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The scattering of high-energy neutrons from liquid He is discussed in terms of the Gram-
Charlier series expansion of the incoherent scattering function. It is shown that the series
falls naturally into two parts. The first part, which corresponds to keeping only the leading
term in each coefficient in the limit of large momentum transfer v can be summed exactly
and gives the impulse approximation (IA). The second part, which vanishes in the limit w —~,
describes the effect of final-state interactions which are neglected in the IA. The first two
coefficients in the latter series are evaluated and indicate that final-state interactions are
not negligible in the recent experiments of Cowley and Woods, a fact which probably explains
why these authors failed to see a sharp peak, due tothe condensate, which had been predicted
by Hohenberg and Platzman on the basis of the IA. It is also shown that final-state inter-
actions produce a shift in the position of the maximum of the energy distribution of scattered
neutrons, and the calculated value is in rough agreement with the value observed by Cowley
and Woods.

1. INTRODUCTION

In recent years slow-neutron inelastic scatter-
ing experiments' ' have provided much informa-
tion about the energies and lifetimes of the quasi-
particles which characterize the low-lying excited
states of liquid He4. Hohenberg and Platzman4
have pointed out that experiments at large energy
and momentum transfers are also of considerable
interest since such experiments are, in princi-
ple, capable of yielding the single-particle mo-
mentum distribution in liquid helium. This pos-

sibility arises from the fact that for sufficiently
large momentum transfers the scattering can be
described in terms of the impulse approxirna-
tion' ' (hereafter abbreviated IA). In the IA, the
scattering atom recoils as if it were free so that
the energy distribution of scattered neutrons is
the Doppler profile characteristic of the momen-
tum distribution in the initial state. In particular,
the existence' of a zero-momentum condensate
below the X point will produce a sharp peak in the
spectrum of the scattered neutrons and the rela-
tive intensity of this peak equals the fraction of
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atoms in the condensate.
Cowley and Woods' have recently measured the

scattering cross section of liquid He II for neu-
trons with momentum transfers in the range

o2-9 A ' and find no evidence of a sharp peak in
the spectrum. This is presumably due to the
effect of final-state interactions which are ne-
glected in the IA and which, among other things,
will produce a broadening of the peak.

Hohenberg and Platzman's derivation of the IA
relies on an intuitive argument and does not pro-
vide a basis for a rigorous discussion of the ef-
fect of final-state interactions. In the present
paper, an alternative derivation of the IA will be
presented which is based on the Gram-Charlier
series expansion of the incoherent scattering
function. The series falls naturally into two
parts„The first part, which corresponds to
keeping only the leading term in each coefficient
in the limit of large momentum transfer K, can
be summed exactly and gives the IA. The sec-
ond part vanishes in the limit K-~ and repre-
sents the effect of final-state interactions. The
first two coefficients in the latter series are
evaluated and indicate that final-state interactions
are not at all negligible in the experiments of
Cowley and Woods.

In Sec. 2, a general expression for the inco-
herent scattering function is derived. This ex-
pression leads immediately to the IA although
the derivation, like that of Hohenberg and Platz-
man, depends on physical intuition and does not
allow for a discussion of final-state interactions.
A formally exact derivation of the IA based on
the Gram-Charlier expansion is presented in
Sec. 3. Finally, in Sec. 4, the effect of final-
state interactions is discussed.

1 ~ (
-i» ~ r;(0) i» ~ rj(t))

N i j =1

F(», t) =e ~ (g(», t)}, (4)

where ~i, = k»'/2m is the recoil energy and

g(», t) =ei (H/ti +» v)t iHt/ii-
e (5)

Here K is the Hamiltonian and v the velocity of
one particular He atom, hereafter referred to as
the scattering atom. The quantity (5) obeys the
equation

d[g(», t)]/dt =i»g(», t) v (t), (6)

where vK is the component of v in the direction
of K. The iterated solution of this equation,

g(», t)=1+ Q (i») f dt, f 'dt,n t

n= 1

Here r&(t) is the position operator for the jth
atom in the Heisenberg picture and the brackets
(. . ) denote a thermal average.

