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Canonical Representation of a Field Theory of Currents
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Canonically equivalent families of spin-zero meson nonlinear Lagrangian Geld theories in which the
underlying symmetry is SU(n) &(SU(n) are rewritten in terms of currents. A completely symmetric theory
is shown to provide a canonical representation of an SU(n) theory of currents of the same structure as
Sugawara's. The model does not provide a representation of Sugawara's Zf: (n) theory of currents; however,

a comparison is made between the two models.

I. INTRODUCTION

'HE possibility that strong-interaction physics can
be formulated in terms of current densities with-

out introducing explicit particle fields has been explored

by various authors, and the numerous merits of such a
theory have been discussed. ' The feasibility of such a
theory was demonstrated by the fact that certain
familiar field-theoretic models (in particular, the quark
model and the neutral scalar-meson model) can be
rewritten in terms of current theories.

Recently Sugawara' has constructed a completely
internally consistent field theory in which the only
dynamical variables that appear are currents obeying
the algebra-of-fields' commutation relations. Even if we

do not take the Sugawara model in its exact (over-
symmetric) form very seriously, it has many attractive
features, and is at worst a further demonstration of the
feasibility of a currents-as-coordinates theory.

With its obvious associations with the algebra of
fields, the Sugawara model was shown7 to be a particular
limit of the Yang-Mills' theory. As a further develop-
ment to the understanding of the model, Bardakci and

Halpern, ' and Sugawara and Yoshimura' have obtained
a canonical representation, closely related to the fT

model, ' of Sugawara's theory in which the algebra of
the charges associated with the currents is that of
SU(2). In this paper we elucidate this approach and
extend it to the case of general SU(rt).

More precisely, we consider families of canonically
equivalent Lagrangian field theories in which the only
fields appearing are a set of E=a' —1 spin-zero mesons
transforming nonlinearly under E(rt) =SU(rt) X

SU�(rt).
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LC, (x),CP, (y)].,=„,=0,

8
+iab;, b(x —y), (2)

Oscar

where a= const, and c;,I, are the structure constants of
SU(n). The stress tensor is given by

fto"= —-'a—'((C'C" ) go"C'C )—
and the currents obey the equations of motion

ct C"—ct"C =-'a 'c; s{C& C"s)

We shall denote this symmetric SU(rt) Sugawara theory

by S„(Co;a).
Sugawara's symmetric E(rt) theory of currents is the

direct sum of two symmetric SU(tt) theories of currents
S (J"+, sc) Q+S„(J";sc), where the currents J"+, and
J",commute at equal times. The currents are defined

through
Je~,= —', (Vo,aA «;), (6)

where V&, and A"; are interpreted as the usual (physi-

"Throughout this paper Latin letters are used for SU(n)
indices and Greek letters for Lorentz indices (p, , v, p=0, 1, 2, 3;
0., p, y= 1, 2, 3).
2015

symmetric —the mesons are then massless. On intro-
ducing canonical quantization for the fields, the currents
defined by Noether's theorem provide a representation
of an SU (n) theory of currents having the same
algebraic structure as Sugawara's symmetric SU(rt)
theory of currents. The model does not, however,
provide a canonical representation of Sugawara's E(rt)
theory of currents.

In Sec. V, for a more complete translation of the spin-
zero-meson model in terms of currents, we introduce a
E(rt) sym-metry bre-aking term into theLagrangian and
write the stress-tensor —current commutation relations.

