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Sugawara Model, Stress Tensor, and Spectral Sum Rules*
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A prescription is presented for modifying the stress tensor of the Sugawara niodel in order that it become
consistent with general postulates of field theory. The prescription involves redefining the stress tensor as the
limit of a spatially nonlocal operator. Within the context of the modified theory, sum rules are derived by
considering the vacuum expectation value of equal-time stress-tensor commutators. Variations of our
limiting procedure are also considered. It is shown that convergent Weinberg second sum rule in the frame-
work of the Sugawara model leads to a null theory. The existence of a nontrivial Sugawara model leads to
a specific behavior of the cross section for positron-electron annihilation into hadrons at high energies.

I. INTRODUCTION model questionable, although the degeneracy in mass
is not valid when symmetry is broken in a specified way.

We shall be concerned with the Sugawara theory not
as a physical theory but as a model. Difficulties in com-
puting any physical quantity in the framework of the
Sugawara model are already known. Our purpose is to
study the Sugawara model to get an understanding of
some of the formal problems associated with a model
with currents as coordinates and their possible solutions.

With Sugawara's expression for O„„and the current
commutators, one can compute the equal-time com-
rnutators involving components of the stress tensor. All
of these commutators contain terms involving at most
first derivatives of spatial 6 functions. But, in general,
the spectral representation of the vacuum expectation
value (VEV) of an equal-time stress-tensor commutator
(ETSC) leads to not only first derivatives but third and
fifth derivatives" of 6 functions. The absence of the
leading Schwinger terms, the third derivatives of 8
functions, means the spectral function is identically
zero and the theory does not exist. The genesis of the
problem is that 0„„ is a sum of local products of two
operators which is ill defined. One is familiar with such
diKculties in the definition of current as a local product
of two field operators.

In this paper we present a prescription for formulating
the Sugawara model so that the ETSC's contain the
necessary Schwinger terms. Basically, our prescription
is to redefine H„„as a suitable limit of a sum of nonlocal
products of operators. The analogous case of currents
is well known" and has been treated elegantly and in
detail by Brandt. '4

In Sec. II we give our prescription" after brieRy stat-
ing the basic equations of the unmodified Sugawara
model and discuss how the equations are modified by
our prescription. In Sec. III we evaluate an ETSC using
the nonlocal expression for the stress tensor and give
arguments for using a particular type of limiting pro-
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HE success of the current algebra' in correlating
experimental facts has led to a considerable inter-

est in model theories in which currents appear as
coordinates. ' ' An interesting example of such a model
which is relativistic is due to Sugawara. ' It consists in
postulating equal-time commutators for two SU(3)
octets of vector and axial-vector currents; the energy-
momentum stress tensor tIt„„ is then determined, es-
sentially uniquely, to be a sum of bilinear local products
of currents under the requirement that it be a unitary
singlet, satisfy the Dirac-Schwinger covariant condition,
and be a finite polynomial in currents. The stress tensor
in turn gives the equations of motion for the currents.
An equivalent Lagrangian formulation of the Sugawara
model has been found~' and the model has been ex-
tended to include various forms of symmetry break-
ing. ' ' ' Furthermore, with a view toward testing the
theory, sum rules have been derived which might be
compared with experiment. '0 But the recent demon-
stration" that the Sugawara model leads to a particle
spectrum consisting of parity doublets of degenerate
masses makes the physical relevance of the Sugawara
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cedure. The derivation of spectral sum rules as a conse-
quence of the limiting procedure is given in Sec. IV. We
conclude, in Sec. V, with comments on variations froni
our limiting procedure and Keinberg's second sum~

rule" and with an expression for the high-energy be-
havior of the cross section for e+e —+ hadrons.

II. MODIFIED MODEL

The symmetric Sugawara model is defined by first
postulating the equal-time commutators of vector
(V„) and axial-vector (A„~) currents (xo——xo'):

[Vo'(x), vob(x')7=[Ao (x),Aob(x')7
= i f, b, vo'(x)B(x —x'),

I:Vo'(*) V b(*')7=LAo (x),Ab'(x')7
= if, b, Vb'(x) B(x—x')

+'CB.,B.&*&B(x—x'), (2.1)
[V,.(x),A, (*')7=

I
A,-(x),V. (*')7

= if.b,A b'(x) B(X—X'),
[vb'(x), v;b(x')7= [Ab (x) A '(x')7

= [Ab (x), V,'(x')7=0,

where a,b,c=1, , 8, f b, are SU(3) structure con-
stants, and C is a finite c number. The stress tensor is
obtained by requiring it to be a finite polynomial and
obey the Dirac Schwinger covariant condition. ' It is
given by

function f($) until we come to Sec. III. Cornmutators
involving 8„„(x)are to be calculated using 8„.(x; $) and
then the limit ~~

