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T Products at High Energy and Commutat:ors*
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We show that in perturbation theory the high-energy behavior of T products is not, in general, governed
by canonical equal-time commutators. Criteria for the applicability of canonical commutators in this
limit are developed. Interaction-dependent modifications to commutators are calculated.

I. INTRODUCTION

S OME time ago, Bjorken' and Johnson and Low'
pointed out that the high-energy behavior of T

products is governed by equal-time commutators
(ETC): a result which we shall call the BJL theorem.
The usefulness of this theorem lies, not in defining such
ETC's through the high-energy limit of T products, but
rather to derive the high-energy behavior of the ampli-
tudes with the help of canonical commutators.

This has been the route that many authors have fol-
lowed to study weak and electromagnetic (e.m. ) cross
sections at high energy, e.m. mass shifts, and to deter-
mine the nature of the divergences in e.m. and weak
higher-order corrections.

Johnson and Low" observed, however, in the context
of their study of triangle graphs, that canonical com-
mutators may be in fact incorrect in describing this
asymptotic behavior as calculated in perturbation
theory: a state of affairs which shall be referred to in the
following as the "failure" of the BJL theorem. Further-
more, Vainshtein and Ioffe4 exhibited the failure of the
BJL theorem for the leading asymptotic term in the
spin-dependent Compton amplitude (off the photon
mass shell) in pseudoscalar meson theory.
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in the BJL context has also been studied by B.Hamprecht, Nuovo
Cimento 50A, 449 (1967), and by J C. Polkinghorne, ibid. 52A,
351 (1967).The latter author gave a graphical analysis of the BJL
theorem, similar to the present discussion in Sec. IIID, The possi-
bility of obtaining noncanonical equal-time commutators in per-
turbation theory has been demonstrated by several authors, who
adopt a special definition for the limiting procedure to equal times.
However, it is not clear that commutators calculated by this
method are physically significant. For examples of such investi-
gations, see R. A. Brandt, Phys. Rev. 166, 1795 (1968); R. A.
Brandt and C. A. Orzalesi, ibid. 162, 1747 (1967); B. Schroer and
P. Stichel, Commun. Math. Phys. (Germany) 3, 258 (1966); and
J. Langerholc and B. Schroer, ibid. 4, 123 (1967). A critique of
the point of view expressed by these investigators is to be found in
J. S. Bell and R. Jackiw, Nuovo Cimento 60, 47 (1969),and D. G.
Boulware and R. Jackiw, Phys. Rev. 186, 1442 (1969).

A. I. Vainshtein and B. L. Io8e, Zh. Eksperim. i Teor. Fiz.
Pis'ma v Redaktsiyn 6, 917 (1967) (English transl. : Soviet
Phys. —JETP Letters 6, 341 (1967)j.

Recently, we have shown' that the tensor structure of
the high-energy asymptotic form of the forward Comp-
ton amplitude, as calculated in perturbation theory with
scalar, pseudoscalar, or vector mesons, does not coincide
with the predictions of the 8JL theorem and canonical
commutators. This investigation disproved the Callan-
Gross electroproduction sum rule' in the perturbative
framework for quark models. These results were inde-
pendently arrived at by Adler and Tung, ~ who also did
the calculation of Vainshtein and Ioffe in vector-meson
theory. They found the BJL theorem to fail here as well,
thus they invalidated various perturbative investiga-
tions of radiative corrections to P decay. '

The purpose of this paper is to examine further
the validity of the BJL theorem and/or canonical
commutator s.

In Sec. II we rederive this theorem in a simple fashion,
suitable for purposes of studying its validity. We shall
show that, in general, it should be satisfied: (a) when the
operator whose momentum is getting large is the time
component of either a conserved or of a "partially" con-
served axial-vector current (PCAC), and (b) when the
commutators of this operator with the other operators
in the T product are well defined. It will be further
demonstrated that this desirable state of affairs is a con-
sequence of the constraints that gauge invariance and/or
PCAC impose on the theory. On the other hand, the
space component of a current will be seen to violate the
8JL theorem, in the general case.

Section III will be devoted to a catalogue of examples
of successes and failurs of the BJL theorem. Although
contemporary investigations have exhibited failures in
rather complicated matrix elements, we shall present
other failures drawn from simple, classic results about
field theory. Indeed, we shall demonstrate that the
anomalous behavior of the Compton amplitude is
closely related to these simple failures. From this in-
vestigation, a simple diagrammatic criterion for the
validity of the BJL theorem will emerge.

In Sec. IV we shall inquire to what extent canonical
commutators can be modified so that the BJL theorem
is valid by definition. We shall see that time components

~R. Jackiw and G. Preparata, Phys. Rev. Letters 22, 975
(1969);22, 1162(E) (1969); Phys. Rev. 185, 1748 (1969).

6 C. Callan and D. Gross, Phys. Rev. Letters 22, 156 (1969).
7 S. L. Adler and Wu Ki Tung, Phys. Rev. Letters 22, 978

(1969).' For a summary, see G. Preparata and W. Weisberger, Phys.
Rev. 175, 1965 (1968).
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of conserved and PCAC currents satisfy canonical com-
mutators. However, in perturbation theory, other com-
mutators cannot be maintained. For example, one finds
that space-space current commutators possess interac-
tion-dependent terms. Similarly, canonical field com-
mutators are not maintained.

Concluding remarks comprise Sec. V.

