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since it was seen that the anomaly in G(p) affects the
anomaly in I'&(p, q), and also in the Compton amplitude.
We must also make explicit mention of the fact that
our results involving field commutators a,re gauge-
dependent. In other gauges, no result could be given
since the unrenormalized fields do not exist. Of course,
the results for the Compton amplitude are gauge-
invariant.

It should be noticed that the anomalous commutator
algebra (4.1)—(4.3c) is nondistributive. That is, even if

we accept the de6nition j'=g(x+ ,'e)—yg(x ',—«)—, we
cannot calculate the anomalous Lp, j'7 or the pj', j"7
commutators from the anomalous Lit,$7+ commutator.
This is analogous to the breakdown of the Jacobi
identity discovered by 7ohnson and Low. s
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By combining the local current algebra with the commutation relations between the current densities
and the Lorentz boost operator, we derive low-energy theorems as well as sum rules which involve neutrino
and electron scattering form factors.

1. INTRODUCTION

GREAT deal of recent activity ha, s been based on
the equal-time commutation relations proposed

by Gell-Mann':

Ljo (*),jo'(y)7= f"jo"()~( -» t

Ljp (x) jpp'(y)7=if"jpp'(x)~(x —y) "" xp=yp

Deaning

j' (x)=—j' (x) -x'&pjp (*) (for a,ll xp) (3a)

j;p (x)—=j,„-'(x) x,r)pj—p (x) (for all x,),
we hand the following commutation relations:

(3b)

Ljo (*) P'(y)7+La' (x),jp'(y)7
=if s&g, '( )rbx(x y) at x—p=yp=0, (4a)

L jpp (x),jpps(y)7=if s"jp"(x)B(x—y) at xp=yp.

Here jo and j05 are the time components of
hadronic vector and axial current densities and o. is the
SU(3) index.

Adler' has derived sum rules involving high-energy
neutrino reactions which can provide tests of Eq. (1).
A sum rule involving photoabsorption has been derived

by Cabbibo and Radicatia and an inequality for high-

energy electron scattering has been obtained by
Bjorken. 4 Our purpose in this paper is to derive more
sum rules from Eq. (1).

Our procedure is essentially the same as that of Adler'
except for one crucial difference: We do not use Eq.
(1) directly. Instead, we commute both sides of Eq.
(1) with the Lorentz boost operator IC, (i=1, 2, 3)
and use

Ljo- () f'"'(y)7+F2' (),jo b)7
=if s&f &8(x y) at xp———yp=0. (4c)

The equal-time commutation relations in Eq. (4) form
the basis of the results to be obtained in the present
paper. It may be pointed out that, in spite of the ap-
pearance of the space components of the currents, Kq.
(4) is an exact consequence of Eq. (1) and Lorentz
covariance. Moreover, Eq. (4) is free from the unknown
Schwinger term which has to be present in. the commu-
ta, tion relations between the time and space components
of currents. Actually, Eq. (4) is a constraint on the corn-
mutation relations between the time and space compo-
nents of the currents. 5

In Sec. 2, we derive low-energy theorems ba,sed on Kq.
('4). These are exact results following from the assumed
local current commutation relations. We then convert
these theorems into sum rules involving weak and elec-

ifE;,jp (x)7=j, (x) —x,8pjp (x) at xp=0. (2)

' M. Gell-Mann, Physics 1, 63 (1964).
~ S. L. Adler, Phys. Rev. 143, 1144 (1966).' N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697

0966).
4 J. D. Bjorken, Phys. Rev. Letters 16, 408 (1966). ' V. Gupta and G. Rajasekaran, Nucl. Phys. Blo, II (1969).

(1c)
Ljp (x),g'»'b)7+L~' (*),jo-'b')7

the =if »f;p&6(x y) at x—p ——yp=0, (4b)
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tromagnetic processes by mak. ing the assumption that
certain amplitudes satisfy unsubtracted dispersion rela-
tions in the energy variable for fixed g'. This is presented
in Sec. 2. The assumption of unsubtracted dispersion
relations is a questionable one; however, all the deriva-
tions of sum rules from current algebra have made a
similar or related assumption. This question is briefly
discussed at the end of Sec. 3. In Sec. 4, we write down
sum rules which are convergent on the basis of Regge-
pole theory. These sum rules are, in fact, generaliza-
tions of the sum rules of Pagels and Harari' for nonzero
g2

Thus, we have

lim d4x exp( —iq x) 8(xo) P (1VILBpjp"(x),f,e(0)]
a'o~p 8

+La,y, -(x),j (0)]IX&=0, (6)

where q = (iqp, s). By straightforward manipulations, the
integral in Eq. (6) can be rewritten in the form

d4x exp( iq—x) .0(xp)