—~ 0 is to be taken,
The equations nf motion for. currents are assumed to

bc given by

B„J(x)= i lim dx'[8o„(xo,x'; (),J(x)7, (2.5)
g~p

B~V„(x)=0=BE„(x),
B„V,~(x) —B„V„~(x)

(2.6a)

=lim (1/8C)f b, {[v„b(x+&),U„'(x)7+

+[V„'(x—$), V '(x)7 +[V '(x) V '(x—$)7+

+[V„'(x),V,'(x+&)7++(U~ A)), (2.6b)

B A ~(x) —B A (x)

=lim (1/8C)f,{[A „'(x+]),V„'(x)7

where J represents either vector or axial-vector current.
Equation (2.5) gives consistent results if

[Jb„(x+$),J,„(x)7+=[J „(x),J„(x—$)7+ as $ 0.

With this condition as a part of our prescription, the
equations of motion for the currents become

8,„(x)= (1/2C) {[v„.(x),v„-(x)7+—Z"Vb (x)V "+(U~A)) (22)
y[A '(x —P), V„(x)7 +[A„'(x),V, (x—~)7,

+LA. '( ),U.'( +f)7++(U A)) (26 )The Heisenberg equations of motion are

B&v„'(x)=0= B&A„(x),

B„v„(x)—B„v„(x)= (1/2c) f.b, {[v„'(x),v„'(x)7+
+[A„'(x),A, '(x)7+), (2.3b)

[8oo(x),Jo'(x )7 =lim [8oo(x; $),Jo'(x )7
)~p

=zJb'(x) Bb &'(x—x'),

[8oo(x),J, (x')7=lim [8oo(x; $),Jb (x')7

=iJo'(x') Bb &'&6 (x—x')

B„A„'(x)—B„A„(x)= (1/2c) f,b, {[v„'(x),A„'(x)7~
+LA. '( ),V.'( )7+) (2 3 ) (2.7a)

For the reasons mentioned in the Introduction,
the stress tensor has to be defined as a limit of a
spatially nonlocal operator. In analogy with the case of
currents, " '4 we redefine the stress tensor as

(2 3a) Using the equations of motion, one can determine the
form of various equal-time commutators of the stress
tensor with the currents (xo ——xo'):

8„„(x)=lim [8„„(x;t) —(0I8„„(x;t) IO)7, (2.4a)

where" $= (0,$) and

8"(*; 5) = [f(k)/4C7{ [V,'(x), V. (x+ k) 7+
+[V„(x+$),V. (x)7+—C"[V"(*) V'"(*+e)7++ (V A) ) (2 4b)

f($) is a function of $ and the vanishing of f(0) is

chosen to cancel singularities of local products like

V„(x)V'"(x)."We shall suppress the appearance of the
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—iBoJb'(x)8(» —«'), (2.7b)

[8ob (x),Jo'(x') 7 = lim [8ob (x; $),Jo'(x') 7
$-+Q

=iJo (x)Bb&'&8(x—x'),

[8ob(x),J„(x')7 = iJ (b)xB„&*&B(x x')—
(2.7c)

—iBb&*&J (x)6(x—x') . (2.7d)

There appear additional terms of the form

lim f„,[Jb(x+$) J'(x)7+(6(x+g x') —B(x——x')) (2.8)
g~p

in the commutators (2.7). If we assume that

lim [J(x),J(x+$)7+—(0 I [J(x),J(x+P)7+ I 0)
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exists, we have

lim r-")J(v),.T(x+ „")g~
$-+0

=»m t &0ILJ($),J(x+t)7+Io) (2.V)

with n)0, and hence we can replace (2.8) by terms
like that on the right-hand side of (2.9) involving
vacuum expectation values. But the internal syrrunetric
nature of these terms lead to vanishing of their vacuum
expectation values (VEV). The fact that commutators
(2.7) are the same as those derived in a model-inde-
pendent way" lends credence to the validity of Eq.
(2.9). Commutators (2.7) are also the same as those
found in the unmodified Sugawara model and hence
we can continue from here on in the same fashion as
before' to show that P„and 3f„,constitute the Poincare
algebra and that the currents have the correct trans-
formation properties under the Lorentz group.