II. BJL THEOREM

Consider a covariant T* product of two operators A

and 8 between arbitrary states:

T~s*(q)=— d'x e*'"( ~T*A(x)B(0) ~P). (2.1)

We assume that T»* is a well-defined object, as will

be the case, for example, for scattering amplitudes in
a renormalizable held theory. In position space, T~~*
will be composed of an ordinary T product, which is
undefined at equal times, but otherwise well defined.
Also, one needs to specify the values at equal times by
introducing 8 functions and derivatives thereof. In
momentum space, these "seagulls" go over into a, poly-
nomial in qp. By dropping all polynomials in qp from
Tz&*(q), we may unambiguously isolate the ordinary
T product

Tgo(q) = d'x e"'(n
( TA (x)B(0)~P) . (2.2)

Performing an integration by parts on xo ' in (2.2) and
dropping surface terms now gives

(q) =— d' "'( IP (o, ),B(0)7IP)
gp

z

+— d'x e""(n~TA(x)B(0) jP). (2.3)
gp

The dot indicates time differentiation. The 8JL theorein
now follows if we assert that (n~ TA(x)B(0) ~P) is well

defined. It will then, as a function of xp, be at most dis-
continuous, but possess no 8 functions in xp. Under this
assumption,

In Eq. (2.4), and subsequently, the subscript t, appear-
ing on a subscripted variable, indicates time differentia-
tion. Clearly, a prerequisite for the above is the existence
of

Cge(x)—= (ni LA (p, x),B(0)giP). (2.6)

However, if T~,e(q) does not exist, one cannot conclude
from the above that Tgii(q) satisfies (2.5). Indeed, all
the examples of failures of the 8JL theorem which have
been encountered have the property that Tz,p(q) is not
well defined, a,lthough Czs(x) may be finite.

Consider now the case when 3 is the time component
of a current, A= j . Evidently A=8'j*'+B„j&.Although
we assume that T"(q) —= T;~II is well defined, C,oo(x) will,
in general, contain diverging Schwinger terms. However,
we may remain with finite quantities if we set q equal
to zero. From (2.3) it follows then that

Q=— d'x j'(x), (2.7b)

» "(q,p) = d"'-"(-l».j ()B(0)lp). (2.7c)

For conserved currents T;,Os vanishes, and the BJL
theorem holds. For PCAC currents, we may interpret
PCAC as the statement that B„j&is a gentle operator,
such that its matrix elements are finite. Then T, ,o~

again exists and the 8JL theorem holds.
The validity of the BJL theorem for time compo-

nents, established above, can be ea,sily related to the
constraints placed by conservation and/or PCAC. Con-
sider again

r* (q) = «'x e""(~
~
T*j'(x)B(O)~P). (2.ga)

By virtue of the gauge conditions of the theory, which
lead to conservation and/or PCAC, T*" satisfies the
formal divergence condition (Ward identity)

q„T*"(f)=i d'x e '& XC,~e(x)

T'(qo o) =(/qo)( ILQ,B(0)jlp)

+ (&/qo) T,,oII (qo, p), (2.7a)

T~e(q)= dx e' '(eI~TA(x)B(0—) ~p) (2.4) +i d x e'"(~IT*~.j"(x)B(0)~P), (2.&b)

decreases with large qp, and one finds

llII1 qoT~II(qo, rf)
QP ~00

=i d'x e '& "(n~pA(p, x'),B(0))
~
p). (2.5)

' This approach to the 8JL limit was developed in conversations
vyith Dr. I. Gerstein.

where Schwinger terms and divergences of seagulls
necessarily cancel by virtue of the gauge condition. Now
it is not u priori certain that these formal (naive) Ward
identities will survive the vicissitudes of perturbation
theory. Indeed, there exist Ward identities which cannot
be maintained in the usual perturbative solution. These,
however, have been catalogued elsewhere, ' and for the

'I Gerstein and R Jackiw Phys &ev gg] )955 (y9g9)
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present we shall assume the validity of (2.8b). It then
follows, upon evaluation of (2.8b) in the q rest frame,
that (2.7a) is true for the covariant T* product, and the
BJL theorem is satisfied, a fortiori, for the T product,
when q is zero.

Let us now consider A to be j', A= j'. Even though
J'd'x C,*'tr(x) may be well defined, (n~ Tg'(x)B(0) ~P)
will not, in general, have finite matrix elements, since
j', unlike j, is not, in general, a gentle operator. For
example, when

j'=47%,

iv.~%=ok

where 0 is some local operator, then

(2.9a)

(2.9b)

j '= (~V)7'7"7%+it7*7'7'(~V)
+ '4'(o7'7' —vev'o)4' (2 9 )

It is seen that the expression for j' involves operators
which are not, in general, finite in renormalized pertur-
bation theory, in sharp contrast to the case for j'. Thus
we do not expect the BJL theorem to hold in this in-
stance. It is also seen that one cannot construct Ward
identities to yield useful information about j'.

III. APPLICATIONS OF BJL THEOREM IN
PERTURBATION THEORY

L&( ),&(y) j+~( —yo) =7'~'( —y) (3 1)

Other canonical commutators which follow from (3.1)
are

L4(x),j"(y)3(xo—yo) =7'VV (x)~'(x —y), (3 2)

The failures of the BJL theorem, which have been the
focus of recent attention, were exhibited for the Comp-
ton amplitude in second-order perturbation theory4' ~

However, we shall now demonstrate that very familiar
examples of failure exist even in simpler matrix ele-
ments. We shall first discuss these, and then turn to
those of the Compton amplitude. It will be seen that
the latter are closely related to the former.

Our investigation will involve second-order perturba-
tion theory in a theory of fermions interacting with a
massive vector meson 8„through the conserved current

j„= i'„iver. We deal here only with one type of quark, iP;
the extension of our discussion to the case of an internal
SU3 space is completely straightforward. The relevant
canonical anticommutator is

Ljs*(x),js'(y)l~(xo —yo) = i '"j'"(x)~'(x—y)

Ljs'(x), j"(y)3~(xo —yo) =0,

Lj '(*),j'(y)l&(xo-yo) = '"j'( )&'( -y).

(3 7)

(3.8)

(3 9)

&7.~V= —gv, ~V. (3.10)

In this model we shall need the expressions for Z and
various unrenormalized and renormalized quantities.
The latter are indicated by a tilde. The expressions can
be easily obtained from the relevant formulas of quan-
tum electrodynamics, for example, those given by
Bogoliubov and Shirkov. "The formulas we need are"

Z =1—3gz/32srz,

~(p) = —(3g'/32 ')v.P",

&(P) =o

G(P) =zi/v. p"

G(P) =s/7 P"

I'"(P,v) =z '8 "+A"(P,v)0,

(3.11)

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.13a)

g' / q"g")
A"(P &) . -'——

I
g""— lv, (3 13b)

e~~, o fixed 8~2 ( ~s j
I' "(P tf) =iv'I "(P 0)

r, (p,g=z Liv 7 yet, (p,-q)j.
(3.14a)

(3.14b)

We now enumerate examples of the 8JL theorem.

