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We show that the electromagnetic self-energies of the hadrons and the mass splittings are divergent
unless there is very special behavior of the electron-hadron scattering amplitude in the deep-inelastic
region. We assume only the validity of the Cottingham formula, a nontrivial Bjorken limit of the scat-
tering-structure functions, and analyticity of a partial-wave amplitude in angular momentum J.

HE purpose of this paper is to show that the
electromagnetic self-mass of any hadron and the
mass splittings are at least logarithmically divergent,
and possibly quadratically divergent, unless the elec-
tron-hadron scattering amplitude has very special
behavior in the deep-inelastic region. This conclusion
is shown to follow from the following essential assump-
tions: (i) the validity of the Cottingham formula!
relating the electromagnetic self-mass to integrals over
the forward virtual Compton amplitudes 7T7:(¢%v),
with these amplitudes having the limiting behavior
»2T1(g%v) — 0, Ta(g%v) — 0 as v — oo ; (ii) a nontrivial
Bjorken limit? for the inelastic electron scattering
amplitudes Wy 2(¢%v), as indicated by experiments on
the proton; (iil) analyticity of a partial-wave amplitude
A® (g2 J) in the J plane for ReJ> —3%. The simplest
way to avoid this conclusion is to suppose the presence
of a nonanalytic piece 8, in the partial-wave amplitude.
We will assume that the electromagnetic self-mass
of a hadron, given by

/L. +-o0 d4q ( )
M =—— [ —¢Tp),
(27")2 /—w ¢ ’

is finite. Here 7, (p,q) is the forward virtual Compton
amplitude of photons of mass ¢* scattering on a target
hadron with mass normalized according to p*=1:
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where v=p-¢. If M is finite, one may perform a Wick
rotation to obtain the Cottingham formula

—o0 dqz +lal
oM = —%7"/ @ / dv(—@* =T 2 (g%iv) ,
o ¢ Joa
lgl=v(=¢). (2
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that the integrals over W1, 2(¢%w’) converge uniformly as —¢*— .
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Following standard Regge lore, we assume that 71(¢%»)
obeys a once-subtracted dispersion relation in », and
Ts(q%v) obeys an unsubtracted dispersion relation.
Introducing w= —¢*/», these dispersion relations read

4 oW1 (¢ w’)
Tl ((12;(’)) = Tl ((12; ®© ) —/ T
e G)
4 dw?W o (g*w’)

T2((12:w) = _w2/

0 w?(w?—w?) ’

where 7W1 2(¢%,w) =ImT 2(¢*,w) are the usual structure
functions for the electron scattering process and
T1(g?,) is the subtraction constant. Writing »=y|¢|,
we have
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M =ir / “ / Ay (L= eT (i), (&)
0 —1

q2
with
4 dwW1(g%w)
T (i) = —3Ta(g?, =) +3 / R
0 W?—¢/y
¢t deoWa(gw)
— (= / Sy
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We now assume a nontrivial Bjorken limit for the
structure functions. With w fixed,

lim Wi(@w)=F
im (P w) =F1(w), )
lim @Ws(¢w) = —wFx(w),

— 20
so that?

lim

—q2—0

¢TA(giv)= lim —3¢T1(¢%, )
—qt—o0
4

4(i0.’2
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Taking the limit as —¢*— o and performing the y
integration in (4), the condition for the absence of a
logarithmic divergence is easily seen to be

lim 2¢T4 (g%, 0)+ / do[Fa(w)+wF1(@)]=0. (6)
q2—w 0
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The combination of deep-inelastic structure functions
can be determined from the longitudinal and transverse
cross sections

Fo(w)+wF;(w)
= lim 3r'ag’[200(¢" @) +ou(¢gw)]<0. (7)

Before we can assert whether or not condition (6)
is satisfied, we must obtain information about the
subtraction term 7'1(¢?, ) as —¢>— . To this end
we will introduce the assumption of analyticity in the
J plane as specified below.