The structure factor F(», 0) observed in x-ray"
and neutron" diffraction experiments is essen-

0
tially equal to unity when K &4 A ' indicating that
for such large momentum transfers only the in-
coherent terms in (3), i. e. , those with i =j, are
important. In what follows, the interference
terms i cj will, accordingly, be neglected.

Since the interatomic forces in liquid helium
can be assumed to be velocity-independent, the
incoherent intermediate scattering function can
be expressed in the form""

2. INCOHERENT SCATTERING FUNCTION

Consider a system of N He' atoms of mass m
enclosed in a volume of space 0 and in thermal
equilibrium with a heat bath at temperature T.
Since He' is a totally coherent scatterer, the
cross section for the scattering of neutrons from
states with wave vector k, to states with wave
vector k is given by'

do /ddfl&=dNa'(k/k, ) S(», &u),

S(», u&) =—f e F(», t) dt, (2)

where a is the bound scattering length of a nu-
cleus, » =k, —k is the momentum, and &v = (ti/2m')
x(k, ' k') the energy-, in units of k, transferred
to the helium in the scattering process, m'being
the neutron mass. The scattering function is
given by

x f" ldt v (t ) ~ v (t )v (t ), (7)nKnK 2 K 1

can be summed explicitly by introducing a time-
ordering operator q', defined such that

y'[v (t )v (t )] =v (t )v (t ), t (t;

K 1 K 2

The result, substituted into (4), gives

F(», t) = e (& exp[i» ' f v(t')dt '])
0

The IA can be obtained intuitively from (9) by
noting" that as K- ~ the right-hand side is ap-
preciably different from zero only if t-0, in
which case v(t') can be replaced by v(0). Thus,
as K

where (10)
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For an ideal gas the IA is, in fact, exact for all
x because v is then a constant of the motion. In
general, therefore, the physical assumption in-
volved in the IA is that the scattering atom re-
coils as if it were free. It will be noted that in
the IA interatomic interactions are neglected
only in the final state and not in the initial state
because the thermal average in (10) refers to the
interacting system and not to a system of inde-
pendent particles.

The scattering function for the IA is

H (x) =[(-) /2 ]e d e /dx

With x=(&u —~ )/2a and y =iat, where n will be
defined later, it follows from (14) that

iut iuzt - (ott )' H, (16)(2int) ~ ~r
e =e nt n 2e

n=o

On substituting this identity into the inverse of
(2), one finds

S (K, 4)) =(6((d —(d —K'V)),
IA r

in which the 5 function expresses conservation of
energy and momentum. In second quantization
this becomes where

n=o"

S (K, (d)

1
6((u —(u —ff K q/m)6 , -a a-,

N I q, q' q qq, q'

e (K)=(2 /n!) f H ((~-&u )/2a)S(K, ~)der.

(i8)

Hence, from the orthonormality relation

=Z- f 6((u —(u —RK ~ q/m)
q q

(i2)
-X2f"H (x)H (x)e dx=(x'~'n!/2 )6n m nm ' (19)

where &~ and a- are the boson creation andq q
annihilation operators for particles with momen-
tum Rq and fq —= N '(a t q-) is the fraction of
particles in the state q when the system is
in thermal equilibrium at temperature T. Equa-
tion (12) is the form of the IA obtained by Hohen-
berg and Platzman' by a different method. Since
f& depends only on the magnitude of q for an iso-
tropic system such as liquid helium, (12) can be
expressed in the thermodynamic limit (N- ~,0- ~, with N/0 = const)

S (K, (d) =f 6((d —(d )r
p 00

+ 2 f qdq. (13)4n'SK
)

(m/}IK)((u —(u )

%'hile the derivation of the IA given above is in-
tuitively appealing, it is not rigorous. Neither
does it provide a useful basis for discussing the
effect of final-state interactions. An alternative
derivation which attempts to overcome these dif-
ficulties will be given in Sec. 3.