A. Fermion Propagator

Consider the unrenormalized fermion propagator

G(P) = d'x e'" (Q~ TiP(x)lt (0)
~
0). (3.1$)

In order to simplify the discussion and to remove un-
necessary divergences, we shall frequently set the
fermion and boson masses equal to each other and to
zero. Thus we will not need to perform mass renormali-
zation to obtain finite results. Also, we shall always work
in the Landau gauge, " in which the renormalization
constants Z~ ——Z2= Z are finite, so that the unrenormal-
ized expressions which we calculate are equally finite.
It is seen that our model possesses chiral symmetry and,
within the context of our calculations, the axial current
is conserved. The field equation of motion is

Lj'(*),j"(y)3( —yo) = o (3.3)

Lk(x), js"(y)3~(»—yo) = iv'7"7V(x)b'(x-y), (3 3)

Ljso(x),j,&(x)jb(xo —yo) = 0, (3 6)

Lj'(x),j'(y) jb(xo —yo) =is's'jss(x) h'(x —y) . (3.4)

The axial current js"=iiP7"7'iP has been introduced. It
also satisfies the commutators

~' It should be clear that the Landau gauge is available even for
the massive vector-boson theory. The reason for this is that the
k„k„portion of the boson propagator will have no observable con™
sequences, since the boson couples to a conserved current."N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Qnuntized Fields (Wiley-Interscience Inc. , New York,
1959)."In the massive case, the formula which we exhibit for Z(P)
is exact at large p, while the formula for A&(p, q) at large q is
unmodified.



1932 R. JACKIW AN D G. PREPARATA

According to the BJL theorem. , we have from (3.1)

G(po, p)
gap

pp ~oQ
0

(3.16a)

Since G is Lorentz-covariant and depends only on the
vector p, the above must be expressible covariantly as

G(P) (3.16b)

which is just the well-known formal result about the
asymptotic behavior of unrenormalized propagators.
The above obviously fails in general gauges since G(P)
does not exist. Also, the renormalized propagator G(p),
which according to (3.16b) should be asymptotically
proportional to (y„p") ', decreases in perturbation
theory in general gauges only as (lnp')/p„p". Hence,
here too the 8JL theorein fails. However, this failure is
not directly related to divergences, as is seen by com-

paring (3.16b) to the finite result in the Landau gauge
(3.12c). Since according to (3.11)ZA 1, the BJL theorem
fails even though the asymptotic limit is finite.

To exhibit the reason for the failure, we return to
(2.3). By use of the equation of motion (3.10), we have

This is precisely the correct value (3.12c), and the re-
mainder term restores the full asymptotic form of G(p).

We may also understand how these problems arise,
even though everything is finite. Recall that Z(p) is
finite in the Landau gauge only by formal comeiitioii
Indeed, in the evaluation of Z(p) one encounters as the
dominant part of the integrand j'd4r y„r&/r4. This
linear divergence is zero only by the comemtioe of sym-
metric integration. (The logarithmically divergent sub-
dominant part of the integrand is absent. ) This conven-
tion about linearly divergent integrals invalidates the
forrnal results. The relevance of linear divergences to
the failure of the BJL theorem will be exhibited again
in Sec. IU. '4

Fl'(p, g) = d4x d4y

&&e'&'e '»(0
l TP(x)f(y)z'&(0) l 0), (3.19a)

~"(P 0) =G(P) I "(P V)G(0) (3.19b)

which satisfies the Ward identity

B. Three-Point Function

We define the (improper) unrenormalized three-point
function

ZV'

G(pp, p) = i(p. e.)F"(P V)
—= G(P) G4), —

i~"(p, p) = ~"G(p).

(3.20a)

(3.20b)

d'xe' '*'(0
l TY„B'(x)f(x)f(0) l

0). (3.17a)

The remainder integral is superficially linearly divergent,
and this infinity spoils the BJL theorem in the present
application. Detailed analysis shows that in fact the
integral is finite since &'"(P,c)

pp~oo, q fixed
-G(g), (3.21a.)

It is well known that this Ward identity can be main-
tained in perturbation theory. The technique of inte-
gration by parts, introduced in connection with the
general two-point function, (2.3) can be readily extended
to three-point functions. The BJL limit now asserts that

g d'x c*"*(foal».B~(x)y(x)P(0) lfl)

= —iz(p)G(p), (3.17b)
~"(P,v)

qp~oo, p fixed
qp

-G(P) (3.21b)

G(p) = (1—3g'/32m-') i/y„p" . (3.18b)

which according to (3.12a) and (3.12c) contains no
divergences. Although one would expect i&(p)G(p) to
decrease with p, since it is a Fourier transform of a T
product, which formally has only step-function singu-
larities in xo, in fact, according to (3.12a) and (3.12c),
this quantity is constant. Evidently, the superficial
linear divergence asserts itself in this subtle fashion and
makes the remainder term of the BJL theorem exactly
comparable to the formally dominant term. Indeed,
from (3.17a), (3.17b), and (3.12a), it follows that to
second order in g&

imp iv' 3a' l
G(p„p) = l1+&(p)&(p)3= 1—,I

(3»a)
0 p, 32~'I

We now inquire whether Eqs. (3.21) are verified in
perturbation theory. We have for (3.21b)

I'"(P,q)

=G(P) P"(P v)G(v) =G(P) P"(P v)G(v)

g qq"'-G(p) v' ——g""—— v.
@phoo, p fixed 0 2 2c37l q —qp

~G(p)L~" (a'/8 ')(~" a"'~') jim'/9 —o. (3.22a)—
"This is in striking simi. arity to the anomalies of the axial cur-

rent which have been recently exhibited. There, too, a linear di-
vergence was responsible for noncanonical behavior; see J. S. Bell
and R. Jackiw, Nuovo Cimento 60, 47 (1969). The similarity is
not accidental; the axial-current anomaly can be cast in the form
of an anomalous, noncanonical current commutator; see R. Jackiw
and K. Johnson, Phys. Rev. 182, 1459 (1969).
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Use has been made of (3.12d), (3.13a), and (3.13b). It is
seen from a comparison of (3.21b) with (3.22a) that the
8JL theorem is satisfied for the time component, and it
fails for the space component, though again everything
is finite:

g2 zG(p)~i~0
Fi(q p) ~ 1 (3 22b)

qp~oo, p fixed Sz' g'