For completeness and for later reference we will

specify Sugawara's symmetric SU(n) and E(tt) theories
of currents. '

In the symmetric SU(rt) theory of currents, we have
currents C&;, i = 1, . -, S, obeying the algebra-of-fields
equal-time commutation relations"

L'C', (x),C', (y)]„=„,= ic;;&Co&(x)b (x—y),

LC"(*),C (y)]*=.o= c' C ()b( —y)
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cal) vector and axial-vector currents. The stress tensor In terms of the transformation tensors d '~;j," the
in this theory is then Jacobi identities read

gpv gPv +gatv

'[{V",,V",}+{A";,A",}
—g"(V,V„+a,A„)]. (7)

II. MESON FIELD TRANSFORMATION
PROPERTIES AND COVARIANT

DERIVATIVES

Suppose T; and X, (1~&i ~& 1V= zz' —1) are the
Hermitian charges associated with a set of currents t;
and x; and that they obey the E(zz) commutation
relations

~'I
d—'~, t =c,, td

—'~ig, (14)

Bl
d '+, ) —— -d ', )=0)

a&i aM)
(15)

or, since the transformation tensors d '+,, are invertible
(as implied by the notation), Eq. (14) can be written

Bdg& g Bdy& Ic =cLmjdy ady~m.
BM; BM;

[T,,Tj]=[X;,X;]=ic,;pTI„

[T,,X,]=ic;,I,XI..

(8) The important result

(9)

Then the charges Q~;= —',(2';&X,) generate the com-
rnuting SU(N) factors of E (zz). These charges are as-
sumed to be functionals only of a set of A spin-zero
meson fields and their space-time derivatives. Assume
the transformation properties of these fields M;(x) to be
given as

[T,,M,]=ic,, I Mk, (10)

where F,;(M) is independent of the field derivatives and
satisfies": (i) analyticity at the origin M, =O, since
inverse powers of the fields are not defined, and (ii)
consistency conditions arising from the Jacobi identities,
viz. : (a) F,; transforms as a tensor under the SU(zz)
subgroup generated by the T,, and (b) F,, niust sa, tisfy
the equation

BIi,I, BF',I,

F; )=c;,)c)I, M .
83fi BMi

(12)

Two solutions of Eq. (12) are F,,= Ac, jI,MI, [then M
would transform linearly under the E(zz) group). 1«an
be shown that all other solutions of Eq. (12) a«
nonsingular, i.e., F;,(0) = fg... where f is a nonzero
constant, and nonlinear in M, e.g. , &'F,, (0)/&MBMm
&0. Furthermore, it can be shown that the nonsingular
solutions of Eq. (12) are canonically equivalent to one
another. ' In the following, we shall only consider the
fields with nonlinear transformations.

It will be convenient to use the charges Q~, and write

[Q~,,Mj]=i ,'(c;jI„.MI,+F-;j)=id 'g, , (M—). (13)

'4 For a detailed treatment of the tensor F;, in the case of E (2),
see S. Weinberg, Phys. Rev. 166, 1568 (1968).For a full treatment
in the general case E(n) or for the particular case E(3), see
Ref. 12.

i.e., M; transforms as a vector under the SU(zz)
subgroup generated by the charges T;, and

[X,,M;]=iF,,(M),

can be proved directly from Eqs. (14)—(16) after some
algebraic manipulations. "

If we now make the assumption (which is really an
assumption on the symmetry breaking, if any)

[O'Q~, (t),Mj(x)].,=,=0, (18)

then the transformation properties of the field deriva-
tives are determined by the transformation properties
of the fields. The meson-field covariant derivatives are
defined by d~+, ——8&M,d~;;. They are linear in the
meson-field first derivatives, and they transform ac-
cording to the representations (X,O) and (0,Ã), re-
spectively, of E(zz),

[Qy;)d 6j] zc~jkd kk y

[Q.„d";]=o.
(19)

(20)

This can be seen as a direct consequence of the Jacobi-
identity conditions (14) and (15). In terms of the
covariant derivatives, Eqs. (16) and (17) can now be
written, respectively,

g d y~ g d +q= zczjp{d 6j)d ~Jg} ~

dj"+,dI'+, ——dl";d~;, for all p.

(21)

(22)

III. SYMMETRIC LAGRANGIAN

"The notation here coincides with that used by L. S. Brown,
Phys. Rev. 163, 1802 (1967).

