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Final-State Interaction Effects in Weak Three-Body Decays*
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An exactly soluble model of the weak decay of a 0+ particle to three strongly interacting 0+ decay products
is investigated numerically in order to explore the effects of final-state interactions (FSI) on the decay and
the way in which the resonant-pair interaction information is distributed over the three-body 6nal state.
We 6nd that moderately strong attractive pairwise FSI can produce very large enhancements or de-enhance-
ments in the decay rate, but we find no effect of rescattering singularities. We find that large effects on
the decay rate can be accompanied by pure phase-space single-particle spectra. The effects of interference
between various terms in the amplitude make the extraction of pair-resonance parameters from singles
spectra chancy, and there is no obvious trend in the deviation from the input resonance parameters. These
interference effects also produce striking and possibly misleading patterns in the Dalitz plots.

I. INTRODUCTION

'HREE —BODY final states occur frequently in
particle and nuclear physics. In fact, many two-

body systems have been studied only by means of such
final states. Despite this, theoretical understanding of
three-hadron states and of how two-body informa-
tion is distributed over them remains at a primitive
level. Currently the most widely used method of analysis
is some form of Fermi-Watson theory, which singles.
out the interactions of a particular pair. ' The inade-
quacies of this method are illustrated by the difFiculty
of extracting a unique set of p-meson parameters, or
that of determining the neutron-neutron scattering
length 2 '

This paper is a modest attempt to increase our under-
standing of three-hadron states by examining a simple,
exactly soluble model. Since we approached the problem
with almost no intuition, we restricted ourselves to the
simplest possible nontrivial model. Even this problem
contains a surprisingly wide range of dynamics and, as
we shall see, sheds considerable light on the behavior
of resonant final-state interactions. The model we
studied describes the decay of a 0+ particle (the G)
into three identical 0+ decay products (the EI's). The
decay is weak in the sense that the interaction producing
it is treated in first order, whereas the decay products
interact strongly. Thus, to treat the decay, we must
solve the strong-interaction dynamics of the 3H system
exactly. To simplify this problem we assume nonrela-
tivistic kinematics and separable 5-wave interactions.
A functional form is chosen for this interaction which
is capable of producing II-II resonances. As is by now
well known, the separable form is appropriate to a
resonance-dominated two-body scattering amplitude,
and also greatly facilitates the calculation. 4

* Supported in part by the National Science Foundation and
the U. S. Atomic Energy Commission.' M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley 8z Sons, Inc. , New York, 1964), p. 540.' Cf. N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Soding, C. G. Wohl, M. Roos, and G. Conforto,
Rev. Mod. Phys. 41, 109 (1969).' R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966).

4K. M. Watson and J. Nuttall, Topics in Several I'article
Dynamics (Holden-Day, Inc., San Francisco, 1967).

There have been a number of previous attempts to
deal with three-body decays and related problems. '
Most have concentrated on the problem of overlapping
resonances, and were motivated by perturbation-
theoretical arguments. Analysis of various static
models' ' and, more recently, a general treatment by
Schmid' have greatly clarified some of the outstanding
questions. Additionally, several authors have per-
formed exact calculations involving three-body final
states, designed to treat particular physical systems
rather than to explore the range of possible phe-
nomena. ' ' We are aware of only one previous explora-
tion similar in spirit and motivation to our own, that
of Aitchison. "He solves a linear three-body formalism
which, although motivated by on-shell, relativistic
considerations, is in fact of the (off-shell) Faddeev
form. Unfortunately, his Breit-Wigner approximations
to the two-body amplitudes appearing in these equa-
tions neither satisfy off-shell two-body unitarity nor do
they have the correct analytic properties. As I.ovelace
has emphasized, " these properties are essential to
making the on-shell solution of the three-body problem
satisfy appropriate unitary relations.

In Sec. II, we desciibe the model in more detail.
Section II A outlines the three-body dynamical equa-
tions, Sec. II 8 gives the details of two-body interac-
tion, and Sec. IIC sketches the method of solution.
We present our results in Sec. III. We have calculated
total rates, singles spectra, and Dalitz plots which we
present and discuss in Secs. IIIA, IIIB, and IIIC,
respectively. "Finally, in Sec. IV we present our con-

' R. N. Choudhuri, Phys. Rev. 175, 2066 (1968);B.Dutta-Roy
and I. R. Lapidus, ibid. 169, 1357 (1968); M. Parkinson, ibid.
172, 1607 (1968);I. J. R. Aitchison and C. Kacser, ibid. 173, 1700
(1968); A. Ahmadzadeh and J. A. Tjon, ibid. 139, B1085 (1965).' C. Goebel, Phys. Rev. Letters 13, 143 (1964).

F. S. Chen-Cheung and C. M. Sommerfield, Phys. Rev. 152,
1401 (1966).' C. Schmid, Phys. Rev. 154, 1363 (1967).' R. L. Schult and I. M. Barbour, Phys. Rev. 164, 1791 (1967);
J. H. Hetherington and L. H. Schick, ibid. 156, 1647 (1967).' I. J. R. Aitchison, Nuovo Cimento 51A, 249 (1967); See also
I. Duck and F. C. Khanna, Nucl. Phys. 77, 609 (1966)."C. Lovelace, Phys. Rev. 135, B1225 (1964).