We now attempt to verify (3.25a) and (3.25b) in
perturbation theory. Our approach, which will expose
the fact that (3.25b) is not veri6ed, is closely related to
that of Vainshtein and yoffe, 4 and even more so to that
of Adler and Tung. ' We present it here nevertheless, to
exhibit the relation of this violation to the previous ones,
which is particularly transparent in the Landau gauge.
According to standard perturbation theory, we have

The validity for the time component is related to the
Ward identity (3.20a). In the q rest frame, (3.20a)
demands

T~"(q) =u(p) M~"(q)n(p'),

M&"(q) =M;"+M;"+M-~"
iG(p) iG(q) p„F (p, qo0)

F'(p, q00) = — ——" '
. (3.22c) M,~"(q) =~~S(p+q)~ +~ S(p' —q)7",

(3.26a)

(3.26b)

(3.26c)
gp gp

Since G(q) and F&(p,q00) are themselves O(1/qo),
(3.22c) becomes equivalent to (3.21b) at q= 0.

No further information is obtained from (3.21a).
(Completely analogous results hold for the axial three-
point function. ) The remainder terms in this three-point
function application of the BJL theorem are consider-

ably more complicated than those of the two-point
function, and we do not pursue the analysis further.

Mi""(q) =&"s(p+q)~(p+q)s(p+q)v"

+&"s(p' q)~(p' —q) s(p' —q)—
+A"(P P+q)s(P+q)v"

+A"(P, P' q) s(P' —
q)~"—

+7"s(p+q)A" (P+q, P')

C. Comyton Amplitude

We now turn to the matrix element which con-

temporary investigations' ' have shown to violate the
BJL limit and invalidate many of its applications. ' '
Consider"

M,~"(q) =g2
+7"s(P' q)A" (P' q—P'), (3—26d)

d4r
X — y S(p —r)y"S(p+q —r)y"S(p' r)ysD s(r)—

(2s)4

d4r
T""(q)= d'* s"*(P

I
Tg"(&)g"(0) I

p') (3 23) +g' y S(p-r)y"S(p'-q —r)y"S(p' —r)y&D s(r) .
(2s)4

(3.26e)

The 3JL prediction for this amplitude is
The perturbative expression for the right-hand side of
(3.25a) is zero, while for (3.25b) we get,

1'"(q)
qp ~oo

(p I j;(0) I
p') = N(p) c'(p, p')&(p'), (3.27a)

X~-"*(PIIj (o,x)& (0)jlp'). (3.24)

From (3.24), (3.3), and (3.4) it follows that

G"(P,p)= ' "+A "(P,P)
=Z(i~'q~+A;(p, p') j
= (1—3g'/32m')iy'p&+Ag&(p, p'). (3.27b)

1
p, =0 or v =0 T&"(q) - —XO,

q0 ~oo
(3.25a)

T"(q):— (p I j '(0)
I
p'). (3.25b)

~6 Strictly speaking, our massless theory does not possess matrix
elements which can be evaluated on the (zero) mass shell. One may
ignore this dif5culty by, for example, considering the external
states to have nonzero mass. In any case, the oQ-mass-shell ampli-
tude 3f&", introduced in (3.26a), is all we are interested in, and it
exists.

Hap"" is trivially calculated, while the asymptotic form
of the expression with insertions, 31~I'", is obtained from
the formulas (3.12b) and (3.13b). Lastly, we need to
consider the asymptotic form of (3.26e). At large qo, one
would like to replace S(p+q —r) and S(p' —q

—r) by
&iy'/q' However. , this replacement renders the re-
maining r integral superficially logarithmically diver-
gent since one loses in this process one power of r in the
denominator. Thus a more careful analysis is required.
Consider the first of the two integrals in (3.26e), and
define the function S (r) = jr„y"/(rm M'). The integral—
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possesses, in addition to the structure (3.32), a tenn of
the form 8'&'y'8', where 8' is a scalar. We do not present
the details of this calculation as they have been dis-
cussed at length elsewhere. '

The three examples we have examined —fermion

propagator, three-point function, and Compton ampli-
tude exhibit the fact that as the matrix element be-
comes more complicated, a new anomaly crops up, and
the old anomalies combine with it. Thus the three-point
function has the anomalous behavior (3.22b), which
according to (3.22a) is a consequence of the anomalies in
the fermion propagator G, as well as of those of the
proper vertex I &. Similarly, the anomaly of the Comp-
ton amplitude (3.30) is a consequence of the anomalies
in G and F", as is seen from (3.26d), as well as those of
the irreducible structure M~J"".

D. Graphical Analysis of the BJL Theorem

In Sec. II, we gave general agruments which led to
the conclusion that the BJL theorem at zero three-
momentum should be valid for time components of
conserved and PCAC currents, but not for space com-
ponents. We shall now, relying on the examples given by
the above three calculations, give a different, diagram-
matic characterization of the violation of the BJL
theorem for arbitrary operators. To develop this charac-
terization consider the diagrammatic representa tion of
the second-order Compton amplitude, given in Fig.
In the 6rst three diagrams there is one fennion propa-
gator carrying the momentum q; in the next two, there
@re two propagators; while the last diagram possesses
three such propagators. If one could replace these propa-
gator denominators by iy'/qo, one would obtain for the

O(1/qo) part of the Compton amplitude the BJL result,

diagrammed in Fig. 2. However, when such a replace-
ment is performed, one loses denominators involving
the large momenta. ln the case of the erst diagram the
suppression of such a denominator leads to the dis-

appearance of one denominator carrying the variable,
and a divergent integral is encountered in spite of the
fact that the original diagram is convergent. This means
that the high-energy behavior of the diagram need not
be given by this manipulation, and the BJL theorem

may be violated for the total amplitude.
Evidently this analysis can be performed for any

amplitude, and the following criterion for the validity
of the BJL limit may be enunciated: If in the diagram-
matic representation for the amplitude the above-
described replacement procedures leads to finite inte-
grals, the BJL theorem will be valid. If divergent inte-
grals are encountered, an application of the BJL
theorem is suspect. It is clear that "Qnite" and "diver-
gent" here refer to the superficial characteristics of the
integral. If a superficially divergent integral is rendered
finite by any of the usual tricks, e.g. , symmetric inte-
gration, gauge-invariant integration, etc; it must,
nevertheless, be considered to be divergent. '

+ Crossed graphs

FIG. 1. Second-order Compton amplitude.