Up to this point all the results are algebraic conse-
quences of the equal-time commutation relations Eqs.
(8)—(11)of the fields M, and the charges Q~, (M) whose
existence as functionals of the fields is assumed, and of
the assumption (18). The existence of the functions
d~, j(M) satisfying Eqs. (14) and (15) is known. " '4 In
the following, we proceed to realize the charges as
functionals of M. To do this we will proceed inductively,
for the reason of plausibility, and postulate a Lagrangian
and canonical commutation relations for the fields,
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thereby obtaining the required currents (and hence
charges) by Noether's theorem. We stress, however,
that an alternative procedure at this stage would be
simply to postulate the appropriate commutators [Eq.
(31)] in an apparently ad hoc manner and verify that
the proposed functionals [Eq. (32)] satisfy all the re-
quirements to represent the currents, and then show
equivalence with the Lagrangian formalism. Equations
of motion for the fields are not utilized until Sec. IV.

Consider the construction of a E(n)-invariant meson
Lagrangian 2, which is at most quadratic in the meson
first derivatives and contains no higher derivatives.
First, we note that no nontrivial E (n)-invariant func-
tion of the M; alone can be constructed"; hence there
is no mass term. Accordingly, consider a term of the
form"

2,=L;,(M) 8"M;B„M,=Lp;; (M—)d4~, (M)d„~, . (23)

It can be shown that for E(n) invariance X~;, must be
of the simple form

(24)

where the constant has been chosen so that the La-
grangian contains the conventional kinetic term 2,

,'Bl'M——,B„M;+ . . The required currents C"~„
=

p (t";Ax";) now turn out, according to Noether's
theorem,

i.e.,

7r; =— =2L,, (M) OpM, ,
8(8pM~)

[M, (x),M, (y)]„=„,= [or, (x),or, (y) 7.,=„,=0, (31a)

[or, (x),M, (y)]„=„,= i8;;8(x—y) . (31b)

The currents are now given by

C g,—— ,'f'dp;—,8—M,,

C'~, ——d 'g;,m, ,

(32a)

(32b)

and their equal-time commutation relations are given
by"

[C';(x),C', (y)]„=„,=ic,, C' (x)5(x—y), (33a)

appear instead of C]. Again, in terms of currents, Eq.
(21) takes the form

8 C"~; —8"C ~,= 2f 'c,,—o{C g;,C"~o) . (30)

This is precisely theform of the SU(n) current equations
of motion which arises in Sugawara's theory' [Eq. (5)
with a=o'f'] on imposing Heisenberg's equations of
motion and Schwinger's condition. '7

We now introduce canonical commutation relations
for the fields and the canonically conjugate fields

(25) LC +i(x),C +j(y)]oo=wo[Q+*»o]= 'f'd"+*—-
~(~.M~) CI

=ic,,oC po(x)8(x —y)+i-,'f'8;, 8(x—y), (33b)
ax

[C'+;(x),C ~, (y)]„ „,

to be proportional to the meson covariant derivatives.
Hence in terms of the currents the Lagrangian takes the
familiar current )& current form

2f 'C~+,C„+-,= —2f 'C~,C„—;—
',f '(t~,t„;+x—~;-x„-,) . (26)

l3

=4 f'd '+*'(y)d+~ (y) ~(x—y)
t9$~

2f '({C"—',C" ') t,""-"C' '-C. —')-- (28b)

= —-,'f '[{t;,t",)+{x-;,x";)
g""(to t +xo;—xo,.)]. (29)

Equation (29) has the same form as the stress tensor as
introduced by Sugawara in his E(n) theory of currents
[Eq. (7) with c= f', and where t and x appear instead of
U and A]. Equations (28a) and (28b) have the same
structure as the stress tensor in Sugawara's SU(n)
theory of currents [Eq. (4) with a=4 f', and where C~

"In the following, we neglect all problems associated with the
ordering of the operators.