"The results on total rates were previously reported by us;
see R. D. Amado and J. V. Noble, Phys. Rev. Letters 21, 1846
(1968).
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matrix element of the X~'s:

(p.,q. l
x.(@G,(I:)x„..„lG). (3)

This is a certain function of the energy E, of the mo-
mentum y of the particle e, and of q, the momentum
conjugate to the relative coordinate of the n pair
Li.e., qi ——~(p2 —p2) j. Because of the identity of the 11
particles (they have no internal quantum numbers),
the entire dependence of the matrix element in Eq. (5)
on the particle label n is carried by y and q, so that
we can drop the n label on X. That is, X is the same
function of its special variables as Xp is of its.
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FIG. 1. Two-body (II-H) phase shifts as a function of energy,
for various values of the H-H coupling strength v. The units of
I' and v are described in the text, below Eqs. (8) and (9).

lusions plans for future studies, and speculate on the
possible relevance of these results to actual phys&ca
systems.

T»r(E) = Q Xkk(E') .
&=I

(3)

The partial amplitudes X satisfy the Faddeev
equations

X.(E)=t.(E)+t.(E)G,(Z) P X,(E). (4)

We follow the usual cyclic labeling convention where,
for example, ti(E) is the fully off-shell two-body scatter-
ing amplitude for particles 2 and 3. We see from Eqs.
(I) and (2) that we need to know only the following
"L. D. Faddeev, Mathezzzctzcul A spects of the Three-Body

Problem ie the Quuetlm Scatterzng Theory (Israel Program for
Scientific Translations, Jerusalem, 1965).

II. DESCRIPTION OF MODEL

A. Three-Body Equations

The weak decay amplitude for C —+ 3II may be
written (to all orders in the strong interactions)

M= Q»IIBC„.,k, lG), (I)

where the interacting state of 3 H's, Q 2ii I, is defined in
terms of the plane-wave state (3H

I

and the three-body
T-matrix T»& by

Q».I

= (» I+(» I
&»k-(L:)Go(1-') (2)

Here E is the total energy release in the decay and Go

is the free Green's function (E—Hp) '. The T matrix
may be decomposed, following Faddeev, " into the sum
of three terms

16zvk'

325 (k2+ I)'
(1+5k'+15k' —5k'))

(&2+1)4

r(k2) =—

'4 See, e.g. , J.V. Noble, Phys. Rev. 157, 939 (1967), Appendix C."Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
D. R. Harrington Phys, Rev. ].47 685 ($966}.

B. Two-Body Interaction

The fully off-shell two-body t matrix appearing in
Eq. (4) is taken to have the separable form

(p.,q-l t-(&) lp. ',q-')
= ~(p- —p-') ~(q-') r(L:—(3/4~-) p-')~(q-"), (6)

where 3III is the mass of the H, and 21(q2) is the vertex
function of the interaction. In terms of this vertex
function, the function r of Eq. (6) is

212 (q2)
——i

r(E') = —X '+ dq, (7)
E q2/M—

where P is the two-body coupling constant. Equation
(7) may be obtained, for example, by insisting that Eq.
(6) satisfy oR-shell two-body unitarity. "This condition
is essential in order that Eq. (4) yield a unitary three-
body amplitude. "We wish to study a case in which the
two-body subsystem can resonate: The vertex function
21(q2) was chosen to satisfy this requirement as well as
to facilitate the numerical analysis. To avoid the com-
plications (which we believe are inessential for the
physics) of higher spins, we have chosen the HH-

2interaction Eq. (6) to act only in 5 waves. A 2qq &

satisfying these criteria is

~(q')=(4 ) "q'(q'+ ') ', (8)
where 52

' is the range of the force Equati. on (8) is a
simple generalization of the usual Yamaguchi form, '"'

with the extra factor of q2(q2+n2) ' playing the role of
a potential barrier. (A similar form arises in the
separable-potential treatment of a repulsive Coulomb
force outside a nuclear attraction. ") It is, of course,
this barrier that traps the particles into 5 wave reso-
nances. For convenience we let n ' be the unit of length
from now on. We also put A=%I~ ——1. With the form
for 21 given in Eq. (8) and these units, Eq. (7) becomes

I
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FIG. 3. (a) Diagrammatic representation of the multiple scatter-
ing expansion or —+ wf r G —+ 3H weak decay. (b) Diagrammatic defini-

l tedtion of f, the amplitude for decay of the G into H plus corre a e
H-H pair. (c) Diagrammatic representation of the off-shell integral
equation for f.

The function f(P2,E) satisfies the reduced Faddeev
equation

f(p', &) =g (p', ~)+ P'P"&(P P'&)f(p",&), ( )

where the kernel is given by

E(p,p'; 8) =lim4ir dt/n(p'+ ',p"+pp't)-
e~P

l I I I I I I I I I I I I
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FIG. 2. H-H cross sections as a function of energy,
for values of v as indicated.