II""(q)= d'x e' *(0~ T*j "(x)j"(0)~Q). (3.33)

Although this object does not behave in a way com-
parable to the previously discussed three cases, it does
possess interesting properties which we wish to expose,
and which will guide us in the subsequent discussion of
anomalous cornmutators.

In order to calculate II&", we modify our model some-
what in that we introduce a fermion mass so that an
energy scale exists. According to (3.3) and. the B7L
theorem, the associated T product should have no 1/qo
part. We now turn to a perturbative calculation of II&".
Unf ortunately, a difhculty is encountered in that th |,
relevant Feynman rules lead to a diverging, non-unique„
gauge-noninvariant expression. However, it is recog=
nized that all these ambiguities can be collected into a
polynomial in q, hence, according to the discussion in
Sec. II, should be interpreted as the seagull term which
is neglected in considerations of the T product. From
the explicit expression for the finite part of II&", we find
therefore, apart from the seagull term, '~

IP'(q) = -qoq; dx x(1—x)
(2')'

m' —x(1—x)q'

x(1—x)m'
Xln (3.34)

It is seen, therefore, that the BJL theorem holds, at zero
q, since IP'(q) vanishes then. This, of course, is just a
consequence of the divergence condition which is satis-
fied, and which, as has been repeatedly stated, validates

qo

FIG. 2. Formal BJI.limit pf the second-order Compton amplitude.

E. Vacuum Polarization

We conclude this section with an examination of the
vacuum polarization amplitude
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the BJL theorem at zero three-momentum. For finite

q, however, II" diverges for large qo. Indeed, the co-
efficient of the 1/qe term behaves asymptotically as

I:f(z), j'(y) l8(» —yo) = (1—g'/8 ')
Xy'vV(*) 5'(* y—), (4.2b)

&"*(q) - — sq, qes ln —;" "
qe (2~)' nr

(3.35)

Lj'(z), j'(y)38(» —y)=o

Lj'(z), j'(y) j8(»—yo) = ~»*8'(z—y),

(4.3a)

(4 3b)

i.e., it diverges quadratically (up to logarithmic terms). "
Thus we conclude that the BJL theorem is violated.

This violation is very easy to understand. The pres-
ence of the q; term in the 1/qe asymptote indicates a
derivative of the 8 function and it is well known that the
canonical commutator

is inconsistent with other properties of the theory; this
is the famous Schwinger term. 'r Thus the BJL theorem
can be reestablished by modifying the canonical com-
rnutator by a term proportional to /)'h(x). "Now, also,
the qua, dratic divergence qo' 1n(qo/nr) can be under-
stood: The Schwinger term is quadratically divergent.
Of course, compelling reasons, other than the BJL
theorem, exist for modifying the canonical commutator:
uniqueness of the va,cuum, Lorentz invariance, and
positivity. '~ But we may ta,ke the point of view that
the BJL theorem defines the commutator, and we shall

pursue in Sec, IV this approach for the other three
anomalies discussed before.

Note also that although the complete vacuum-
polarization tensor (seagull plus T product) diverges in
the BJL limit, the divergences cannot be collected into
a polynomial seagull. The residual divergence, which is
not a polynoinial, is interpreted as a divergence in
the commutator, which by definition governs the
BJL limit. For a differing emphasis, see Adler and
3oulware. "

IV. ANOMALOUS COMMUTATORS

The high-energy behavior of the vacuum polarization
shows that the commutator I je,j'$ is different from its
canonical value. We shall give now a list of commutators
which reproduce, to second order in the interaction, the
high-energy behavior of the relevant amplitudes. We
want to stress that such expressions may only hold for
the particular matrix elements we have studied.

L4(*),0(y))+b(» —yo) = (1—3g'/32 ')7'8'(z —y), (4.1)

' If one continues the expansion of qoqf '(q) at high qo, beyond
the leading term (3.35), one encounters an expression proportional
to q'q'. In position space this corresponds to a Schwinger term in-
volving three derivatives of a 8 function. It can be shown that this
object is a finite c number. We co not pursue the study of this
triple-derivative anomaly here; an investigation can be found in
D. G. Boulware and R. Jackiw, Phys. Rev. 186, 1442 (1969). In
that paper it is shown how the techniques of Secs. IV A and IV 8
can be extended to expose this structure, which properly speaking
is present, and should occur on the right-hand side of (4.3b).

'~ J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
's S. L. Adler aud D. Boulware, Phys. Rev. 184, 1740 (1969).

Lj'(*),j'(y) )8(»—y,) = ie'/" (1—3g'/16m')

Xqe(z) 84(z—y).

In the above, 5 must be a quadratically diverging ob-
ject."We shall assume that it is a c number, an assump-
tion based on the fact that the Oi component of the
Compton amplitude has no anomalies. Also it is known
tha, t the high-energy behavior of the photon-photon
scattering amplitude gives no indication of the presence
of a q-number Schwinger term. "

One may verify that (4.2a) and (4.2b) are consistent
with Lorentz covariance. Furthermore, (4.3a)—(4.3c)
are consistent with Lorentz covariance. "

The fact that (4.2a) and (4.3a) have no modifications
proportional to the 8 function is again seen to be a con-
sequence of the underlying gauge principles: Since
Q= J'd'x j'(z) is a generator of the gauge transforma-
tion, it has fixed commutations with other operators.