Note that for the last equality in Eq. (26) we have used

{t~,,x„;)=0,
which, in turn, is a direct consequence of Eq. (22). The
usual definition of the stress-energy-momentum tensor,
when written in terms of currents, yields

(28a)

=[—i4 f'h, ,+nonlinear terms in 3II(y)]

8
~(x—y), (34)

ax

while all the other commutators vanish. In deriving
these commutation relations, use is made of Eqs. (14)
and (15).We see that the currents C"+;separately obey
the SU(n) algebra-of-fLelds commutation relations.
Hence the currents C&+ separately provide us with a
canonical representation of Sugawara's SU(n) theory of
currents, 5 (C~,' of' ).

At this stage, we remark that we have two interpreta-
tions of the structure we have obtained. In the first
interpretation, we do not specify any space-reAection
properties of the fields. In this case what we have, as
stated above, is a canonical representation of Sugawara's
SU(n) theory of (vector) currents only in terms of spin-
zero fields supplied either by the currents C+ or by the

"J.Schwinger, Phys. Rev. 130, 406 (1963).
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C, the representation containing a higher-symmetry
E (n) Lnot identified with chiral E (n)] than the

symmetry SU(n) of the theory of currents.
ln the second interpretation, we specify the parity

properties of the fields and currents. indeed, we specify
the tf"; and x~; as vector and axial-vector currents, re-
spectively, and suppose the fields M; to be pseudo-
scalar. " Again the currents C~ supply a canonical
representation of an 5U(n) theory of currents of the
same structure as Sugawara's. However, the currents t

and x do not supply a representation of Sugawara's
chiral E(n) theory of currents, since we note, e.g. , that
the time-space commutation relations of currents as-
sociated with opposite factors of E(n), i.e., Eq. (34), are
nonvanishing, containing operator-type Schwinger terms
(which cannot be written in terms of currents alone), as
opposed to the corresponding commutators in Suga-
wara's E(n) theory which vanish.

One way of comparing this model to Sugawara's E (n)
theory is to put the stress tensors of the two models,
i.e., Eqs. (29) and (7), into correspondence by nor-
malizing the stress tensor (7) by putting c=f' Then .the
commutators of the J+ currents in Sugawara's E'(n) are

= ig'"fl"J,~;(x)8 (x y—), (36)

the last (partial conservation) equation being a state-
ment of Lagrange's equations of motion for the fields

M, (x).
The total stress-energy-momentum tensor is now

given by
opv gpv gyve ) (37)

and has the following equal-time commutation relations
with the currents, where C& denotes any current C"+, '.

8
= —iC (x) |I(x—y)+i&„C"(x)6(x—y), (38)

cIX~

not affect the current equal-time commutation relations.
We note that such a term is also consistent with as-
sumption (20). A further consequence of this assump-
tion on Z~ is

. , ~~~6)
LC" '(*),~ (y)]*o=.o= g'" d '+' ( )~( —y) (33)

83f;

PJ'+; (x),J'~; (y)]„„=ic;=; qJo+ q (x)8 (x y), —

LJ'+'(x),~ + (y)].o=.o=ic* ~~ ~~(x)~(x—y)

8
$8' ( x), C(y)]„„=—iC'(x) h(x —y),

Bs~
(39)

8
+i ', f'8 -8(x—y),

8$~

while all the other commutators vanish. These com-
mutators can then be contrasted (or compared) with the
commutators LEqs. (33)—(34)] of the meson model. "
The presence of the different Schwinger terms is also
reflected in the fact that the equations of motion of the
currents in Sugawara. 's E (n) theory, when c= f2, are

~"~"+'=f c' If~"+ ~"+~)

L~'"(x),C (y)]*o="

iC&(y) —8(x y)+i—B"C (x)5(x y), —(40)
8$~

=iPC (x)g&~+Ct'(x)g& C&(x)g ~]—

8
X -(x—y)+ig sB„CI"(x)8(x y), (4—1)

BXp

(42)

These are the same stress-tensor —current commutation
relations as in Sugawara's symmetric-theory-of-currents
model, on putting B„C&=0.We note that the right-hand
side of the commutators can be written in terms of the
current only. We mention here that the commutation
relation (38) arises in quite general models" from
Schwinger's action principle. Further, the commutator
(39) arises in a model-independent way from the
canonical commutation relation. "The conunutator (40)
with @=0 then follows from the commutators (38) and
(39) by Lorentz invariance.