»( "+'P'+Pp't)(&-+' P' P" P-P't) -'3 —(»)-
and where the inhomogeneous term g(p', &) may be
expressed in terms of the primitive weak-decay ampli-
tude (p~ill&w«&IG) by

where wehave redefined the coupling constant X=32i/7r
so that ~=i corresponds to a zero-energy two-body
bound state and v= 0 to no interaction. The H-H phase
shifts for various values of u over the energy range
relevant to our three-body calculation are shown in

Fig. 1. We see that for ~ 0.7, the phase shift is arge
but nonresonant over a wide range of energies, whereas
for v&0.9 there is a sharp low-energy H-H resonance.
As ~ —+ 1, the resonance energy goes to zero and the
width vanishes. The phase shifts all start out with
zero slope, since w(0) =0. This means, of course, t at
the H-H scattering length is zero, and reflects the non-

monotonic nature of the interaction. The H-H cross
section in the resonance region for various values o
is shown in Fig. 2 for later comparison with the singles
spectra from G decay.

C. Method of Solution of Three-Body Equations
e

The separable form of the two-body t matrix, Eq. (6),
allows one to write the matrix element o q. ~ )

'

the factored form

(p,ql X(L')Go(&)~weetlG)
=~(q')r(& 4P')f(p', & . —

g(p', &) = de(q') (~+t~ 4P' q')-'-—
&&p,el& ..~lG) (13)

The development of this sequence of equations for the
11weak-decay amplitude is represented diagrammatica y

We now specify a form for the primitive weak decay
amplitude appearing in Eq. (13). Since q, '+4p '
=~p ~pp is i-'p ' '

invariant under permutations of particle
labels, as well as under coordinate rotations, it is con-
venient to take

(p, ql~....lG)=~'(~~'+q'+-.'P )- . (14)

From a computational point of view, this form was the
simplest of several alternatives we considered. T e
spatial extension of the primitive weak vertex is deter-

d b P ' (in units of the strong-interaction range).
11All quantities appearing in the integral equation

are now completely de6ned and it remains only to
solve it. We do this by replacing the integrals by sums
using Gaussian quadratures and inverting the resulting
matrix equations on a high-speed computer. The singu-
larities of the kernel were avoided by the contour-
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FIG. 4. The enhancements in 6 ~ 31I decay as a function of the H-H coupling strength ~ for weak decay vertex ranges p'= 10 and
pal=0. ].. Ajso shown (dashed curves) is the absolute value for the three-body Fredholm determinant. These are shown for kinetic-
energy release of 0.0466 (a), 0.107 (b), and 0.400 (c).

deformation procedure introduced in these problems by
Hetherington and Schick' and generalized to breakup
reactions by Aaron et' al.'

III. RESULTS

(Il—= O'R/OErO&s=»f)(ErEs (s~-' —Er ~s)')—
X I p f(p+E)+.(E —;E) (E !E)—f(2L,L')—
+ (E ;E ).(E -,'E.)f(»—,@-—
+r (-',Er+$Es —sE)r(sEr+ sEs —sE)

Xf(2E, 2Er 2Es)E) ~'— —(15)

The constant S contains purely numerical factors
(including the weak decay coupling constant which we
have thus far suppressed, since the rate is simply
quadratic in it). The theta function expresses the
kinematic constraints. From Eq. (15), we have gen-
erated Dalitz plots and, by integrating once and twice,
singles spectra and total rates, respectively. These are
also the quantities most often extracted from experi-
mental studies of three-body decays. We turn now to a
detailed discussion of these quantities in our model.

"J.H. Hetherington and I. H. Schick, Phys. Rev. 137, B935
(1965).

The partial decay rate of the G into 3 H's is a func-
tion of only two independent variables, because of the
constraints of energy, angular momentum, and linear
momentum conservation. We study the decay in the
G rest frame and choose the two variables to be I&'~ and
E2, the kinetic energies of two of the H particles.
Combining these constraints with the requirements of
Bose symmetry, we obtain in terms of the functions f,
e, and 7 dined in Sec. II, the following expression for.

the partial decay rate:

A. Total Rates

We are interested only in the dependence of the decay
rates on the strong coupling constant s and the weak-
vertex structure parameter P'."In order to remove the
trivial dependence on the weak coupling constant
through E, and on the three-body phase space through
the total energy E, we study the enhancement. This is
defined in the usual manner by

&(~,E,p') = dErdEs6l(v, E,p'; Er,E,)

dX'. rdL's0l (0,E~,p' E~&,L~'s) . (16)

That is, the enhancement is the total decay rate normal-
ized to the total rate in the absence of strong interac-
tions. We have studied this enhancement for two values
of P' (0.1 and 10), three values of the kinetic-energy
release (0.0466, 0.107, and 0.400), and many values of
v between 0 and 1. When p'=0. 1, the weak vertex is
spread out in configuration space compared with the
range of the strong interaction. Conversely, p'= 10 cor-
responds to a nearly point vertex. The energies 0.0466
and 0.107 were chosen so that when it is kinematically
allowed for two pairs of II's to resonate simultaneously,
the corresponding pair-resonance widths would be, re-
spectively, small or large in relation to their energies.
The third value, A= 0.4, was chosen to favor the strong
but nonresonant interactions occurring at u(0.75. In
Fig. 4(a) we have plotted the enhancement as a func-
tion of r for E=0.0466 and the two values of P'. There
is a striking difference between the enhancements corre-
sponding to P'=10 and P'=0.1. From Eq. (1) we see
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FIG. 6. Singles spectra for G —+ 3H decay as a function of the
unobserved-pair relative energy ("missing mass") for 8=0.107,
~=p 95 p2=p. 1 (so]id), and p2=10 (dashed). The arrow indicates
the input resonance position.
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FIG. 5. Singles spectra for G-+ 3H decay as a function of the
unobserved-pair relative energy ("missing mass") for L&'=0.107,
v =0.96, P'=0.1 (solid), and P'= 10 (dashed). The arrow indicates
the input resonance position.