We shall now inquire whether there exist reasons
other than the 8JL theorem which would indicate that
the modifications in (4.1)—(4.3) should indeed be made.
It will be seen that one can give support to these modi-
fications. YVe present two methods, which are known
to be able to exhibit the extra term in the Lje,j'$ com-
mutator, and which will give rise to the other anomalies.
The methods are both due to Schwinger; they make
use of (a) external gauge fields" and (b) point splitting. "
For completeness, we Grst apply them to a classical
calculation of the Lj',j'] cormnutator. These methods
are not suKciently delicate to give a complete calcula-
tion of the anomaly. They do, however, permit one to
recognize the existence of these anomalies.

A. External Gauge Fields

The theory is extended to include a coupling with an
external classical gauge 6eld A„ through a Lagrange
density j„A&, and at the end of the calculation 2„ is set
to zero. At all stages, invariance is maintained under the
tran sformations

P —+ e'~, A„—+ A„+8„X. (4.4)

Equal-time commutators then reQect the response of
the theory to variations of 2„. Specifically, for any
operator 0,

d"xL'0(/, x),8Z(/, x')j=iI r)o80(/, x) —80(/, x)$. (4.5)

"K. Johnson (unpublished}; T. Nagylaki, Phys. Rev. 158, 1534
(1967); D. G. Soulware and R. Jackiw, ibid. 186, 1442 (1969).' D. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967)."J. Schwinger, Phys. Rev. 130, 406 (1963).
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First we take 0 to be j' and vary A':

hZ(t, x')/hA;(t, y) = j (y) h(x' —y) .

From (4.5) it follows that

8j'(t,x) 8j'(t,x)
I:j'(t,x),j'(t, y)3=i ~' — (4 6)

hA, (t,y) hA;(t, y)

We assume that j' does not depend on tinse derivatives
of A~. This implies, since j'=8'j', that j does not
depend on A&. Hence the first term in (4.6) vanishes. To
evaluate the second term we define the current j"= /vs
with split points and, to preserve gauge invariance, we
introduce an A &-dependent exponential. However, since
j' must not depend on A&, we do not split points there.
Thus

Xp Yp.

I'i(;. 3. Linearly divergent contribution to

v'(til Tv/"(* n'—)4(~ n)—k(o) lii)

which, because of the products occurring on the right-
hand side of (4.12a), is ill defined. To give a regularized
definition, we again need to split points. The interaction
with the external field needs no such point splitting since
A & is a t,-number variable. On the other hand, the strong
interaction must be modified since BI' is a q-number
variable. We replace B„(x)P(x) by B„(x rt')P—(x q), —
where q and rj' have no time component. To maintain
gauge covariance of the equation of motion an expo-
nential must be added. Thus the regulated equation
becomes

j'=~(*)vV( ),
j'=|t(x+-', e)v'p(x ——',c) expi

x+c/2
(4.7a) ~V(x) = —v'v'~A(x)+iv"v A, (x)4(x)

A;(y)dy'. (4.7b) +igv'v B„(x n')p(x n—) expi —A (y)dy' (4.12b)

h j'(t,x)

8A;(t, y)

8 hj'(t, x)

Bx' hA, (t,y)

arid

Lj'(t, ), j'(t,y)l
= —~V(y+k~)VV(y —2e) ~ h(x —y) (4 9)

This verifies (4.3b) when it is assumed that the singular
part of P(y+-', e)vQ(y ——,'e) is a c number, i.e.,

~V(y+k~)v'4(y —k~) = ~'(0I~(y+-")vV(y —2~) I o&

= "(0I 4(~)vV(0) I o)
=is'e&f(e') = aih'& f(e') e' -(4 '10a)

and
g= —

3f(q2) g2 (4.10b)

Next we take 0 to be f'and vary A ' again. From (4.5),
we get

g (t,x) h8'f(t, x)
B(t,x),j'(t») j=i ~o — — (411')

hA;(t, y) hA;(t, y)

Since f obviously does not involve A;, the first term in
the brackets is zero. For the second term, we need the
equation of motion for P. The naive equation is

~V= —v'v*'~4+iv"v"A, 0+tgv'v"B, 0, (4.12a)

In the above, e has no time component and is to be
taken to zero in a symmetric fashion at the end of the
calculation. To first order in e and AI", (4.7b) becomes

j'=0(x+-', )vV(x —', )I 1+i.;A (x)
+0(e')+0(A') j. (4.7c)

We Gnally obtain"

or, to first order in q and A&,

~V(x) = —v'v*~ 4(*)
+'v v"A (x)4'(x)+igv'v "B (x n)0(x n—)—

&(L1+ig,At(x)+0(q')+0(A2) j, (4.12c)

&V(x) = ~;P(x)v'v-'
—ip(x) v~v'A „(x)—ig(x+ q) B„(x+q') v~v'

X$&+in;A'(x)+0(~')+o(A') $ (4.12d)

Therefore from (4.11) and (4.12c), we get

I:4 (t,x), j'(t, y) 3
= (v'vV(x)+in'gv'v. B"(x ~')0(* n))—

&&h(x —y). (4.»)

hj'(t, x) h j'(t,x)—
Lj'(t, x),j&(t,y)/=i 8'

hA;(t, y) hA, (t,y),
(4.14)

The first term in the curly brackets is seen to be the
naive term. The second would be absent if g could
be set to zero with impunity. This cannot be done if
gv'V„B&(x g')P( xg) p—ossesses linearly divergent
matrix elements as q, g' —& 0. That such divergences are
indeed present is seen from the lowest-order matrix
element gv'(0

I
Tv„B"(x q')P( xg)P(—0) IQ), which has

the diagrammatic representation of Fig. 3.
The precise value of this anomaly seems to depend on

the relation between p and p' as they approach zero. We
do not pursue this question here any further beyond
calling attention to the fact that linear divergences were
also found to be responsible for the anomalies in the I'
products; compare (3.17). Thus we have exhibited the
I j',Pj anomaly, though with the present technique we
have not succeeded in evaluating it uniquely. Of course,
the value for the anomaly determined by the T-product
method of Sec. III is unique.

