, )
that contain all labels
of the set 9. (3.9)

(3. 5)that contain all l labels.
It is well known that this cluster expansion

[Eq. (3. 2)] leads to divergent collision integralsP'
Kawasaki and Oppenheim" first demonstrated
how to sum the most divergent contributions using
a sum over ring diagrams. The technique has
successfully been applied to both the moderately
dense gas" and the Lorentz gas. ""

We demonstrate a modified cluster expansion
that is equivalent to a summation of all divergent
diagrams. The long-time divergence of all col-
lision integrals is thereby regularized. The pre-
sentation is simplified with the following approxi-
mation: We allow overlap of the hard cores

Z W(1, ..., N)S (1, . . ., N) V S (1, ..., N),

(3. 8)

The modified cluster expansion [Eqs. (3. 8) and
(3. 9)] results in the expansion of r&

N
r(F, )=Br (, ),

l=o
(3. 10)

( I)(-

df ~ ~ dg V U 1, ..., NI1, ..., l,~ ~ ~ ~ ~
~ ~ ~ ~ ~

(3.ii)
where the superscript l denotes the number of
real collisions [U(1, .. ., Nl 1, . .., l) contains the
full dynamics for scattering with l scattering
centers].

The first term in Eq. (3.10) represents stream-
ing without interaction

N --1
S (1, . . . , N)=S a 1 —QB (j)o

N -1
=B ( —E [B (j)+B (j)])

1

(3. 7a)

(3. 7b)

= V J ~ ~ Jdgi" df S o(1, . . ., N)

(3. 12)

and let N!/(N —l)! V nin the li-mit N-~, where
l l.

n =N/V is the density of scattering centers.

The collision frequency v is given by

v = —n 1dF„B (1)S =nv J dbi, (3. iS)
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where b, = r, & v. Thus, the sum of products of
virtual binary kernels in o (1, ~, N) gives rise to
an exponential damping of the time of particle free
streaming.

We verify the evaluation of 1"&"). The configura-
tion space restrictions may be written

S o(1, . . ., N)= f dt e

N
x 1 QA. 8(t ~. )+-Q A.A. 8(~. —~. )8(t- ~. )

A.A. A 8 (r —r. ).
u

The effective collision frequency depends on the
geometry of the particle trajectory (in this case
on the angle between v and S,v and the times 7,
and t ). It satisfies the inequality v' ( v with the
equality holding only when the trajectory is recti-
linear. The collision frequency v' is less than v

[Eq. (3. 13)], since the volume in which a scat-
tering center can be located while its hard-core
boundary intersects the trajectory, is less than
the volume swept out by the hard-core cross sec-
tion in a time 7, which is v~ Jdb.

The term representing l real collisions is given
by

r (r, p)=(n /I!)(I)

x & ( — ) 8 (( —
&) ~ }s( t) (3. i4) x f fd"l. dF S,B'(I, . . . , I), (3. 18)

Equation (3. 14) results from expanding o'(1, . . ., N)
in a sum of products of virtual binary kernels and
explicitly writing the Laplace transform integral.
The restriction can be written in the more trans-
parent form

S o(I, . . ., N)

= f dt e II [1 —A. 8(t —r )]S(t)..
0

B'(1, . . ., I) = only those products in

that contain all Z labels,

B (j ) = 8(o —b. ) (87)(R. S~+v .

(3. 18)

(3. 20)

S& o (1, ..., N) allows all configurations of
the scattering centers that do not interrupt the
free streaming for a time t. The exponential
damping factor is obtained from the integral
over the configuration space specified by Eq.
(3. 15), in the limit as N-~.

A typical term in I, representing a single(1)

real collision is

S (TB (I)o= g [1 —A. 8 (~ —~, )] A
1 g 1j41

xe 'S(r, )6t,

II [1 —A 8(t —~ )]S(t) (3 18)

v'=nV /~ .
C

(3. IV)

The scattering centers ~2' ' 'y f N are prevented
from interrupting the particle motion before and
after the real collision. They can occupy the
entire volume V except for the region in a collision
cylinder of volume V . Scattering center g& is in

Vc whenever the hard-core boundary (the hemi-
sphere whose outward normal vector n satisfies
n ~ v & 0) intersects the pa.rticle trajectory. If 7

is the duration of the trajectory, then an effective
collision frequency v' may be defined as

N -1
s (1, , N) = s {1-rB(()q)

1
(3.31)

Equation (3. 18) results from integrating the N
scatterer positions HZ+1 ~ ~ (~ over the allowed
volume in configuration space as determined by
the o operators.