It can be shown? that T'1(¢%v) =F o' (¢%v), where Foo
is a crossed-channel helicity-nonflip amplitude. We
define

2y 2 dv' ImT1(g%v")
PO =T+ [ ST @
™ Jyo

v("v'—v)
with o= —¢?/2, so that
Ti(¢*p) =3[F® (¢ ) +FD (¢, —v)].
We may decompose F) (g2,v) into partial waves,

©

FO(¢v)=2 QI+DAD(E NP3,  (9)

J=0
where z=»/4/¢%. Using Egs. (8) and (9), we have

the Froissart-Gribov definition of the partial-wave
amplitude

00

2
AD (@ T)== / d20s@) ImTa(@9),  (10)
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with ReJ> 1. For the moment we restrict ourselves to
ReJ>1 because of the presence of the subtraction term
T1(¢?, ). Introducing = —1|gq| /2, we rewrite (10) as

—21 2 dw —1
T / —AQJ< M)Imn@z,w), (1)

T w? w

for ReJ>1. We write
7 ImT1(¢%w) =F1(w)+Ri(¢%w), (12)

with Ri(g%w) — 0 as —¢»— . The next-to-leading
term must be kept in what follows. In principle, it can
be determined experimentally by

[(¢/4m*a)or(g*w) —wF1(w)] N (¢w).
Using

Qs (=il gl /w)=h(J) /| q]) {143 (*/¢") (T+2)
. XT+D)T+3)]H0@@}, gl —
wit
() =[="r(J+1)1/[27"T(T+3)],
we obtain from Egs. (11) and (12) the limit as —¢?— «

3 D. J. Gross and H. Pagels, Phys. Rev. 172, 1381 (1968).

of A® (g% J) for ReJ>1:
AN T)=[21(7)/]q|"ILf ) +e(N)/¢

(@D +0], (13)
as |q| — o, with
2 dw
f= / i) Fa(),
2 dw
P T) = / 2l R (), (14)

g =—fU+23[0U+2(+1)T/(T+3).

We now assume A™®(¢%J) is meromorphic for
ReJ> —1 so that it may be analytically continued to
J=0. Therefore, f(J) and 7(¢*,J) are meromorphic in J;
however, the analytic continuation of these amplitudes
may not be defined by (14) for J< 1.4

From (9) we find for the subtraction term

Tl (q2) @ )

=F®)(2,0)= > (27+1)AD(¢,T)P,;(0)
J=0

=A®(g",0)Po(0)+54 % (¢2) P2 (0)+B(¢), (15)

with B(¢*)=>" 7" (2J+1)A D (¢, J)P;(0). It can be
shown that ¢®?B(¢?) - 0 as —¢g?— .5

Since the integral in (6) is bounded,* a necessary
condition for a finite M is T1(g?%,0) — 0 as —¢2— .
From (13) and (15) this implies that 4 (¢%,0) — 0 as
—¢*— o, and this is true only if f(0)=0. If (0)s<O0,
then 6 is quadratically divergent. In specific models
one may examine whether or not this condition is
fulfilled. For example, if we consider Ref. 4 and keep
only the Pomeranchon contribution so that Fif(w)
=—C/w, then we find from (14) that f2(J)=—ei™/2
XC2771/J—1 for ReJ>1. We may now analytically
continue this function to J =0, f£(0) =3C>40. So if the
Pomeranchon alone contributes, the mass is quadrati-
cally divergent. It is, of course, unrealistic to retain just
the Pomeranchon; but the condition f(0)=0 requires
a remarkable cancellation among all other trajectories,

4¢H. D. 1. Abarbanel, M. Goldberger, and S. Treiman, Phys.
Rev. Letters 22, 500 (1969). The behavior of the Regge residues
as —¢®— o in this reference is the special case of (13) when
evaluated at the Regge pole J=q;. One expects the behavior
Fi(w)~wer, Fy(w)~w ™ as w— 0, with ap=1 the leading
trajectory, so that f(J) is not defined by (14) for J <1.

5 We will indicate the proof. Writing the sum on J as a contour
integral and opening the contour to a line, we have —2:B(¢?)
= fT0—i?dT 2T +1)AD (@2 T)P;(0)/sinw] with 2<J,<4.
Using Eq. (13) and introducing 7y=J —Jo, we have, as —¢> — oo,
B(g) =1q|"7S(n|q|), where S(In|q])= Slo*"dy e lnldlR(y)
XW(y). R(y) is defined by R(y)= 2J+1)h(J)P;(0)ei=//2/sinx],
and W (y)= fo¥dw Fy(w)w/o . Since w’/oF1(w) —0 as w—0
(as is consistent with the proton experiments and Ref. 4), we
have |[W(y)| — |y as |y| — «, and since |R(y)| <const
as |y| = », S dy |R(y)W (y)|% converges. The Riemann-
Lebesgue lemma then implies that S(In|g|) — 0 as |g] — 0,
so that ¢2B(¢®) — 0 as —¢*— .
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cuts, and background that one might retain.® Another
alternative is to drop the analyticity assumption and
introduce a Kronecker delta so that”

F) = f()—f(0)8s0;

then f(0)=0 is automatic.