Lastly, we take 0 to be j* and vary A'. Again (4.5)
implies that
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r' r' r"

FIG. 4. Linearly divergent contribution to

(P I P(x+5~)v'v'7"&, (x n' —k~)0—(* n —l ~) —I P')

The first expression in the right-hand bracket is a time
derivative of the Schwinger term. Since we have as-
sumed the Schwinger term to be a c number, it is time-
independent and that term vanishes. Use of (4.7c) for
j' implies that

8j'(t,x) = ZCl pp(x j26)r'1//(x —
~g 6)5f'

w, (t,y)
b8"P(t, x+-', e)

+ pj's(x ——',e)
w;(t, y)

88'f(t, x——',e)
+f(x+2e)y' — (4 15)

W, (t,y)

The term in the bracket is again the usual Schwinger
term and vanishes upon time differentiation. LAlterna-
tively, it cancels against the Schwinger term contribu-
tion to (4.14).5 The remaining variations may be
evaluated from (4.12c) and (4.12d). The result is

Lj*(t,x), j'(t, y) 5
= is*'&"j (t,x)8(x—y)

+

if�

&'8'(x+ 5~)V*V'V"&.(x n' 2~)g(x —
n —2e)——

~(x+ 2&+&)&u(x+-v+2~)v"v vV(* k~)5, —
(4.16)

where j& is now definied with an e separation. Thus, in
addition to the naive commutator, there exists a further
term which is interaction-dependent and which con-
tributes if there are linear divergences present. Again
we do not pursue the specific value of this term, beyond
noting that linearly diverging matrix elements exist.
Consider the contribution to

current commutator. However, we must reject this
method since we have seen that field commutators are
anomalous. One can avoid use of field commutators if
only one current is decomposed into fields and use is
made of field-current commutators. This can be reliable
as long as one uses only commutations of the time com-
ponent of the current. Space-component commutators
cannot be used since they, too, are unreliable. We shall
now derive most of the anomalous commutators using
only the reliable commutator

Lj'(t, x),It (t,y) 5= —4 (x)b(x —y) (4.17)

We begin, as before, with the classical exampl™ the
Schwinger term. IJse of (4.17), together with the split-
point definition for j' (4.7b) (A" is now zero, of course),
easily is seen to give

Lj'(t, ),j'(t,y)5
= —k(y+2e) ~+(y —k~) Lb(x —y —2e) —b(x —y —2e) 5
= —j'b) L '~ b(x —y)+o(")5. (4.18)

This agrees with (4.9) when e'e' is averaged to 3b'&'P.

Next consider P with j'. As we wish to determine only
the term in the commutator proportional to the b func-
tion, we take

d'yet (t,x),j'(t,y)5

d'y y'L~ j'(t, y), ~t (t,x)5

d'y y*L4(t, x),j"(t,y)5

d'y y'~oB (t,x),j'(x,y)5

d'y y*L~'4 (t,*),j'(t,y) 5

(pl~( +!)~'~"~ ~.(* ~' l )~( ~ -l )-lp')-- 8x'p( )x— d'y y'$8'f (t,x)j '(t, y) 5. (4.19a)

diagrammed in Fig. 4.
Obviously, an external guage field derivation of

g,It 5+ does not exist. We shall treat this case separately
in Sec. IV C.

It should be emphasized that the present argument
does not depend on the details of vector-meson (8&)
coupling. Analogous results will hold for scalar and
pseudoscalar mesons coupled to the fermions.

3. Split-Point Technique

Use is now made of the regulated equation of motion for
O'P, (4.12c) (with A& set to zero), to evaluate the com-
mutator on the right of (4.19a). One finds

8
d'yQ (t,x),j'(t,y)5= x8'ip( )x+p'p' (xjk(x))

8$g

ig(x q)'q'q~8—„(x —q')P(x q). —(4.19b)—

Finally, (4.12c) is substituted for O'P, with the result that

=y'y'P(x)+i rt'gy'y~B„. (x—g')iJ(x —rt) . (4.19c)

Rather than turn on external fields, it is also possible
to substantiate the anomalies by a careful application of
rehabte canonical commutators. Let us recall how cur- d yL~(t x»& (t»)5
rent commutators are conventionally derived. One de-
composes the two currents into the constituent fields
and uses canonical field commutators to evaluate the This agrees with (4.13).
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For the last application of this technique, we examine

d'y[ j'(t,x),j'(t,y)j= d'y y'ciII[ j'(t,x),j'(t,y)j — d'y y'[ j*'(t,x),js(t,y)j. (4.20a)

The first term involves a time derivative of the Schwinger term; we drop it. The second term is evaluated with
the help of the split point definition of j' and the equations of motion for the fields. These give

d'y[j'(t, x) j'(t,y) j=«'~oV(x+-:«) v+(x —2«)j
—x [I9V(x+2«)V'IP(x —2«) —lp(x+2 «)V I3 IIt'(x 2 c)j—x f[ci&4(x+2«) jV V V'lp(x —

2 «) IP(x+—2«)V V V ctllP(x 2«)

+26'(x+ 9+2 «)Bl ($+0 +2 «)V"V'V V (x 2 «)+sgIP(x :«)V*—V'7"BJ(x 9' 2—«) IP(—x lt 2«—)}-
—lp(x+ 2«) (v v"v —v v v )IP(x—

2 «) —2 «([BCIP(x+2«)fv v v IIt'(x —2«)+I//($+ 2 «)v v v Blip(g —
2 «)

+zglp(x+7/ 2 «)BII(x+g+2 c')V "V V lp(x 2 «) zglp(x+2 «)V V VIII(x Yj
—

2 «)—lp(x —
Y/
—

2 «) }

zgq jp(x—+q 2«)B„(x—+q'+2«)V V'Vg(x 2«) lt(—+x—2)V«'V'V B„(x—q' —2«)p(x —
q
—2«)$. (4.20b)

When use is made of the equation of motion, it is found
that in addition to the time derivative of the Schwinger
term, which we drop, there is left

d'K2'(t x) t '(t y)j
=g(x+ 2«) [v'v'v' v'v'v'74 (x l«)— —

+Ca»[4(x+ ', «)V'V "-V B„(* &' -'—«)&—(x & ,'—«)——

-~(.+~+,')B.(+-~'+ ,") v 'vV-v( --: )j
(4.20c)

This agrees with (4.16).
Again we cannot use the present technique to study

the canonical field commutator. We now examine this
object.

