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The amplitude for V —+ V+j scalars is thus to write

Res Z=.4„„.„-'-(-:1„= dur . .du, t
du& du; r(2bK&'p&& +y'g*')1,. (A7) (p l=r

&&(1 a+—2bK;" Qr„+3y)I . (A10)
A similar factoriza, tion of V, (gt, , q ) gives

+go — du&' ' 'du~ t(1—a —kVr()rp)I„. (AS)

dur' ' 'du& tISrpg'rpIo

dur ' ' ' du& r()r p'I~ (A9)

We then use another "charge-conjugation identity"

This is to be compared to the pole in 2 at ot(Ass) = 1.
The residue of that pole is the coefficient of I,' in the
integrand of (40). That we do, in fact, get (A10) may
be checked using (4), (13), and (1S).

In this calculation, we have explicitly factorized the
poles into nonspurious particles. This sort of direct
calculation is, in general, very complicated. Even to do
the calculation up to first daughters for arbitrary J
requires a messy diagonalization, and a general calcu-
lation seems impossible. Thus it is preferable to use the
indirect approach of Secs. II and III.
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Results of a systematic analysis of high-energy pp elastic-scattering data in terms of a proton-substruc-
ture model are presented. The model satisfactorily describes differential cross sections over the entire
momentum range 5—31 G /eVacnd over the whole angular interval 0'—90'. pp elastic differential cross
sections at future accelerator energies (70, 200, and 1600 GeV) are also predicted. The model indicates
that the proton has two hadronic core distributions, which interact via exchange of vector mesons cv (~800
MeV) and co' ( 2200 MeV). The rrns radii of these distributions are 0.44 and 0.20 F.

I. Dt'TRODUCTIOÃ

ROM optical-model considerations, it was pointed
out some tinie ago' that the nucleon appears to con-

sist of a number of hadronic distributions of increasing
mean square radii and that the inner distributions,
which are associated with heavier quanta, dominate
the large-momentum-transfer scattering. Quantitative
formulation of this model was done later by us, ' taking
into account absorptive corrections, and was applied to
explain the 90' fixed-angle data of Akerlof et al.'
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The model was further refined by incorporating
Lorentz contraction of the hadronic distributions in
the barycentric frame4 and then used to analyze the

PP elastic-scattering data of Allaby et al. s The vector-
meson —nucleon form factors obtained from our pp
scattering analysis were used to determine the proton
magnetic form factor' and gave good agreement with
the large-momentum-transfer data of Coward et al. '
Recently, more data on pp scattering have been re-

ported by the CERN group. These data together
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with the small-angle data of the Brookhaven group
provide fairly complete pp angular distributions at a
large number of energies, We therefore decided to
investigate systematically whether our proposed model
could describe this large amount of data and to this
end carried out an extensive analysis of the pp elastic
scattering. The purpose of this paper is to present the
detailed results of the analysis, the conclusions we
have been led to, and the pp differential cross sections
predicted by our model at future accelerator energies.
Some of the results of this investigation have already
been briefly reported. '

A brief outline of the model is given in Sec. II. In
Sec. III, an analytic approximation valid at large
momentum transfer is discussed. Results of the analysis
are presented in Sec. IV. Finally, in Sec. V a few con-
cluding remarks are made.

distributions is taken into account, then the Born
amplitudes determining the optical potentials become'

&'.'(r')
f .(,~) =-g.(.)——-

+2+p .2

Here,

P (r2) (P (r2+p 2)1/2+ Q (r2+p 2)1/2$)1/2

is the form factor corresponding to the Lorentz-con-
tracted hadronic distribution

r =A(1 —6'js)"'=k sinoj1+4rN' tan'(-', 0)/s)I";

P, determines the size of the distribution, and p, is the
mass of the meson exchanged; g;(s) is the complex
energy-dependent coupling constant. hI(s, b) and b&(s, b)
can he directly obtained from (5) using the relation

II. OUTLINE OF THE MODEL

Briefly, the model is as follows. The elastic-scattering
- amplitude is represented in the impact-parameter form

f(s,A) =ik bdb Je(bh)I 1—e"'&' bI$

where k is the c.m. momentum, A=2k sin-', 8= (—t)I '
is the momentum transfer, and s is the square of the
c.m. energy. The differential scattering cross section is
given by

d~f~f=(~fks) If(s,A) Is. (2)

The phase-shift function 5(s,b) is assumed to consist of
three parts';

