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A&+&(q', J)=L2h(J)/l ql ~] (tf(J)+g(J)/q'
+r(q', J)+O(q ')] (13)

The combination of deep-inelastic structure functions of A '+'(q', J) for ReJ) 1:
can be determined from the longitudinal and transverse
cross sections

Fo (o&) +o&Fi (o&)

= lim -', or'nq'L2irr(q'p&)+~ra(q', o&)]&0. (7)—
Q ~00

Before we can assert whether or not condition (6)
is satisfied, we Inust obtain information about the
subtraction term Ti(q', ~) as —q' —+ ~. To this end
we will introduce the assumption of analyticity in the
J plane as specified below.

It can be shown' that Ti(q', v) =Foo'(q', v), where Foo'

is a crossed-channel helicity-nonQip amplitude. We
define

2v "dv' ImTi(q', v')
Fi+&(q', v) = Ti(q', ~)+—,(8)
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We now assume A i+& (q',J) is meromorphic for

ReJ& ——,
' so that it may be analytically continued to

J=0.Therefore, f(J) and r(q', J) are meromorphic in J;
however, the analytic continuation of these amplitudes
niay not be defined by (14) for J&~1.4

From (9) we find for the subtraction term

Fi+'(q' v) = P (2J+1)A'+&(q' J)Pg(s)
J=0

(9) = A i+& (q', 0)Po(0)+5A i+& (q', 2)Ps(0)+B(q'), (15)

with ReJ&1. For the moment we restrict ourselves to
ReJ& 1 because of the presence of the subtraction term
Ti(q', oo). Introducing o&= il ql/s, w—e rewrite (10) as
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for ReJ&1. We write
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with Ri(q', o&) —+0 as —q' —+ ~. The next-to-leading
term must be kept in what follows. In principle, it can
be determined experimentally by

L (q'/4s-'a) o r (q', o&)
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With

h(J) =[or'&'P(J+1)]/L2 +"P(J+s)],
we obtain from Eqs. (11)and (12) the limit as —q' —+ oc

' D. J. Gross and H. Panels, Phys. Rev. 172, 1381 (1968).

where a=v/Qq'. Using Eqs. (8) and (9), we have
the Froissart-Gribov definition of the partial-wave
amplitude

2
A &+& (q' J) =— ds Qg (s) IrnT, (q' s) (10)

7l p

with B(q') =P J'—4 (2J+1)A'+&(q' J)P~(0). It can be
shown that q'B(q') —& 0 as —q' —+ ~ '

Since the integral in (6) is bounded, 4 a necessary
condition for a finite 8M is Ti(q', oo ) —+ 0 as —q' —+ oo .
From (13) and (15) this implies that A i+& (q', 0) ~ 0 as
—q' —+ oo, and this is true only if f(0) =0. If f(0)~0,
then Wf is quadratically divergent. In specific models
one may examine whether or not this condition is
fulfilled. For example, if we consider Ref. 4 and keep
only the Pomeranchon contribution so that Fi (o&)
= —C/io, then we find from (14) that f (J)= —e'
)&C2~ '/J —1 for ReJ) 1. We may now analytically
continue this function to J=0, f~(0) =-', CAO. So if the
Pomeranchon alone contributes, the mass is quadrati-
cally divergent. It is, of course, unrealistic to retain just
the Pomeranchon; but the condition f(0) =0 requires
a remarkable cancellation among all other trajectories,

4H. D. I. Abarbanel, M. Goldberger, and S. Treiman, Phys.
Rev. Letters 22, 500 (1969). The beha, vior of the Regge residues
as —q' —+ ~ in this reference is the special case of (13) when
evaluated at the Regge pole J=n;. One expects the behavior
FI(co)~ar ~, F~(co)~co ~+' as ~ —+0, with n„=1 the leading
trajectory, so that f(J) is not defined by (14) for J&(1.