3. GRAMWHARLIER SERIES

Consider the Hermite polynomials Hn{x) which
are defined" by the generating function

one obtains the following Gram-Charlier expan-
sion" of the incoherent scattering function

2

S(K, QJ) =
F12 exp

X Z X K Ht(I) (20)

n
H(x)= Q a x

n nmm=0
(21)

where anm =0 unless n+m is even. The coef-
ficients in (20) are therefore given by

n n a s (K)
( )

2 Q nm m'n' nt
m =0 (2a)

(22)

in which sm(a) is the mth central moment of the
scattering function

The first few terms in this series have pre-
viously been considered by Nelkin and Parks.""
and, classically, by Nijboer and Rahman. "

In general, Hn(x) is an nth-order polynomial
of the form

n
e = Q —,yH(x),2'-p 2 n

-o n1 n

and are given explicitly by

(14) S (K) = f ((d —(d ) S(K, (d)d(d

=(-i) (d [Z(K, 0)]/dt &. (23)
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o. =(-,'s (K)]'IB =K]-.'&v '))'&',

and s, (K) =1, a, (K) =SB(K) =0,

SB(») = —,
' v2 [SB(K)/s(K}'~'],

(24)

(25)

S~(K) =
B [S~(K)/SB(K) ] —B, etC.

The parameter a mill be chosen in the usual way

by requiring that SB(K) =0. Thus,
It is shown in Appendix B that (32) is identical to
the expression (11) for the impulse approximation.
Thus, SFS(K, &u) represents the effect of final-
state interactions on the scattering function. Ac-
cording to (29) g„(K) vanishes in the limit K- ~.
Provided, therefore, that the Gram-Charlier ex-
pansion is uniformly convergent so that the limit
K —~ commutes with the sum over n, SFS(», u)
also vanishes in this limit and

S(K, &u) -S (K, &o), as (34)
The first six moments are given in Appendix A

from which it is evident that in general This completes the derivation of the impulse ap-
proximation.

0, m=0, 1,2
4. FINAL —STATE INTERACTIONS

s (K)=K (v ) + O(K ), m =3, 5, ...(26)

0(» ), m=4, 6, ... .

Hence, from (22),

(K) = f +& (K),
n n n

(27}

n n (v )
K

where l' = —, g a
n n! nm[ ( B)]m/2

' (28)

and $ (K) =0,

= KB /K%

= (K, /K)',

n=0, 1, 2

n=3

n=4 (29}

/K+O(K-'), n=5, 7, ...
= (K /K)'+ O(K '), n = 6, 8, .. .

It can be shown with the help of (A2) that

2'I' k(4 V), (P')
18m (v )B%' ' 18mB(v B)B

K K

where V is the total potential energy of the sys-
tem and F = —VV is the total force on the scat-
tering atom.

Substituting (27) into (20), one finds

S(», &u) =S (K, (u)+S (K, (u), (31)

where S (K, &o)

xp — f H

(32)

and S (K, u&) =
2g 1/2~ 2(y

~ r" &wB(, '). (%%)

n=3

Consider first the classical limit in which the
velocity distribution of the atoms is Maxwellian.
In this case one can easily show that fn = 5n0 and

SIA(K, &u) is a simple Gaussian. Also, $„(K) is
different from zero only if n is even and $,(K)- v ' while the higher-order terms are all' of
order ~ 4. Thus, the asymptotic behavior of
SFS(», u) for large K is given classically by the
n=4 term in (33).

This is no longer true when quantum effects
are important, as is the case in liquid He, and
one would have to sum the series (33) in order
to be abl.e to discuss in detail the effect of final-
state interactions on the scattering function. To
calculate $„(K) for arbitrary n seems to be pro-
hibitively diff icult.

One can, however, obtain )B(K) and g, (K) with
the help of (30) and the values of these quantities
provide an approximate lower bound on the value
of K for which the IA is valid. In particular, v

must be much larger than v, and ~4. It is shown
in Appendix C that for liquid He at T=O, K, =4.2
A ', and v4=1.6 A '. Final-state interactions
are, therefore, clearly not negligible in the ex-
periments of Cowley and Woods' in which 2 & z
&9 A-'. This evidently explains mhy these au-
thors failed to see the zero-momentum peak in
(13).