' R. F. Peierls, Phys. Rev. Letters 6, 641 (1961); M. Month,
Phys. Letters 18, 357 (1965); I. J. R. Aitchison and C. Kacser,
Phys. Rev. 142, 1104 (1966).

that when P'= 10, the decay rate is sensitive to the three-
ody wave function at small distances, while for P'= 0.1

the decay rate samples a large volume of the wave
function. Clearly the strong interactions can (and do)
affect the wave function /SING at a point more than they
can alter its average value taken over a large volume.
For P'= 10 the enhancement varies over five orders of
magnitude, from a de-enhancement of less than 0.03 to
a maximum of 2500. We emphasize that this surprisingly
large range of 8, including as it does substantial
de-erIhamcemen, ts, results from a purely attractive H-H I

interaction of only moderate strength. The numerical
/

origin of the de-enhancement around ~=0.4 is a nearly
total cancellation between the direct breakup amplitude
and the rescattering terms. The physical meaning of
the de-enhancement eludes us. We see from Fig. 1 that
as u increases, the H-H subsystems can resonate. For
E=0.0466, H-H resonances are kinematically allowed
only when ~&0.94. These resonances are quite narrow.
When ~=0.97, all three pairs can resonate simultane-
ously. We see from Fig. 4(a) that there are no anomalies
in the enhancements either at resonance production see the danger of this sort of a conclusion. The enhance-

threshold or at the triple point. Previous authors have ments with p'=0. 1 are all very small and there is even

suggested that these may be singular points on the a de-enhancement in the resonance region. The strong

basis of perturbation theory. is However, other mode] interactions for both cases are ideetzcal and the entire

calculations67 as well as general arguments68 support differencehas come from the size of the Primitive weak

our conclusion that nothing special happens at these interaction volume. Since P' enters only the inhomo-

points. The very large enhancement for p'=10 and geneous term of Ecl. (11), and not the kernel, the con-

g)+0.95 come entire]y from the rescattering terms in the vergence ProPerties of the multiPle scattering expansion

amplitude. By a numerical accident these terms have
nearly the same magnitude as the first rescattering n = . appear

correction (impulse approximation). However, one in Figs. 4(b) and 4(c), respectively. Again we note a

should not regard this result as evidence for the validity marked difference between P'= 10 and P'=0.1. For
of the many calcu]ations using the impu]se approxima- E=0.107 the resonances enter the kinematically allowed

tion: one need only turn to the results in Fig. 4(a) to re ion around i'=0.78 although at this value of i' the
H-H resonance is very broad. As ~ approaches unity and
the resonance energies approach zero, the diminishing
three-body phase space causes the enhancement to de-
crease; which accounts for the drop in 8 near u= 1 in

E = .107
Figs. 4(b) and 4(c), since the f's vary imperceptibly
there. This diminution of 8 is also present at E=0.0466
but occurs too close to i = 1 to appear in Fig. 4(a).

Also plotted in Fig. 4 is the absolute value of the
Fredholm determinant of the integral equation (11).
As noted above, the determinant depends only on E
and i (and not on P'). For each value of E, the deter-
rninant has a minimum in ~, corresponding to a three-

/
body resonance in the sense that the real part of the

eterminant changes sign at the minimum. For com-
putational reasons we have studied the variation of the
determinant with v, for fixed E. Clearly the variation
with E for fixed ~ parallels this; in particular the

r energyresonance becomes narrower and moves to hi her energ
as ~, the strength of the two-body interaction, increases.
This behavior may seem contrary to intuition, but
there is no reason to believe that all resonances are the
analytic continuation of bound states to weaker
coupling. In fact, there is a three-body bound state ip
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our model which is unrelated to this resonance and
whose binding energy can be shown to increase with u.

Since the energy analyticity of the determinant and its
asymptotic limit of unity together imply that a bound-
state zero gives rise to an anti-bound-state zero in the
continuum, the question might arise as to whether the
minimun of the determinant shown in Fig. 4 reflects
the existence of a three-body bound state. The answer
is that it does not. Such anti-bound states have no
connection with the resonance discussed above, since
the Hall-Post theorem" proves that there can be no
three-body bound state and thus no anti-bound zero
when v is less than —,', whereas in Fig. 4(c), for example,
the resonance is at ~=0.55.

The effect of the 3H resonance on the enhancement
is twofold: It produces a local maximum in b (as a

function of i'), and the change in sign of the real part
of the determinant produces a corresponding sign
change in the real part of f Ldefined by Eq. (11)].As
we see in Eq. (15), this sign change accounts for the
interference minimum in 8 occurring at ~ slightly above
i (resonance). Whether the resonance maximum, or the
interference minimum, or the final-rescattering en-

hancement, is the most striking feature of 8 as a func-
tion of u depends on the detailed behavior of all the
amplitudes involved. The only general feature that we
can extract from Fig. 4 is that enhancements and
de-enhancements of several orders of magnitude ac-
company a relatively compact primitive weak vertex

~ ~

whereas no striking e6ect on the rate occurs in the case
of a spread out vertex. Except for this restriction,
virtually any value of the enhancement can be obtained
by a reasonable choice of parameters.