III. STRESS-TENSOR COMMUTATORS

Now the stress-tensor commutators are given by

L8„„(x),8&„(x')7= lilll I 8„„(x;(),8&„(x'; $)7. (3.1)

In order to compute ETSC's we can make use of com-
mutators (2.7) and hence write (xp= xp')

L8u„(x),8&,.(x')7 = limL8u„(x; P), 8&,.(x')7. (3.2)

Consider (xp= xp')

L8pp(x), 8p„(x')7=lim L8pp(x; P), 8o„(x')7, (3.3a)

where

I 8pp(x; &),8p (x')7
= (i/4C) {I Vp'(x), Vp'(x')7+8 & &3(x+g x')—

+LVo (x+g), vo (*')7 a„t &8(x—x')

+I Vy, ($),v„u(x')7+8&, &u&8(x+g —x')

+/vt, (x+&),V '(x')7+By&'&8(x x')—
+Lvpu(x) 8 V (ox+a) 8& V (x—+$)7+8(x+(—x')

yI V '(xyg), 8 V», '(x) —l9sv '($)7 8(x—x')

+(V~ A)). (3.3b)

After some manipulations, one obtains (xo——xp')

L8pp(x) 8p (x')7=i(8po(x')8p +8&t, ($))8&'*&8(x—x')

+lim r(x,x'; &), (3.4a)
gmp

with

(*,x', &)= (i/4C)f(&) {(LVo ($),vo'(x+5)7 8-
+Lvt, (x),V (x+$)7+)8p&'&(8(x+(—x')+8(x —x'))
+(Lvo.(*),8-vo.(*+&)7.+LV'( ),8-v'( +r)7.)
&& (3(x+(—x') —b(x —x'))+ (V —+ A) )
+i(0 I

8oo(x'; ()3~„+8p„(x; &) I
0)a„t*&(x—x'), (3.4b)

~~ R. Jackiw, Phys. Rev. 175, 2058 (1968); D. J. Gross and R.
Jackiw, oNd 163, 1688 (1967). .

&= r&so /go, C= r&to /go ~ (3.5c)

The hadronic currents are assumed to be given by

J
In the BFH limit

pbp ~ 0 gp ~ 0 C= const

we get the Sugawara model. We shall look at this limit
in a slightly different way to arrive at the nature of f($).
We are dealing with local product of operators. In
analogy with soluble models and perturbation theory
and also what we have done in Sec. II, we assume that
they are appropriate limits of nonlocal products. Then
the mass term in (3.5a) becomes

lim —,'Lm ($)7'p„(x+$) oo'u(x), (3.6)

where mp(0) is assumed to cancel the singularities of
the local product cpu ($) y "(x). Appropriate modifica-
tions have to be made in equations of motion and com-
mutators involving local bilinear product of fields. "
In order to get the BFH limit, we write

~o(k)=~oh(k), ap(&)=goLh($)7',

c(8= L~o(k) 7'/Lao(&) 7'= ~/I:h(5) 7'

Lw&th h($) —+0 as $ —u 07, and let t&so~ 0 go~ 0 and
C= const. Under this procedure, " the existence of
(3.6) leads to the existence of

h(~)
lim Ju (x+$)Ju (x).
&"P 2C

(3.7)

Note that the BFH limit and $ —+ 0 limit are to be
taken in that order. The dimensionality of the product
oo„(x+t)oou(x) is i ' and hence we take its leading
singularity on the light cone to be like ( '. This leads
us to have h($) P and hence f($) P. The leading
singularities of the product of operators being given by

I C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1934).
2' A similar procedure has been used by J.D. Bjorken and R. A.

Brandt LPhys. Rev. 177, 2331 (1969)j to get "minimal algebra. "
But we difI'er from them in that we keep the limiting procedure to
get local products fron nonlocal ones and the BFH limit separate.

"This procedure is by no means unique.

where we have explicitly exhibited the presence of the
function f($). Using Eq. (2.9), we can show that.(x,*', t)=(oIr(x,x'; g) IO).

At the outset there is nothing in the model to dictate
the form of f($). But Bardakci et al. (BFH)' have
shown that the Inassive Yang-Mills theory' in a certain
formal limit reduces to the Sugawara model. The mas-
sive Yang-Mills Lagrangian is given by

1.(x) = ——,'F„„u(x)Fuu"(x)+-', mp'o (x) p u(x) (3.5a)

where

Fup 8up~ 8~9'u sgpfuou(v'u p~ +pu pu ) ~ (3 5b)
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m'C ( g

(a—6b) ds pv(sXb(x —x')+ —,
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28i—TOb s s pd 'pv(s) 68p &'&b x—x') — f(
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a set of3.4) to derive a se
h

Now we take t e
rules. For t is

'
n for conservelKallen-Lehrnann ps ectra r

vector currents as

d by considering them rule is obtaineThe second sum ru
utator xp= spVEV of the commu a