Let us assume f(0)=0 and examine the question of
lower-order divergences. From Egs. (13)-(15) it follows
that

im ¢*T1(¢?, ) = 2[h(0)5(0)Po(0) =5k (2) f(2)P+(0)
+rO)¢r(¢0)Po(0)] ~ 2¢r(¢%0),

so that the behavior of the subtraction term as —¢* —
o depends only on the nonleading terms. We may
distinguish three cases as —¢?>— .

If ¢%(¢q%0) — oo, then 6M is worse than logarithmi-
cally divergent. If ¢%7(¢%,0) — 0, then condition (6) is
simply

2
/ do[wF1(w)+F2(w)]=0. (16)

0

But for a self-energy the integrand is negative definite,
so that Fi(w)=F:(w)=0, in contradiction to the
assumption of a nontrivial Bjorken limit (and the
experiments on the proton). In this case, therefore, we
conclude that the self-energies of the hadrons are
logarithmically divergent. For mass differences, we
lose this conclusion, since F; »(w) are related to differ-
ences in cross sections. However, (16) is still a nontrivial
condition for a finite §M and can be tested in theoretical
models which embrace our general assumptions. For
example, in the model of Ref. 4 and that of Drell,
Levy, and Yan,® Eq. (16) is not, in general, satisfied,
and 6M is logarithmically divergent.

Finally there is the possibility that ¢*(g%0) — C0
so (6) is

ZC—I—/ dw[F2(w)+wFi(w)]=0. a7

6 Such a cancellation is required separately for states of definite
isospin in the crossed channel. If this is the case, then f(J)~J,
as J — 0.

7 This could arise from the exchange of an elementary vacuum
tadpole. On this assumption, it is always possible to insert elemen-
tary particles giving rise to Kronecker deltas to cancel divergences.

8S. D. Drell, D. J. Levy, and T. Yan, Phys. Rev. Letters 22,
744 (1969).
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If C<0, we again conclude that the self-mass of a hadron
is logarithmically divergent, but for C>0 there may be
a cancellation. The question of the sign of C is related
to the behavior

lim ¢’[(¢*/4m*a)or(g*w) —wF1(w) ] = ¢wR (¢’ w),
—gq20

which is difficult to determine experimentally. Again
condition (17) can be examined using specific theoret-
ical models, and in general one would not expect it to
be satisfied. An exception is the model of Harari,®
who has suggested that only the Pomeranchon couples
as —¢*— oo, the residue functions of other trajectories
falling off rapidly. Then (17) is trivially satisfied for
mass differences which would then be finite.

The purpose of this paper has been to show that,
under the assumptions of J-plane analyticity and the
Bjorken limit, one expects self-energies and mass
splittings to be at least logarithmically divergent
unless very special cancellations occur. Whether such
cancellations do occur can be answered in principle by
difficult experiments. It is also interesting to examine
theoretical models.

If the Bjorken-limit assumption is false, then our
conclusions do not follow. This assumption, essentially,
amounts to the observations that ¢%or 1(¢%w) Iis
dimensionless and that if (as —¢?>— o) there is no
elementary length or fundamental mass to scale ¢?
then this quantity approaches a (presumably nontrivial)
function of the dimensionless variable w.!? Should there
be a scaling parameter at high —¢? then the Bjorken-
limit assumption is probably wrong.

Finally, the Cottingham formula!! may be the wrong
expression for 64/, as would be expected if there were a
nonelectromagnetic contribution to the mass splittings
on if the perturbative approach in a=1/137 failed
altogether.
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1Tt should also be mentioned that if 74,:(¢%») both obey
unsubtracted dispersion relations and the Bjorken limit is non-
trivial, then 8M is quadratically divergent like /" ~*dg¢? fy2dw

X F1(w) /w. This would be a good argument that 7' (g?,») requires
at least one subtraction, as is assumed in this paper.