TAnLE I. Ratios of extracted (expt) to input (res)
resonance parameters for 8=0.107.

p2=0. 1

L expt/L res ~expt/~res

p2=10
L expt/+res ~expt/~res

0.96
0.95
0.94
0.92
0.90

0.97
0.97
0.93
0.86
0.77

1.00
1.00
1.15
1.35
0.95

1.01
1.00
0.99
0.97
0.85

1.0
1.0
1.0
0.76
0.55

constraints of energy and momentum conservation, the
energy of particle 1 in the total c.m. system is related
to the relative energy of particles 2 and 3 in their own
c.m. system. The relation is

B. Single-Particle Spectra

Integrating the double-differential rate of Eq. (15)
over one of the energies gives the single-particle
(singles) spectrum, dE/dEi. This is the probability for
G decay with one H having energy E&. Because of the

v-gp
E = .107

2+1++23 (17)

I
/

I
I

/
/

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .I I .12
I

& M. ENERGY

Fxo. 8. Singles spectra for G —+ 3H decay as a function of the
unobserved-pair relative energy ("missing mass") for 8=0.107,
v=0.92, p'=0. 1 (solid), and p'=10 (dashed). The arrow indicates
the input resonance position.

"R. L. Hall and H. R. Post, Proc. Phys. Soc. (London) 90
38 (1967).

7

Thus the independent variable in the singles spectra
may be chosen as the relative H-H energy. This is the
nonrelativistic analog of the invariant pair mass usually
chosen as the variable in relativistic multibody reac-
tions. We expect, therefore, that the singles spectra, as a
function of the relative H-H energy, will reflect the
H-H interaction and in particular the two-body reso-
nance. The interesting question is to what extent will the
resonance parameters —position, width, shap- in the
singles spectra accurately reflect the two-body data,
and to what extent does this depend on the reaction
mechanism. That is, how reliably can one extract the
two-body information from the behavior of the three-
body final sta, teP Figures 5—9 exhibit the singles spectra
for A=0.107 and various values of v in the resonance
region, for both values of P', all normalized to the same
height. From Fig. 4(b) we see that in this range of i
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the rates corresponding to P~=10 are more than 100
times larger than those for P2=0.1. The H Hr-esonance
clearly dominates the spectrum in each case, but the
effects of three-body phase space (see Fig. 12) and
interference between the resonant and nonresonant
parts of the amplitude considerably modify the simple
resonance curves of Fig. 2. We have extracted the posi-
tion and width of the H-H resonance from the singles
spectra in a rather crude fashion: We subtracted a
constant background and then read off the position
of the maximum, and the width, graphically. Although
more sophisticated procedures are generally used to
analyze experiments, "there is no reason to regard them
as having a more fundamental theoretical justification.
In particular, there is no reason to believe that phase
space is a multiplicative factor that can therefore be
divided out. The parameters we extracted are compared
in Table I with the two-body parameters similarly
extracted from Fig. 2. (We have made no attempt to
fit any resonance with a Breit-Wigner formula, since
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FIG. 9. Singles spectra for G —+ 3H decay as a function of the
unobserved-pair relative energy ("missing mass") for A'=0. 107,
v=0.90, p'=0. 1 (solid), and 18'=10 (dashed). The arrow indicates
the input resonance position.
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FIG. 10. Singles spectra for G —+ 3II decay as a function of the
unobserved-pair relative energy ("missing mass") for J~ =0.4,
v=0.90, P'=0.1 (solid), and P'=10 (dashed). The arrow indicates
the input resonance position.

v=0.92 and 0.90, the parameters are adversely affected
both by interference and by the proximity of the
kinematical boundary. Interference in the P'= 0.1 curves
tends to broaden the resonance by giving it a low-

energy shoulder. The kinematical boundary tends to
narrow the resonance and push it to lower energies by
suppressing the high-energy tail, which, as we see from
Fig. 2, is particularly important for these values of v.
The competition of these e6ects can be seen in the
behavior of the width ratio for P'=0.1, as a func-
tion of u.

In Figs. 10 and 11 we show the singles spectra for
8=0.4 and for v=0.90 and 0.85, for both values of P',
normalized to the same height. From Fig. 4(c) we see
that there is a factor of over 100 between the p'= 10
and P'=0.1 rates for these values of y. Once more, the
two-body H-H resonance dominates the spectrum, as
can be seen from comparing Figs. 10 and 11 with Fig. 2.