Note also the integrated comrnutators

IV. SYMMETRY BREAKING AND STRESS-
TENSOR-CURRENT COMMUTATORS

For a more complete treatment of the spin-zero-
meson model, and with the hope that a clue may be
obtained as how to introduce symmetry breaking in the
framework of a Sugawara-type theory, we introduce a
E(n)-symmetry-breaking Lagrangian term Zz. 20 This
function will be assumed to be independent of the
meson-field derivatives. Such an additional term in the
Lagrangian does not affect the structure of the canoni-
cally conjugate 6elds nor the currents, and hence does

' In this case we must have Fij(M) =P;„.(—kI); thus the
condition that Ii;, is nonsingular is imposed.' Note the propertythat the tensor''j =d +'P &j =& —jP+Ii
appearing in the commutator (34) is orthogonal, i.e., E;I,RjI,=B;j.' Zg contains the mass term Zg= 41N lV Ms+ ~ - ..

(43)[8~"(x),Q~, (t)].. .=ig~ "B„C~~,(x) .

"D. J. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967)."R. Jackiw, Phys. Rev. 175, 2058 (1968). We point out that
Jackiw's proof extends trivially to the case in which the currents
arise from nonlinear transformations.

differing by a factor of —,
' from the corresponding equa, — Lo (x)~C (y)]*0=.jo= g Lg""(x) C 4')]*o=:0.

tions of motion (30) in the meson model.
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The commutators with the stress tensor and Z~ are

L8"'( ),~.b)]*.=,.
2—if 'f—C&~;(x) 8„C"+;(x))8(x—y)

= ia&Zp(x)8(x —y),

L8'( ),~ b)]*o=.,= —g'L8" (*),~ b)]*,="..

V. POINCARR ALGEBRA

First, it is easy to check that Schwinger's condition'

It can also be checked that I'I" and nfl"" together gener-
ate the Poincare algebra. For this purpose, we require
the stress-tensor equal-time commutation relations. In
this model they turn out to be of the simplest possible
structure,

L8'(*),8"b)]*.=-= L8" b)a'"+8"'( )r"]
8

&( 8(x—y), (54)
BSp

8 which arises in a model-independent way from the
L8' (x),8' (y)]„„,= i)—8 ( )x+8'"(y)] 8(x—y) (46) canonical commutation relations, and

8$0

and the conservation of energy momentum

8 0""=0
IJ (47)

I'~ = 8"(x)d—'x. (48)

then, integrating the commutation relations (38)—(40)
and Eq. (44), the Heisenberg equations of motion are
obtained:

(49)L~" C" (*)]=—8"C" (*)

hold in the model (with symmetry breaking).
The existence of Poincare generators follows in the

usual way. Define a momentum tensor I'I" by

L8-( ),8"b)]..=,.='L8"'(~)g' —8.s( )]
8

X 8(x—y) . (55)
Bsp

Finally, we note the absence of Schwinger terms which
are proportional to the third derivatives of the spatial 8

function arising from naive computation of the stress-
tensor commutation relations in this model (and in
Sugawara's model). The presence of such Schwinger
terms would be required in a realistic model. "'4

Pote added in manuscript. On completion of this
manuscript, a paper by Sakita, "in which similar ideas
are presented, came to my attention.

$P~, Z& (x)]= i 8~2'~ (x) . — (50) ACKNOWLEDGMENTS

Also, defining the Lorentz generators nfl"" by

M~"= $x"8"(x) —x~8'"(x)]d'x (51)
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LM~",as(x)]= i(x~8"—x"8~)a—& (x) . (53)
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