Each collision event in I'( ) (comprised of a
sequence of real collisions with Z scattering
centers) contains exponential damping of the par-
ticle free streaming. The variable collision fre-
quency v' depends on the set of independent col-
lision parameters specifying the particle tra-
jectory. Virtual binary kernels or virtual colli-
sions do not appear explicitly in the cluster opera-
tor B'(1, . . . , I) rather they are contained implicitly
in the exponential damping factor. It is precisely
the nonconstancy of the collision frequency that
renders the modified cluster expansion [Eq. (3.18)]
unsuitable for deriving a generalized collision inte-
gral. Whatever advantage there may be in a rep-
resentation containing only sequences of real col-
lisions, is outweighed by the complicated depen-
dence of v' on the collision parameters. Thus,
we find it necessary to develop a modified cluster
expansion that contains some virtual binary ker-
nels explicitly, while retaining the essential colli-
sional damping.

Therefore, we write the streaming operator
in the following form:
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B(j)=B (j ), ifj is a label con-
tained in an irre-
ducible sequence
which is not re-
peated in the se-
quence,

irreducible sequence
which appears only
once in the sequence,

185

= (B (j) +B (j))y, otherwise,

(3. 27)

=B (j )+B (j ), otherwise,

if q does not appear
between labels in the
same irreducible, se-
quence,

(3.22)

otherwise . (3. 28)

y = $ $ lf y occurs be-6+v
tween two labels
in the same irre-
ducible sequence,

otherwise, (3.23)

o' = o(1, . . ., N), such that the
labels of the B (j)
kernels do not ap-
pear elsewhere in
the product. (3. 24)

x f ~ f dg dg U (1, . .., l), (3. 25)

where

U (1, . .. , l) = S xM all products in
[l IBM( ')] -1

containing all l
labels, (3.28)

(j) = B (j)y ifj is a label in an
r.

An irreducible sequence is a sequence of labels
that cannot be factored into disjoint products.
Our rearrangement of the streaming operator
places all virtual binary kernels that will contri-
bute to the exponential damping factor in the 01

operators. The remaining virtual binary kernels
do not contribute to the damping and therefore
will appear explicitly in the cluster expansion.

We perform a cluster expansion of S& (1, . .. , N)
[Eq. (3. 21)] in the same manner as Eqs. (3.8)
and (3.9) by collecting together all products of
B(j) operators having the same set of labels. The
integral over the scattering center positions of the
virtual binary kernels in the 0' operators results
in an exponential damping factor with a constant
collision frequency v. In the previous collisional
damping [Eqs. (3.18)-(3.20)], all times of particle
free streaming were damped with a variable col-
lision frequency v',. in the present scheme, only
those times of free streaming between collisions
(real or virtual) in the same irreducible sequence
are damped with a constant collision frequency v.

The modified cluster expansion of Se (1, . .., N)
[Eq. (3. 21)] results in the l-scatterer operator,

r (r, p)=(n /f!)(f)

The modified cluster expansion [Eqs. (3.21)
—(3. 28)] may also be obtained from a resumma. —

tion procedure similar to the ring-diagram sum
of Kawasaki and Oppenheim. " One would sum
over all virtual binary kernels (contained in an
irreducible sequence) whose labels do not appear
elsewhere in the product. The ring-diagram sum
for the Lorentz gas sums only over those irreduc-
ible sequences classified as rings, i.e. , those
sequences containing only two repeated labels.
The present scheme regularizes all irreducible
collision events.

Since we are considering the Lorentz gas with
hard-core interaction, the collision frequency

~= —nfdf B (1)S
1

is finite. In order to extend the regularization
procedure to more general interactions, where
v diverges, it is necessary to sum over both real
and virtual binary kernels to obtain a finite col-
lision frequency

—n f df [B (1)+B (1)] S

Such a modification is accomplished with the sub-
stitutions: Bn(j )-Br(j )+ BU(j ) in Eq. (3. 24) and
B (j)-1 in Eq. (3. 22), whenj is a label in an
irreducible sequence which is not repeated in the
sequence.

IV. GENERALIZED COLLISION INTEGRAL

I' =$1— K
l=1

ff( )-( /f!)

(4. 1)

The generalized collision integral K& is obtained
by substituting the cluster expansion of r& [Eqs.
(3. 10) and (3. 25)] into the inversion formula,
[Eq. (1.8)]. The transition r&-ff'e, can also be
considered as following from the irreducible fac-
torization of I"&, "or from its expansion in con-
nected diagrams. " The irreducible factorization
of the operator 1 z has the form
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x f ~ f dg ~ ~ ~ d( S [V (1, ~ ~ ~, f)].
1 l zr'

(4. 2)

where [ ~ ~ ]fr restricts the sum of products in
U~(1, . . ., l) to irreducible sequences. The gen-
eralized collision integral is the sum over the
irreducible products in I"&

(4. 3)

We demonstrate that the single-scatterer col-
lision integral correctly yields the Boltzmann col-
lision integral for the Lorentz gas. The first
term in Eq. (4. 3) is given by

lision event, i.e. , it is the time of free stream-
ing from the hard-core boundary of the first en-
counter to the hard-core boundary of the last en-
counter. The sum g is over all irreducible se-
quences (specifying real or virtual collision)
formed from the l labels such that the labels first
occur in the order 1, 2, 3, . . . , and excluding
virtual collisions with a scatterer whose label is
not repeated. The factor, (-), is the phase due
to p, virtual collisions. The variables r' and p'
are, respectively, the position and momentum of
the particle just after the last collision. The
presence of the damping factor e ensures
the existence of the integral over the collision
times in the long time limit e —0.