I I I I I I I I l I I I I I I l I TI I 1 I

it is unnecessary for the narrow resonances, and in-

appropriate for the broad asymmetric ones. ) For v= 0.96
and 0.95, the resonances are quite narrow compared
with their own position and also with E, the energy
released in the decay. Hence the resonance parameters
are quite accurate in these cases. Nevertheless, the
e6ects of interference, important for p'=0. 1, consider-
ably alter the resonance shape, as we see in Figs. 5 and 6.
As v increases, and the resonances broaden and move
higher in energy, the quality of the extracted param-
eters deteriorates. For v=0.94, the P'=0. 1 parameters
are somewhat off, despite the fact that the resonance is
still fairly narrow and near the center of the spectrum.
Presumably this is an eAect of the interference. For

' P. Anninos, L. Gray, P. Hagerty, T. Kalogeropoulos, S.
Zenone, R. Bizzarri, G. Ciapetti, M. Gaspero, I. Laakso, S.
Lichtman, and G. C. Moneti, Phys. Rev. Letters 20, 402 (1968).
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C. M. ENERGY

FIG. 11. Singles spectra for G —+ 3P, decay as a function of the
unobserved-pair relative energy ("missing mass") for E=0.4,
p =0,85, P'=0.1 (solid), and P'=10 (dashed). The arrow indicates
the input resonance position.
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FIG. 12. Singles spectrum for L'= 0.4 and p =0.55 (dashed
curve, both values of P') compared with phase space (p=0,
solid curve).

The resonance parameters have been extracted from
these spectra by the method described above and are
compared with the two-body parameters in Table II.
For ~=0.90 they are not bad, but for ~=0.85 the width
in particular is far too small for both values of P. What
is perhaps most surprising is that the resonance comes
at too low an energy in spite of the proximity of the
low-energy kinematical boundary which might be ex-
pected to push the energy up, not down. Since this
effect occurs for the higher-energy resonance at v= 0.85
and not for v=0.90, it must be of dynamical origin and
is presumably related to the asymmetric form of the
resonance and its long high-energy tail; that is, to the
fact that for ~=0.85 the phase shift does not get very
far above 90' before it turns over. The detailed connec-
tion between this feature of the two-body amplitude
and the singles spectrum is, of course, not clear.

In Fig. 12 we show the singles spectrum for v= 0.55
and for v=0. The shapes for Ps= 10 and 0.1 are indis-
tinguishable for v=0.55. The value v=0, of course,
gives just phase space. From Fig. 4(c), we see that
~=0.55 corresponds to the peak of the enhancements,
nearly 1000 for P'= 10 and over 10 for P'= 0.1, whereas
from Fig. 3(b) we see that r =0.55 corresponds to a
very modest two-body interaction. In spite of these
enormous enhancements, the u= 0.55 spectrum is nearly
identical with the phase-space distribution. In fact the
difference is exaggerated by our normalization to the
same height: Had we normalized to the same area, the
maximum discrepancy would never exceed 7%. The
moral is clear: Neither a spectrum spanlike phase space
nor a relatively weak two-body force is sufficient reason
to trust the Born approximation.

In summary, we emphasize several points. The
phenomenological extraction of two-body resonance
parameters from singles spectra can be misleading. If
the resonances are narrow and far from the limits of
phase space, the extraction of parameters is relatively
reliable, although even here there is considerable mecha-
nism dependence. In our particular model the results
were better for small interaction volume (P'=10); this

TABLE II. Ratios of extracted (expt) to input (res)
resonance parameters for E=0.4.

P2=0.1

Lerrrre/Eres Iexrrt/I'res

P'=10
+expt/+res ~expt/~ res

0.90
0.85

1.0 0.80
0.93 0.64

1.0
0.93

1.0
0.64

agrees with the original physical treatment of hnal-
state interactions by Watson, Migdal, and Fermi. '
Moreover, we see from Tables I and II that there is no
systematic trend in the deviations. The widths especially
can be either narrowed or broadened by three-body
effects.

Finally, we note that strong enhancements can be
produced by rather weak H-H interactions, leading
to a singles spectrum hardly distinguishable from
phase space.

FIG. 13. Dalitz plot for G —+ 3II decay, 8=0.107, P2=10, and
v=0.95. The ordinate and abscissa are L'j and Lf2, the kinetic
energies of any two H particles.

C. Dalitz Plots

We simulated "experimental" Dalitz plots from the
rate function 0I of Eq. (15) on a high-speed computer,
by using an appropriate psuedo-random-number gen-
erator. Some typical plots with E=0.107 and s =0.95
and 0.92 for each value of P' are shown in Figs. 13—16.
E~'~ and E2, the kinetic energies of two of the particles,
are measured along the horizontal and vertical axes.
These are the independent variables of Eq. (15). As
usual, the density of points per unit area is proportional
(within statistics) to the doubly differentiated decay
rate, Eq. (15).A constant decay probability thus leads
to a uniform density of points within the kinematically
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allowed region. The F& and E2 scales are not precisely
equal, since we generated these plots on the fast printer
of the computer. The relative coarseness of the grid in
some of the plots also results from this method of con-
st.ructing them.

From Fig. 4(b) we see that the enhancement for
v=0.95 is very large for P'=10 and of the order of
unity for P'=0.1. The extracted resonance parameters
in this case (Table I) are good, but the singles spectra
(Fig. 6) show the effects wrought by interference when
P'=0.1. The Dalitz plots for v=0.95 appear in Figs. 13
and 14. When P'=10 (Fig. 13) the resonance bands
stand out quite clearly, as we would expect from the
enhancements and singles spectrum. The decay ampli-
tude is here completely dominated by the three terms
containing the final H-H resonances. Recall that as one
crosses a resonance band, the phase of the corresponding
term of the amplitude changes by x. Hence at the
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I'zG. 15. Dalitz plot for G ~ 3H decay, 8=0.107, P'=10, and
v=0.92. The ordinate and abscissa are E~ and E2, the kinetic
energies of any two II particles.