It was assumed in the derivation of (34) that
the interference terms in (3) can be neglected
when v is large. The complete coherent scat-
tering function, including the interference terms,
can, of course, also be expanded in the form (20).
For example, one finds" that in the classical
limit, with n =K(kT/2m)'IB,

s, (K) = S(K), SB(K) = I —S(»),

( e)=K(N/60K'kT) f(1 —cos»x)

x B g(r)dr+ —,'[S(») —1],SB@(r)
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where

3

4 4 8 6

The data of Cowley and Woods" at T = 1.1'K are
consistent with (35) with 6= 12+4"K. It is found
with the help of the velocity distribution calcula-
ted by McMillan" that for v~ in units of 10' cm
S

(v ') =1.96, (v ') =13.2, (v ') =142.
K K K

(37)

where S(K) = F—(K, 0) is the structure factor, g(r)
is the pair potential, and g(r) is the pair corre-
lation function. It is evident that the values of
the above coherent en's oscillate about the values
of the corresponding incoherent en's. These oscil-
lations, which arise from the hard core of the
interatomic potential, are large in the neighbor-
hood of the first diffraction maximum (K =2 A

in liquid He) but die out faster than x ' as K

In general, therefore, one would not expect the
interference terms to destroy the validity of (34).
Neither would one expect them to have any effect
on the region of ~ values in which the impulse ap-
proximation predominates since this region lies
well above the region of the first diffraction maxi-
mum,

Hohenberg and Platzman' argue that the broad-
ening of the zero-momentum peak due to final-
state interactions is a simple lifetime effect and
estimate the width of the peak assuming that the
recoiling atom collides independently with the
other atoms in the system. Under these assump-
tions they find a width proportional to a. Since
the width of the spectrum of the uncondensed
atoms [t. e. , the second term in (13)] also in-
creases linearly with v, the zero-momentum
peak does not, according to Ref. 4, approach a
6 function in the high-K limit (unless, of course,
the recoil energy is so high as to invalidate the
assumption that the atoms interact via a hard-
core velocity-independent potential).

On the other hand, Eq. (34) implies that the
width of the zero-momentum peak increases, if
at all, more slowly than v so that the peak be-
comes in effect a 5 function for large K. This
result is consistent with the recent model calcu-
lation by Egelstaff and Mountain" who find a width
proportional to K s, where s & —,'. Equation (34)
depends for its validity on the assumption that
the Gram-Charlier series is uniformly conver-
gent. If this is true, the broadening of the zero-
momentum peak is not a simple lifetime effect
of the type considered in Ref. 4.

The value of ur at which S(K, ~} is a maximum,
can be obtained by differentiating (20) and one
finds

(d = (d —4+ O(K ),max r

(v ')
Hence, l, =~6 (,), ——,

' =0.092,
K

(v ') (v ')
K i K

06 —
9p (v 2)3 6 (v 2)2 + 3 = —0039. (38)

K K

With K, =4.2 A ' (Appendix C), and ignoring the
remaining terms in (36), one finds a value 6
=26'K. The discrepancy between this and the
observed value is probably not due entirely to
the higher-order terms in (36) which have been
neglected because the values of f4 and f, are
very sensitive to the values of the quantities (37).
For example, a change in the values of (VK") by

10%%uo can change the denominator of (36) by a
factor of 3.

To summarize, the scattering of high-energy
neutrons from liquid He4 has been discussed in
terms of the Gram-Charlier series expansion of
the incoherent scattering function. It was shown
that the impulse approximation is obtained if one
retains only the leading term in each coefficient
in the limit of large momentum transfer K. A
formal expression for the effect of final-state
interactions, which are neglected in the IA, is
given by (33). The coefficients $„(K) have not
been evaluated for arbitrary n so that one can-
not at present give a detailed discussion of the
effect of final-state interactions on the shape of
the scattering function. However, the calculated
values of $,(K) and $,(K) do provide a lower limit
on the values z for which the IA is valid and it
was found that final-state interactions were not
negligible in the recent experiments of Cowley
and Woods. ' It was also shown, in agreement
with the data of Cowley and Woods, " that final-
state interactions produce a shift in the position
of the maximum in the energy distribution of the
scattered neutrons.
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APPENDIX A: MOMENTS OF S(K,w)