~ We will indicate the proof. Writing the sum on J as a contour
integral and opening the contour to a line, we have —2iB(q')
= jq, ; 0+'"dJ (2J+1)A (+) (q', J)PJ(0)/sine J with 2 &Jp&4.
Using Eq. (13) and introducing iy= J—Jp, we have, as —q' —+ 00,
B(q') = jq) ~'S(in[a(), where S(ln rZ)) = J'„+"dv e 'v '"'o~R(y)
XW(y). R(y) is defined by R{y)= (2J+1)h(J)PJ (0)e'~J'2/sinai-J,
and W(y) = Jp des FI(co)co 0 ' i&. Since ~ 0FI(op) ~ 0 as u ~ 0
(as is consistent with the proton experiments and Ref. 4), we
have (W(y)

~

~ (y~
' as (y~ ~ ~, and since ~R(y)

~

(const
as [y( —+ Oo, J'„+"dy [R(y)W(y) (o converges. The Riemann-
Lebesgue lemma then implies that S(ln(q() —+ 0 as
so that q'B(q') —+ 0 as —g' —+ ~.
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cuts, and background that one might retain. ' Another
alternative is to drop the analyticity assumption and
introduce a Kronecker delta so that7

f(J) ~ f(J) f(—0)&JO;

then f(0) =0 is automatic.
Let us assume f(0) =0 and examine the question of

lower-order divergences. From Eqs. (13)—(15) it follows

that

lim qzq't(qz co) —+ 2I h(0)g(0)Fs(0) 5k(2) f(2)F&(0)

+h(0)q'r(q'0)Fs(0)] q' (q'0)

so that the behavior of the subtraction term as —q'~
depends only on the nonleading terms. We may

distinguish three cases as —q' —+ ~.
If q'r(q', 0) —+ Oo, then 8M is worse than logarithmi-

cally divergent. If q'r(q', 0) —+0, then condition (6) is

simply

(16)

2C+ dcuLFz(ro)+oiFi(co) j=0. (17)

' Such a cancellation is required separately for states of definite
isospin in the crossed channel. If this is the case, then f(J)~J,
as J —+0.' This could arise from the exchange of an elementary vacuum
tadpole. On this assumption, it is always possible to insert elemen-
tary particles giving rise to Kronecker deltas to cancel divergences.' S. D. Drell, D. J. Levy, and T. Yan, Phys. Rev. Letters 22,
744 (1969).

But for a self-energy the integrand is negative de6nite,
so that Fi(re) =F.(at) =0, in contradiction to the
assumption of a nontrivial Bjorken limit (and the
experiments on the proton). In this case, therefore, we

conclude that the self-energies of the hadrons are
logarithmically divergent. For mass differences, we

lose this conclusion, since Fi, (ro) are related to differ-
ences in cross sections. However, (16) is still a nontrivial
condition for a finite 835 and can be tested in theoretical
models which embrace our general assumptions. For
example, in the model of Ref. 4 and that of Drell,
Levy, and Yan, s Eq. (16) is not, in general, satisfied,
and bM is logarithmically divergent.

Finally there is the possibility that q'r(q', 0) —+ C&0
so (6) is

If C&0, we again conclude that the self-mass of a hadron
is logarithmically divergent, but for C)0 there may be
a cancellation. The question of the sign of C is related
to the behavior

lim q'$(q'/4zr'a) o.r (q')a) oi—Fi (ro) j +—q'o~R (q', co),

which is difficult to determine experimentally. Again
condition (17) can be examined using specific theoret-
ical models, and in general one would not expect it to
be satisfied. An exception is the model of Harari, '
who has suggested that only the Pomeranchon couples
as —q'~ ~, the residue functions of other trajectories
falling off rapidly. Then (17) is trivially satisfied for
mass differences which would then be finite.

The purpose of this paper has been to show that,
under the assumptions of J-plane analyticity and the
3jorken limit, one expects self-energies and mass
split tings to be at least logarithmically divergent
unless very special cancellations occur. %hether such
cancellations do occur can be answered in principle by
dificult experiments. It is also interesting to examine
theoretical models.

If the 3jorken-limit assumption is false, then our
conclusions do not follow. This assumption, essentially,
amounts to the observations that q'o'z, i, (q', ro) is
dimensionless and that if (as —q' —+ ~) there is no
elementary length or fundamental mass to scale q',
then this quantity approaches a, (presumably nontrivial)
function of the dimensionless variable co."Should there
be a scaling parameter at high —q', then the Bjorken-
limit assumption is probably wrong.

Finally, the Cottingham formula" may be the wrong
expression for M, as would be expected if there were a
nonelectromagnetic contribution to the mass splittings
on if the perturbative approach in n=1 1/37 failed
altogether.
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~'It should also be mentioned that if T&, z(~t~, v) both obey

unsubtracted dispersion relations and the Bjorken limit is non-
trivial, then BM is quadratically divergent like J' dg' JPd
&(FI(co)/~. This would be a good argument that TI(q~, v) requires
at least one subtraction, as is assumed in this paper.