2. DERIVATION OF THE LOW-ENERGY
THEOREM

YVe start with the basic identity

&&2 P I I:D"(*)j"(o)]-Lj*'( )»'(0)]
S

—ie-(Lj- (x),j,e(0)]+Lj,-(x),j„e(o)]}IN&

dxo e'""(fl
I BpA(xp)»(xp)] I i)

= —(f1 LA(o)»(o)] I'&

+i
Bsi

d4x exp( —iq x)8(xo) P P ILD-(x),De(0)]
S

—i~-(I j- (x),D'(o)]—LD"(x) j-'(o)])

+ - -Lj- ( ),j-'(o)]IN&,
—

Sgp dxo e""'(fl LA(xp)»(0)] I') (5) where we have introduced

which holds for all qp in the upper half of the complex
plane. For li) and

I f& we shall take the single nucleon
state at rest denoted by I

1V& and we shall further aver-
age over the nucleon spin.

Choose first

D (x)—=B„j„(x).

We now define the amplitudes dv e(qp, q'), wi e(qp, q'),
op e(qo, q'), and ii e(qp, q') through the equations

di e(qp, q')

Ai(xp) = d'x e "*jo (x,xp), d4x e-'P'*8(xo) Q (Xl I D (x),De(0)] llV&,

and then

Bi(xo) =g;e(o,xo),

Ai(xp) = d'x e "*j'e(x,xo),

»'(qo, q') ~-+~ '(qo q')q. q-

d'x e-"*e(xo)2 % II:j- (x),j-'(o)]I&&
8

B,(xp) = jpe(o, xo) .

Now use Eq. (5) for these two cases and add. We next
take the limit as qp ~ 0. The second term on the right-
hand side of Eq. (5) vanishes in this limit for all

I
s

I )0,
as can be seen by inserting a complete set of states. The
first term on the right-hand side of Eq. (5) gives, on
making use of Eq. (4a),

—if"2 (lV
I z"(o) I iV&,

S

iq„iv e(qo, q')

d'x e
—' '*0(xp) P (E I Lj„(x),De(0)]

S
—CD (*) j'(0)]IN&.

Using these functions, it can be verified that Eq. (6)
reduces to the statement

( 8
I

q' (oi'+q'»')
4 aq,

where Ps denotes the spin average. Ilowever, this is
zero since the nucleon is at rest.

+ (dv +q iver" ) —pic"
po=o

=0, (8a)

' H. Pagels, Phys. Rev. Letters 18, 316 (1967};H. Harari, ibid.
18) 319 (1967).

where we have replaced
I
sl' by q'. By repeating the

same procedure with axial curren. ts and using Eq. (4c),
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one arrives at equations

pj

q2 (ri aP+q2r2, aP)
4 aq2

8
+ (d—~"p+q'2~') ,»—'

I

Bg ) qp=p

dy' P(qp, q') =— d'x e-' '*Q (A ~LD (g),DP(0)j~N),
2i 8

=0, (Sb)» '(qo q')~- +»"(q pq )2q q

where the amplitudes d~ 1, u~ f', a2 t', and i~ ~ are de-
fined by equations similar to Eq. (7). These equations
$(8a) and (Sb)j are our low-energy theorems.

In the case of conserved currents (the vector currents
for F2=1, 2, 3 and 8), di ——iv ——0 and the low-energy
theorem therefore assumes a very simple form:

1
irf,. p"P(q„q')=— d'x p-' *P (X~ Lj„.(x),DP(0))

2j 8

(a/aq )(p, -P+qqp2-P)
I q,=,——0.

d, -P(q, q') =d,P.( q„q'),e—tc. ,

9
In writing Kq. (13) we have made use of the fact that

~aP / ~ ~

One can derive the crossing-symmetry-type relations th a rPtxve Parts di' P, etc. (symmetric in rr, P), are
odd functions of qp. Ke also have a similar equation for

(10) the axial case:

for all the amplitudes entering in Eqs. (8) and (9). Con
sequently, if we take the antisymmetric part in n and p
then Eqs. (8) and (9) are identically satisfied. Thus one
will obtain low-energy theorems only when the part
symmetric inr2 and P of Kqs. (8) and (9) is taken. Hence-
forth the symmetrization in the SU(3) indices r2 and p
is implicitly understood in all the results given below.