~ 'Vo'(* )—~p Vi'(* )j
= LA,'(x, , p8 A pb(x') —cjpA, (x )j

(I '( + ) .'( )3+fbcd ade i
SC

v(s) ds =b(x —x')i b.bg;;b(x —x )ib~bgo p s s =

3i f(()
X p"(s)ds=lim b.b

(s«+2+a)dsLp v(s)+p" (s)$

—
—,'as(( g)+4bghb(x —x')g;;Xb(x—x')g;;— —
—,'as

4.6+ &'8 &*&8(x-x ) . ( . )
(~o

where X '
a dimensionless

merely for convenience), in
th e limit $ —+ 0

ds "(s)=-',NC(2+a)/( ——,a 1——,'N) —. (4.7)dsp~(s)= dsp s =2

(4.7) with Eq. (4.3)E . (4.4) and Eq.Combining q.
ives, with f(&)=org

(2+a) i9 &*&B(x—x')(oI (~,~';g)IO)= 1—3a 2

a (1—4N) —10bj4ilV CP ,'JiV (a 6b)(2+a)/-—
x—x — '8 &*&b(x—x'). 4.8x—x') 56iN( (cdD—X&& &(

E . (3A) (for xp=xp')Now we E .N ' e have from Eq.
/ o). (49)~')]Io) =»m (OI, (~,~;(0ILHpp(x), ep x = '

x x

+I:Vs'(&),V"(*+5)j+
X(b(x—x—')+B(x+g—x'))+(V —+ A .

motion to arrivee use of the equations of mYVe have made use o t e
at Eq.. (4.5). The VEV o q.
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By making use of the Kallen-Lehmann representation
for stress-tensor commutators, we" can show that
(for xp ——xp')

(0 f f coo(x),eo (x')] fO)

ds f
o4s-s(s)+m. p(s) jhow„&*&6(x—x')

—if -,'s.o(~)+pro(~) jA'p) l*&h(x—x'), (4.10)

where x2 and m-0 are spin-2 and spin-0 spectral functions,
respectively, and m-;(~)=lim, „or,(s). Comparison of
both sides of Eq. (4.9) using Eq. (4.8) and Eq. (4.10)
gives

(4.11a)C=g
q

ds[-', 7rp(s)+7rp(s) j
=4.'i CL 10b+-,'r(2+8)/(1 'll)—(6—b a)$,—(4.11b)

—,'s p(~)+orp(~ ) =0. (4.11c)

Equation (4.11a) gives the same value for a as that
obtained by averaging with a spatially symmetric
function with unit integral. If we assume that b takes
its spatially averaged values 1/15, then Eq. (4.11b)
becomes

a local quantum 6eld theory, one should not draw con-
clusions from naive manipulations of local products of
currents. In conclusion we want to make the following
remarks: (a) We have used the BFH limit of the massive
Yang-Mills theory and dimensionality arguments to
conclude f(P) P. But if one chooses to have f($)~$",
the consequences are interesting. With n = 0 and n= I
we can arrive at diferent spectral sum rules. If n&2,
we get limt„p (0 f p(x, x'; $) f0)=0 leading to vanishing
or; (i=0, 2), which means the theorydoes not exist. The
existence of Weinberg's second sum rule LEq. (4.6)j
requires n= 4 and thus leads to a null theory. (b) With
our limiting procedure, we can show that a nontrivial
Sugawa, ra model (0&m& 2) leads to a divergent Wein-
berg's second sum rule Lsee Eq. (4.6)7"

ds pv(s) = ds p" (s) = ~, (5.1)

leads to

$6z3o.'
(s) = p

' (s)
g2

(5 2)

which, when combined with (4.7) and the expression for
the total cross section o~,~(s) for e+e —+ hadrons, "

00 2
dsPs-s(s)+orp(s)] =—iYC(8+1V)/(4 —3X). (4.12)

0 15
~...(s) —s-'-' (0&e(1). (5.3)

Since the spectral functions x; are positive definite,
Eq. (4.12) implies 0&%&-',. Note that Eqs. (4.11c)
and (4.12) are consistent with one another. One can
use the pole-dominance approximation in Eq. (4, 12)
to determine the value of )V. But at present the relevant
coupling constants are not known.

V. COMMENTS

It is evident from the above considerations that,
because the Sugawara model has all the pathologies of

It will be intei. esting to see whether experimental cross
section for e+e ~ hadrons will show behavior (5.3).

"This result has been obtained by D. Corrigan and J. Kuriyan,
University of California, Los Angeles Report (unpublished). Their
arrival at it involves manipulations of local products of currents
which are highly questionable. The basis of their conclusion is the
elimination of an inconsistency which, in fact, disappears in our
limiting procedure.

P'J. D Bjorken, . Phys. Rev. 148, 1467 (1966); J. Dooher,
Phys. Rev. Letters 19, 600 (196/)."We have ignored log factors.