%e emphasize once more that the strong interactions
are identical in these two cases. Instead of well-defined
resonance bands we find an intriguing trefoil pattern in
Fig. 14. The regions of increased point density represent
constructive interference between adjacent resonance
bands and the bare amplitude, whereas the depleted
regions result from destructive interference. The regions
alternate because of the phase change across the
resonance bands. There is also a region of depletion in
the center. These regions of depletion superficially re-
semble those predicted by simple kinematical consider-
ations, for a G particle of higher spin; however, detailed
comparison with these predictions reveals that no

I'io. 14. Dalitz plot for G —+ 3H decay, L'=0.107, P'=0.1, and
v=0.95. The ordinate and abscissa are Ll and L~'2, the kinetic
energies of any two H particles.

crossing of two (or even three) bands the average of
the interference term, taken over the crossing region, is
zero. The average point density at a two-band crossing
is twice that in a single band. If all three cross, the
factor is 3. Therefore the over-all enhancement shows
no anomalies when bands cross, as we noted in Sec.
III A. Although its average is zero, the two-band inter-
ference term does produce local maxima and minima
in the crossing region. When P'=0.1 (Fig. 14), the re-

scattering corrections are such that the resonance terms
no longer dominate the amplitude, but have the same
order of magnitude as the bare decay amplitude, and
hence interfere with it, as well as with each other. The
effects of this interference are evident in the striking
difference between Fig. 14 (P'= 0.1) and Fig. 13 (P'= 10).

I'iG. 16. Dalitz plot for G —+ 3H decay, 8=0.107, p'=0. 1, and
v=0.92. The ordinate and abscissa are E~ and E2, the kinetic
energies of any two II particles.
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higher spin-parity assignment is compatible with this
pattern (Fig. 14)."

When v=0.92, the enhancements for the two values
of P are quite different, the singles spectra (Fig. 8) are
very different, and the resonance parameters (Table I)
are poorly determined from them. These differences
are reflected in the Dalitz plots, Figs. 15 and 16. A
semblance of band structure remains in Fig. 15 (P'= 10),
but none is apparent in Fig. 16. The clustering of points
toward the center of the Dalitz plot for P'= 0.1 (Fig. 16)
indicates a strong preference for states with equally
distributed momentum. If one did not know otherwise,
this might suggest repulsive pairwise interactions; of
course, it is actually an effect of interference. Once
again, from detailed comparison with kinematical pre-
dictions, we find that Fig. 16, while suggestive, is not
compatible with higher spin for the G. Xone of our com-
puter-generated Dalitz plots has depletions which
could be mistaken for a different spin assignment for
the G. However, it is conceivable that dynamical effects
similar to those studied here could mislead by simu-

lating incorrect spin patterns.
Part of the distribution of dots in our Dalitz plots is

due to the variation of the function f appearing in

Eq. (15).The real and imaginary parts of this quantity
typically vary by a factor of 3, over the physical energy
range. In the case of resonance dominance (Figs. 13
and 15, P'=10), this variation is slow enough to be
neglected. However, when 19'=0.1, the effect is im-

portant and precludes the phenomenological repre-
sentation of the amplitude by a sum of Breit-Wigner
terms plus a constant. Clearly the important role of
interference makes the representation of the rate by
the incoherent sum of the squares of Breit-Wigner
amplitudes plus a background even less appropriate.

IV. SUMMARY, CONCLUSIONS,
AND PROSPECTUS

We have explored an exactly soluble model of a weak
three-body decay of a scalar parent (the G) into three
scalar decay products (the H's), in order to study the
effects of final-state interactions (FSI). Our model was
designed to elucidate in a moderately realistic fashion
situations in which overlapping resonances occur in
the final state, while retaining sufFicient simplicity to be
exactly solvable. Even within such a relatively narrow
framework, we find an alarming variety of dynamical
effects.

We have examined the effects of FSI on total-rate
enhancements, singles spectra, and Dalitz plots. We
find that moderately strong attractive pairwise inter-
actions can produce large (of order 10') enhancements
and large (of order 10 ') de-enhancements when the
bare weak-decay amplitude is of short range, whereas
when it is spread out, identical FSI produce virtually
no enhancement or de-enhancement of the total rate.
"C. Zemach, Phys. Rev. 133, 81201 (1964).

Furthermore, we observe no anomalies in the total
rate which could be attributed to resonant kinematical
rescattering singularities. "We have examined the irii-

por tant question of how well two-body resonance
parameters can be extracted from singles spectra. We
find that for sharp resonances, well centered ' phase
space, this can be done fairly well, as expected. When
the resonances are broad or near the limits of phase
space, the extracted parameters are considerably less
reliable, although the decays originating in a small weak-
interaction volume provide better extracted parameters
than those originating from a large volume. Surprisingly,
there seem to be no obvious trends in the deviations
from the true (input) parameters. For example, we
find cases of resonance broadening as well as cases of
narrowing in our singles spectra. All these results indi-
cate that when the decay is characterized by a small
weak-interaction volume, the final state is dominated
by resonant rescattering. Hence the corresponding
Dalitz plots show clear resonance bands and offer no
ambiguities in their interpretation. Moreover, nothing
unexpected happens when the resonance bands cross in
the Dalitz plot. On the other hand, when the weak
vertex is spread out, resonant rescattering terms no
longer dominate the amplitude, but are comparable
(even on resonance) with the bare weak-decay ampli-
tude. There is thus considerable interference between
all terms of the decay amplitude, and the Dalitz plots
become correspondingly complicated and are difficult
to interpret.