3. SUM RULES FOR NUCLEONS

%'e now convert the low-energy theorems into sum
rules for neutrino reactions and electron scattering by
using unsubtracted dispersion relations, %e assume that
the amplitude Xv P(qp, q'), defined by

8
Xv p(gp, g') =q~—(si p+q22i2 p)

Bq'
8

+ (dv P+q'2v P) —2iv (11)
Q$2

dgp( 8
-~ q' (ai"P+qqa2"P)

p gp E Bq

8
+ (d~™P+-q'ig' P) ',i„'P ~=0. —(1-3')

dip 8
(p

r aP+qpp r aP) 0
o go ~g

(15)

Equations (13) snd (15) are essentially the sum rules.
However, to be able to test them experimentally one
notes that the absorptive parts can be related to the
elastic and inelastic form factors measured in neutrino
or electron scattering experiments. This can be done in
a straightforward manner and we shall give only the
results.

The absorptive parts d&' 1, etc. , are defined by equa-
tions similar to Eq. (14). For the conserved current case,

satisfies the unsubtracted dispersion relation: ~. NeQtrino Reactions

00

~v'(qp, q') =- Xv"p(qp', q')
dqp'

Vo
—

~Zo

Adler' has defined the form factors occurring in the
(12) differential cross section dpo/dqpdq2 for the neutrino

reactions

where Xz' & is the absorptive part of Xz ~. Putting qp=o
and using Eq. (Sa), we get

2+%—+ f+B,

2+1V -+ 3+8,
(16)

(17)

dqp( rl

I
q' (pi' P+rI2p2' P)

p gp E Br/

8
+—(&v"+qqv"i —l~v'"')=p (&3)

B(2

where dy' &, etc., are the absorptive parts dered by the

where l is the final lepton and 8 is a system of hadrons.
These are functions of gp and q', q being the lepton four-
momentum transfer. %e find that our sum rules involve
only the two form factors P(qp, q') and p(qp, q'). Let us
denote these form fa,ctors for the reactions (16) and (17)
by the superscripts + a.nd. —,respectively, and also let
the subscripts p and 22 denote the proton and neutron
target respectively. However, if 8 has strangeness S=0,
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then because of isospin invariance

P„+=/„, p,+=o„(forthe AS=0 case) . (18)

We first choose the $$=0 currents in Eqs. (13) and
(13'). Specifically, we put the SU(3) indices I2=p=1
and then I2 p=2 and add. This calculation results in
the sum rule

B. Electron Scattering

We next take the electromagnetic current in Eq. (15)
and get.

p/ (1
dqoqo I P, '(qo, q ) I=0,

aq2(q2
' )

/3~ —&~+ I+ qp
aq2 ) aq2

where P„,„'(qp,q2) is a form factor' measured in the elec-
tron scattering process e+1V —& e+B. Integrating with
respect to q' and defining

(»=0) . (19) ",.'(qo, q') = (qo/q') I:&., -'(qp, q') 3, (22)
Because of Eq. (18), by measuring d'o/dqpdq' for the
reactions (16) and (17) for both proton and neutron
targets it is possible' to determine P~+ and p~+ in the
AS=0 case and thus test the sum rule Eq. (19).

By choosing the»=AQ=+1 currents (i.e., n=P =4
and 5) we get two sum rules, one for the proton target
and one for the neutron:

dqo qo PIn+ p„,,n+—
I

8g

p/

+ qo P„,; .„,„I—=0—(I»1=1). (20)
Bqo

In this case, relations analogous to Eq. (18) are not
valid and so the functions e„,„+cannot be determined
from the differential cross-section measurements. Thus
one cannot compare the sum rule directly with experi-
ment. However, if one assumes SU(3) symmetry, then
a confronta, tion of Eq. (20) with experiment is possible.

we can write Eq. (21) as

dqpLo„,„'(qp,q') —o~,„'(qp,0)$=0. (23)

gp
"(qo,q') =- —

L "-(qo,q') —~I. '(qo q') j
4~2~ (q 2+q2) I/2

gp
Ir(qp)q ) )

4~2~ (q 2+q2) I/2
(24)

and separating the "pole term, "we get

This is'our sum rule for electron scattering.
One may cast Eq. (23) into an alternate form involv-

ing the transverse and longitudinal cross sections
«.ona(qo, q2) and OI, ,(qp, q') for the fictitious process
y+1V ~8, where y has mass = —q'. Using' the
definition

LG (q')3. .-'+(q'/4~ ') LG-(q') j.,-' LG'(0)].,-'

2ME(1+q2/4M/I 2) 2M~

4x'o. „~(p)
dqp 0&,„(qp&q )+— dqp o.„,.(qp, q') —0„,.(qp, 0) I=O, (25)

(qp2+q2) /2 42r2I2 &

~ (q 2+q2) I/2 J

where
qp'(q') =M +(q2+Ild. 2)/2IM & dqpL ps(qp, q') —os (qp, 0)$= 0,

and (GEj& „andLG2r]„„arethe electric and magnetic
form factors for the proton and neutron.