C. Field Commutator

Although it has been possible to substantiate the
existence of anomalies in commutators involving cur-
rents by the above two techniques, the field (anti) com-
mutator [IP,Q)~ obviously cannot be handled by those
methods; there are no points to split, nor can one vary
the external photon field to generate this conunutator.
However, our direct calculation of G(P) may be used to
justify the modification of the equal-time commutator
of [IP,IP)+. We observe that the Fourier transform of the
commutator is proportional to the discontinuity of G(P).
Since the latter is modified from its naive value by the
factor (1—3gs/32m'), so must the former, even at equal
times.

V. CONCLUSION

fication of canonical commutators. Additional reasons
for modifying the commutators were exhibited.

It should be clear that these failures of the BJL
theorem, or alternatively of the canonical commutators,
invalidate most of the applications of these techniques,
as long as these applications rely on the unreliable
commutators. Such applications are typically high-
energy theorems of one sort or another. The low-energy
theorems are not put into question by the present re-
sults, since the latter theorems are mainly a consequence
of the gauge-transformation properties of the theory
which are maintained in perturbation theory (except for
well-defined violations).

It would be of great value to study further anomalies
in order to determine whether they are simply of the
form given in (4.1)—(4.3c), or whether they are more
complicated, and merely reduce to the present formulas
for the matrix elements we considered. Also one would
like to know whether or not higher-order perturbation
theory modifies the anomalies.

We may give a partial answer to the last question —in
the affirmative.

It has been pointed out" that when the propagator
is calculated to fourth order in the gauge which renders
it finite to that order,

k.ktly 1 3g' k.ktl

D-~(k) =I g.t I

—+-
k' )ks 322-2 k«

then its asymptotic behavior is

G(P) -' L1 3g'/32 '+o(c—')3~/v. P" (5 2)

Hence, the canonical field commutators are modified to
We have demonstrated the failure of the 8JL theor™ fourth order. We would expect therefore that this is

in many applications, making contact with previous also true for al] the commutators which we calculate
work and exhibiting some new examples. It has been
shown that one may interpret this as evidence for modi- "K. Johnson (unpubhshed).
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since it was seen that the anomaly in G(p) affects the
anomaly in I'&(p, q), and also in the Compton amplitude.
We must also make explicit mention of the fact that
our results involving field commutators a,re gauge-
dependent. In other gauges, no result could be given
since the unrenormalized fields do not exist. Of course,
the results for the Compton amplitude are gauge-
invariant.

It should be noticed that the anomalous commutator
algebra (4.1)—(4.3c) is nondistributive. That is, even if

we accept the de6nition j'=g(x+ ,'e)—yg(x ',—«)—, we
cannot calculate the anomalous Lp, j'7 or the pj', j"7
commutators from the anomalous Lit,$7+ commutator.
This is analogous to the breakdown of the Jacobi
identity discovered by 7ohnson and Low. s
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By combining the local current algebra with the commutation relations between the current densities
and the Lorentz boost operator, we derive low-energy theorems as well as sum rules which involve neutrino
and electron scattering form factors.

1. INTRODUCTION

GREAT deal of recent activity ha, s been based on
the equal-time commutation relations proposed

by Gell-Mann':

Ljo (*),jo'(y)7= f"jo"()~( -» t

Ljp (x) jpp'(y)7=if"jpp'(x)~(x —y) "" xp=yp

Deaning

j' (x)=—j' (x) -x'&pjp (*) (for a,ll xp) (3a)

j;p (x)—=j,„-'(x) x,r)pj—p (x) (for all x,),
we hand the following commutation relations:

(3b)

Ljo (*) P'(y)7+La' (x),jp'(y)7
=if s&g, '( )rbx(x y) at x—p=yp=0, (4a)

L jpp (x),jpps(y)7=if s"jp"(x)B(x—y) at xp=yp.

Here jo and j05 are the time components of
hadronic vector and axial current densities and o. is the
SU(3) index.

Adler' has derived sum rules involving high-energy
neutrino reactions which can provide tests of Eq. (1).
A sum rule involving photoabsorption has been derived

by Cabbibo and Radicatia and an inequality for high-

energy electron scattering has been obtained by
Bjorken. 4 Our purpose in this paper is to derive more
sum rules from Eq. (1).

Our procedure is essentially the same as that of Adler'
except for one crucial difference: We do not use Eq.
(1) directly. Instead, we commute both sides of Eq.
(1) with the Lorentz boost operator IC, (i=1, 2, 3)
and use

Ljo- () f'"'(y)7+F2' (),jo b)7
=if s&f &8(x y) at xp———yp=0. (4c)

The equal-time commutation relations in Eq. (4) form
the basis of the results to be obtained in the present
paper. It may be pointed out that, in spite of the ap-
pearance of the space components of the currents, Kq.
(4) is an exact consequence of Eq. (1) and Lorentz
covariance. Moreover, Eq. (4) is free from the unknown
Schwinger term which has to be present in. the commu-
ta, tion relations between the time and space components
of currents. Actually, Eq. (4) is a constraint on the corn-
mutation relations between the time and space compo-
nents of the currents. 5

In Sec. 2, we derive low-energy theorems ba,sed on Kq.
('4). These are exact results following from the assumed
local current commutation relations. We then convert
these theorems into sum rules involving weak and elec-

ifE;,jp (x)7=j, (x) —x,8pjp (x) at xp=0. (2)

' M. Gell-Mann, Physics 1, 63 (1964).
~ S. L. Adler, Phys. Rev. 143, 1144 (1966).' N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697

0966).
4 J. D. Bjorken, Phys. Rev. Letters 16, 408 (1966). ' V. Gupta and G. Rajasekaran, Nucl. Phys. Blo, II (1969).

(1c)
Ljp (x),g'»'b)7+L~' (*),jo-'b')7

the =if »f;p&6(x y) at x—p ——yp=0, (4b)