Rahman, Singwi, and Sjolander" have calcu-
lated the first four moments of the incoherent
scattering function by substituting (7) into (23).
Their results, extended to sixth order, are

s (K)=1i s (K)=0 s (K)=K (v ),

S (K) = —fK'(V V
' ), S (K)= —K'(V V ") + K'(V '),

K K 4 K K K

S (K)=CK (V V ) —gK [(V (V ) )
K K K K
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+(v '(v ')')+(v 'v'&],
K K K K

s («)=«(v v ) —«[(v (v ) )

(Al) n

e Z „, ,
H (x)H (x')=5(x-x').

nf n nn=0

APPENDIX C: VALUE OF v, AND K~

(as)

+ (v '(v ') ")+ (v 'v ")+ (v (v (v ') '
) ')

K K K K K K K

+(v (v 'v')')+(v '(v v')')]+«'(v '),
K K K K K K K

The interatomic forces in liquid helium will be
assumed to be additive so that

in which the primes denote differentiation with
respect to t. With the help of the general rule
(AB') = —(A'B&, the third and fourth moments
can be expressed in the more familiar forms" ~"

N
&t&(l r. —r. I ),

i&j=1 2

where P(r) is the pair potential. Hence,

(cl)

s, («) n=«(~ V)/6m',

s («) = «'(F')/3m'+«'(v "),
(A2) (~ V) =—,+ — g(r)4~r'dr,N ] d'P(r) 2 dP(r)]

0 dr ' r dx
(c2)

in which V is the total potential energy of the
system and F = —VV is the total force on the
scattering atom.

in which g(r) is the pair correlation function.
McMillan" has calculated g(r) for liquid He' at
T =0 assuming a trial ground-state wave function
of the Jastrow type and a Lennard-Jones potential,

APPENDIX B: PROOF OF EQUIVALENCE OF
EQUATIONS (11)AND (32)

e(r) = 4e[(o/r)" —(o/r) '], (cs)

From Eq. (28),
in which e =10.22'K and @=2.556 A. With Mc-
Millan's g(r) it is found that (6 V) =613 erg cm '
and, hence, from (30) and (37} that «, =4.2 A '.

n n m
2 KZ o

n n t nm (2 p 2 )1/2m=0 K

In general,
N,

F= —VV= Z F. ,
j=1

(c4)

=(2 /n! }(H [v /(2(v ))'])
n K K

=(2 /n!)(0 (« ~ v/2o)). (al)

where Fj is the force which the jth atom exerts
on the scattering atom and the prime on the sum-
mation indicates that the value of j correspond-
ing to the scattering atom itself is to be excluded.
Thus,

Hence, (32) becomes
2

1
S («, (u}=,I, exp

N N
&F') = Z (F.'&+ Z (F. F.).

j=1 i 0j=1j . . i j (c5)

The second term in this expression is an inter-
ference term arising from three-body correla-
tions which tends to cancel the first term.

In the classical limit one need not know the
three-body correlation function in order to calcu-
late (F') because it can be shown by integration
by parts that ~

(C6)

= (5 (&d —(d —« ' v }),y' (a2)

which is identical to (11). The last line of (B2)
follows from the completeness relation for the
Hermite polynomials

and, according to (C2), the last part of the right-
hand side of (C6) is determined by the pair corre-
lation function alone. At T=0, (F') =0 and the
cancellation effect in (C5) is complete. This is,
of course, just a reflection of the fact that at T
=0 all the atoms are at rest at their equilibrium
positions.
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In a quantum system such as liquid He the atoms
are not at rest at T = 0 but execute zero-point mo-
tion which is associated with a nonvanishing value
of (P'). Let us write

where Teff is an effective temperature which
approaches the real temperature as T- and

quantum effects disappear. One can easily veri-
fy that for a simple harmonic oscillator

kT =m(v '), for a11 7'.
eff (C8)

This equation is also true classically. To the
extent, therefore, that the zero-point motion
in liquid helium is either simple harmonic, or
simulates classical motion at a finite tempera-
ture, Egs. (C7) and (C8) can be used to estimate
(F') and one finds a value 0.80x10 "dyn'. This
estimate is not likely to be very accurate but
can be expected to be of the right order of magni-
tude. Hence, from (30), it is found that z, = 1.6
A '.
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