As is clear from the above resume, the one parameter
with the greatest qualitative effect is the size of the
bare weak-decay vertex. This parameter is the only-

one characterizing the production mechanism in our
simple model. This sensitivity suggests that in more
general reactions producing three-hadron final states,
the production mechanism and the rescattering effects
will be hard to disentangle, each profoundly affecting
the other. We plan to investigate models involving
strong production in order to learn more about these
phenomena. We also hope to investigate the dependence
of our results on some of the (admittedly arbitrary)
simplifying assumptions we have made in order to keep
the problem manageable.

It is somewhat reassuring to find a large dynamic
range in rate enhancements resulting from moderately
strong FSI: It is plausible that such puzzles as the
anomalously rapid p ~ 3x decay or the unexpectedly
slow X'~pm' rate could find their explanation in
terms of FSI effects rather than by invoking esoteric
symmetries or new conservation laws. " On the other
hand, this same sensitivity to a variety of parameters
precludes a meaningful calculation at our present level
of knowledge.

"We are aware, of course, that the X0 ~ q~m decay is thought
not to be a weak decay. This in no way modifies our conclusion on
the importance of final rescattering in the enhancements. It would
also not a6ect the shapes of spectra or Dalitz plots.
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An interesting offshoot of our investigation was the
discovery of a three-hadron resonance which has the
unusual property of moving to higher energy and
becoming more prominent as the H-H coupling is in-
creased. Pagels" has suggested that there might exist
a three-pion resonance just above 0.42 BeV/c', with
the quantum numbers of the pion. Although the absence
of isospin in our model makes detailed comparison im-

possible, the analogy is suggestive, particularly since
our II-H interaction, for moderate strengths, produces
a phase shift closely resembling current ideas about

"H. Pagels, Phys. Rev. 179, 1337 (1969).

the 5-wave m. -m interaction. '4 Ke are currently in-
vestigating the properties of this resonance in more
detail.
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Mirror Spin--,' Beta Decays*
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With time-reversal invariance, the P-decay correlation ((J)/J) prXp„, where (J)/J is the polarization
of the decaying nucleus and p& (p„) is the momentum of the electron (neutrino), can arise only through a
final-state electromagnetic interaction. For allowed transitions with vector and axial-vector couplings,
this effect is recoil-dependent. It was shown by Callan and Treiman that this effect, for the special class
of spin--, mirror transitions, and the assumption of the conserved-vector-current (CVC) hypothesis, is
dominated by weak magnetism. A corresponding calculation for the class of spin-~ mirror transitions,
of which the decay Ar" ~ CP'+e++v, is an example, shows a similar domination by weak magnetism.
The magnitude of this effect is estimated for several mirror P transitions.

INTRODUCTION

1
~~NE of the classic tests of T invariance in nuclear P

decay is the search for a possible correlation in the
decay spectrum of the form ((J)/J) (p&XP„), where

(J)/J is the polarization of the decaying nucleus, and

pr (p„) is the momentum of the electron (neutrino). In
the absence of electromagnetic final-state interactions,
this correlation is forbidden by time-reversal invariance.
Experimental upper limits on the presence of such a
correlation term have been obtained for the spin--,'
mirror transitions is ~ Pev ' and Ne" —+ Fisc+i.' There
is also possible experimental interest on this correlation
in the spin-~ mirror transition Ar" ~ Cl"e' v. '

The allowed P spectrum, summed over all final-spin
polarizations, has the following form in the standard

* Work supported in part by the Atomic Energy Commission,
under Contract No. AT(11-1) Gen. 10, P.A. 19.

f Present address: Department of Physics, University of
California, Irvine, Calif. 92664.
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Robson, Can. J. Phys. 38, 693 (1960); B. G. Erozolimsky,
L. N. Bondarenko, Yu A. Mostovoy, B. A. Obinyakov, V. P.
Zacharova, and V. A, Titov, Phys. Letters 27B, 557 (1968).
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theory with vector and axial-vector couplings (with the
neglect of nuclear recoil' ):

drp((J)
~
Er&Qr, O„) dI':rdordB„

F(WZ, Fr) pt 'pv
PrLr(Fp E:r)'rK—'rdQrd0„$ —1+a——
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4 J. D. Jackson, S. B. Treiman, and H. W. Wyld, Jr., Nucl.
Phys. 4, 206 (1957); see also Phys. Rev. 106, 517 (1957).

where F(WZ, Ei) is the well-known Fermi function that
accounts for the Coulomb modification of the electron
(positron) spectrum; $, a, c, A, 8, and D are simply
related to the vector and axial-vector couplings which
are, effectively, constants in the realm of P decay; and
J is a unit vector along J. Present experimental limits
on D, the coefTicient of the correlation effect ((J)/J)