The sum rule (23) or (25) was obtained by taking the
electromagnetic current which is a sum of isovector and
isoscalar currents. We could have taken the isovector
(j„')or the isoscalar current (j„o)separately and thus
obtain independent sum rules for the isovector and iso-

dqoL (q q')- (q 0)j=0
(26)

C. Convergence of the Sum Rules

where e~ and e~ are form factors corresponding to the
isoscalar and isovector photons, respectively.

scalar parts. Thus,
We have exploited the low-energy theorems by con-

verting them into sum rules through the assumption of7 It should be noted that the form factors & can be obtained
from differential cross sections only if the lepton mass m is not
neglected.
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unsubtracted dispersion relations. The integrals in the
sum rules may turn out to be divergent, in which case
the assumption of »nsubtracted dispersion relations
would be wrong.

If we identify our amplitudes with the forward scat-
tering amplitude of vector particles of mass= —q',
then according to Regge-pole theory,

(27)
qQ ~00 qpm00

where n is the zero-momentum-transfer intercept of the
Regge trajectory for the crossed channel. Since c, =1 for
the leading trajectory, the integrals J'dqpqp8 and J dqpe

are predicted to be linearly divergent. However, our
sum rules involve the differences of such integrals at
two different q' values. If the asymptotic behavior is
independent of the mass —g' of the vector particle, then
our sum rules may be convergent.

Unfortunately, the above optimistic remark does not
seem to be borne out by the presently available experi-
mental data' for electron scattering on protons. Data
indicate that the left-hand side of Eq. (25) is negative
de6nite, which implies that the sum rule does not con-
verge. However, to be really sure, one must await more
complete experimental data, which separate the contri-
butions of 0-&„,and 0-&,„g.In any case, even if sum rules
like (25) are divergent, we can exploit the low-energy
theorem in the form of the convergent sum rules given in
the next section.

4. SUM RULES FOR UNSTABLE
PARTICLE TARGETS

One can form suitable linear combinations of the
amplitudes on various targets which lead to convergent
integrals on the basis of Regge-pole theory. For example,
starting from the electron scattering sum rule equation
(23) for zr and sr+ as targets and also for Z, Z+, and Z
as targets, one can write down the following sum rules:

dqof Le-"(qo q') —e-"(qo q')]

o (qp, 0) —e + (qp, 0)]j=0, (28)

The amplitudes corresponding to the sum rules (28)
and (29) have isospin I=2 in the crossed channel. Since
cz(0 for such Regge trajectories, the sum rules (28) and

(29) are convergent.
Using the low-energy Thomson theorem for the real

photons q'=0, Pagels and Harari6 ' have written down

the sum rules

zfqp$zr (qp, 0) —a' +(qp, 0)]=0 (30)

dqpg2zr. z(qp 0) —os+(qp, 0) —ox-(qp, 0)]=0, (31)

where o-r(qp, 0) is the total absorption cross section of a

photon on the ta,rget T. Noting that, by Eq. (24),

e'(qp)0) = (4sr'cz) 'o(qp 0). (32)

and using Eqs. (30) and (31),we find that the sum rules

(28) and (29) can be rewritten as

dqpLe o'(qp, q') —e +'(qp, q')] =0, (33)

dqp)2ez" (qp, q') —er "(qp,q') —ez-'(qp, q')] =0. (34)

Note that our sum rules (33) and (34) can be regarded
as generalizations of the Compton scattering sum rules

(30) and (31) to nonzero (but spacelike) values of q'.

By using quark-model arguments or by using SU(3),
Pagels and Harari' have written down many more sum

rules of the type in Eqs. (30) and (31). We can extend
all these sum rules" to nonzero q'.

Of course, one cannot test these sum rules for un-

stable-particle targets directly. However, one can
evaluate these sum rules by saturation with the various
hadronic resonances and thus get information about
the electromagnetic properties of these hadrons, as has
been done' already for the q'=0 case. In any case, these
sum rules provide us with constraints on the dynamics of
hadl ons.

ACKNOWLEDGMENTS

dqp(L2ez" (qp, q') —ez+'(qp, q ) —e~-'(qp, q )]
—L2 "( o0) —="( o,0) —"-'( o0)]}=o (29)

' Rapporteur talk of W. K. H. Panofsky, in Proceedings of zlze

Fourteenth International Conference on High-Energy Physics,
Vienna, 1Wh' (CERN, Geneva, 1968), p. 23.

We are grateful to Dr. J.Pasupathy and Dr. V. Singh
for discussions.

zp To compare Ezls. (30) and (31) with Ref. 6, note that the left-
hand sides of Kqs. (30) and (31) include the pole contributions,
which are —2zrzn/zlf' and —4zr'u/zlf s, respectively.

~~ Corresponding to each of these sum rules, we can write down
an axial-vector sum rule also, which will be of the type in Eq. (19).