The l-scatterer collision integral in the time
domain has the form

K S =n fdic [B (1)+B (1)] S (4. 4) l
(nv) f ~ f db ~ db d~ ~ ~ d~

1 l 2 l

Decomposing dg, into components along and per-
pendicular to the particle velocity v, dg, =d6,
x vdw, (db, = b,db, dP, b, = impact parameter, P,
=azimuthal angle) we obtain the Boltzmann colli-
sion integral

K'"'S '=nv f db f(R —1}.
1 1

(4. 5)

db ~ ~ db d7 ~ ~ d~

collision
domain

xQ exp[- (e+ v) ~ ] (-)"f (r', p').
coll (4. 6)

The integral over the independent collision param-
eters has the domain which satisfies the require-
ments of the collision geometry (the product of 8
functions determining the domain are written
symbolically as the "collision domain" ). The
time, 7coll, is the duration of the l-scatterer col-

Ke now discuss the generalization of the binary
collision integral, or the l-scatterer collision in-
tegral. We choose as integration variables the
set (b&, 7& ), where bj is the impact vector of and

Tj the time of free streaming to the first encounter
with the jth distinct scatterer [ we relabel the pro-
ducts in Eq. (4. 2) so that the jth distinct label,
ordering from left to right, is j]. The jth dis-
tinct binary kernel contains the factor Aj, which
determines the domain of bj and v . The 8
functions in all the other binary kernels place
further constraints on the set (bj, v& ) which
satisfy the requirements of the geometry of the
particle trajectory. Thus, we may write the l-
scatterer collision integral

coll

The generalized collision integral is the sum of
formula (4. 7) over the number of scattering
centers.

V. DISCUSSION

We have presented (using the e method) a gen-
eralization of the Boltzmann equation for a hard-
sphere Lorentz gas, which regularizes all diver-
gent terms. The role of the virtual binary ker-
nels in representing the configuration space re-
strictions that prevent the scattering centers (not
participating in a real collision sequence) from
interrupting the particle motion has been demon-
strated. The collisional damping factor has been
shown to stem from these configuration space re-
strictions. In order to obtain a constant collision
frequency, we have found it necessary to retain
some virtual binary kernels (or their equivalent
configuration space restrictions) explicitly in the
generalized collision integral. We have given a
prescription for the l-scatterer collision integral
in the form of a convergent integral over a set of
independent collision parameters. The collision
events contained in the l-scatterer collision inte-
gral comprise all (l label) irreducible sequences
of real and virtual binary kernels (excluding vir-
tual binary kernels whose labels occur only once).
The specification of these events is a rigorous
consequence of the Liouville equation and cannot
be obtained a priori.

The compact formula [Eq. (4. 6)] for the f -scat-
terer collision integral may be replaced (when
making explicit calculations) by the form in which
the collision domain, rotation operators, free-
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streaming operators, phase, etc. , are written
explicitly as products of binary kernels. There-
fore, we rewrite the collision integral as

z s, = (n/t!)

x f ~ fdt; dr. C(1, ~ ~ ~, l)S -' (5 i)
1 l ' ' E+v

g(i, . .. , &) = sum of irreducible products
(containing l labels) of
binary kernels B' (j) and
p~+(j), excluding virtual
kernels whose labels are not
repeated

a«(&)=!) (& b.)b(, . )6t. s~+v

(j) =!!( o b )-b(~. )(-.)S6+v

The exponential damping appears in the modified
free streaming operator

S =(e+v+v s/sr) '.
E'+ v

Note that to write the collision integral in un-
damped form, we would remove the restriction
on the virtual kernels that they have repeated
labels, and would let S&+ v-S&. With this con-
nection to the undamped collision integral, one
can demonstrate the result of van Leeuwen and
Weijland" that the coefficient of the logarithmic
divergence is identical with the coefficient of the
logarithmic density term.

An analogous regularization technique has been
applied to the calculation of the self-diffusion co-
efficient of a moderately dense gas, "and the
equivalence of the diagrams leading to the first
logarithmically divergent term and the first loga-
rithmic density-dependent term can be demon-
strated in two and three dimensions.
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