8(s,b) =t/s(s, b)+bI(»b)+bs(»b). (3)

bp(s, b) is completely determined by the diffraction
scattering. Its detailed form is not explored; rather,
its contribution is phenomenologically parametrized.
t/I(s, b) and bs(s, b) are treated in distorted-wave Born
approximation (DIA'BA). The scattering amplitude 111

this approximation then becomes

f(s,A) =ik bdb Js(bd)L1 —e"'«' 'Ij

+2k Q bdb Js(bh)e"'OI' b&b, (s,b). (4)

br(s, b) and 8, (s,b) are determined by two optical po-
tentials with complex energy-dependent coupling con-
stants. The radial dependence of these two potentials
corresponds to the proton having two hadronic core
distributions and interacting via exchange of heavy
quanta. If the Lorentz contraction of these hadronic

' K. J. Foley et ul. , Phys. Rev. Letters 11, 425 (1963); IS, 45
(i965).' M. M. Islam and Joe Rosen, Phys. Rev. Letters 22, 502
i1969), hereafter referred to as Paper III.

iko-g"
(1+is)e

—R~ a~/8

fI;(s,A) — (1+ie) A'dA'
47r 0

&&f, ; (s,A') e R'&a'+a'& /'I (-'—8'AA') . (8)

To take into account the identity of the incident and
the target protons, the triplet state should be anti-
symmetrized and the singlet state should be symme-
trized. The differential cross section then takes the form

d/r/d0=4
I f(s,a) f(~ ~') I'+ 'I f(—r ~)+f(»~') I' -(9)

where A'=2k cos-', 8= (—u)1/'. Equation (8) provides
the mathematical formulation of the present model.
The next step is to use this amplitude to analyze the
experimental data.

We see that the following parameters occur in the
model. There are three parameters o.~", R, and ~ de-

scribing the diffraction scattering. It has been assumed
throughout that these parameters are energy-inde-

pendent. " There are four parameters describing each

"In principle, some energy dependence should be included.
However, from the point of view of our model, diffraction scatter-
ing is something unknown and phenomenologically described.
Therefore, introducing too many parameters to describe it very
accurately provides no further physical insight.

The parametrization assumed by us for the diffraction
part is

1 2 e/b( ba1 (~ d/~+2) (1+is)e—2b /R

o-~" is the total diffraction scattering cross section; c

represents the real part of the diffraction amplitude;
R determines the width of the diffraction peak. In-
serting (6) and (7) in (4), we obtain
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Born amplitude
I Eq. (5)1:P;, p;, I g;(s) I, and arg g, (s).

Of these, the first. two are energy-independent, while
the last two are energy-dependent.

6'dA' P(A")e "~'+~'"/'I (-'R'Ad ') (10)

The crucial point to note is that for 6 large the main
contribution to the integral comes from 6'=6 region.
This can be shown in the following way:

~
—R~(62+6'~)/81 (1R2gg&)

= (2/7rhh')'/'R 'e "" ')'/' —(11)

using the asymptotic form for the modified Bessel
function Io(s). We can now write

oo RAI— gl/2dg 4)(+2@2) ~
—R261(1—g)2/8 (g gi/g)

R' p 2 (21r) '/2

R' p

*'/'d P(D'*')t)(1—), (12)

if the limit 6~ ~ is taken for the exponential and the
following representation of the 8 function is used:

hm (a/z'/')e "*'=6(x). —

We thus obtain for 4 large

I= (4/R')~(&') (13)

Once it has been established that the main con-
tribution in evaluating I comes from the region 6'= 6

III. ANALYTICAL APPROXIMATION FOR
LARGE MOMENTUM TRANSFER

To get numbers from our model, the integral in Kq.
(8) has to be numerically evaluated on a computer. This
presents certain problems. One of them is that the
function f),;(s,A') in the integrand becomes complex
for &'& (s)"' However, because of the factor e ~'~"/

contribution to the integral from the region 6'& (s)'/2

at high energy is negligible (~~R's&45 for pz, =5 GeV/c).
The integral therefore can be cut off at 6' =s'~ . Another
problem, which is a serious one, occurs when 6 is large
and therefore all the numbers involved are extremely
small. Small errors in the numerical evaluation of the
integral can then result in structures in the differential
cross sections which are completely spurious. The
problem becomes acute as the energy gets higher and
we are able to go to very large momentum transfers. To
overcome this difficulty, we have developed an analytic
method for evaluating the integral in (8), which is
reliable at large h. Let us now outline this method.

To simplify notation, we write f1,,(s,k') = —g;(s)p(A' )
[see Eq. (5)].P(A") depends on s also, but this is not
explicitly exhibited. The integral in question is

I ly(+2) d(gi2)~ R2(g2+—/21)/8I (1R2++I)

+ly~(+2) d(+~2) (+12 g2)g—Rm(+~+/1~~)/8I (lR2ggl)

+1
y

I r (g2) ($(g12)(gi2 g2)2e /1&(A&+5'2)/81 (lR2ggl)

4 18'' 18'- 8-
=—~(~')+- —

I
~'(~')+- — ~'+—~"(~').

2 ' R'
(15)

Since P(LV) and its derivatives are known functions,
(15) gives us an analytic expression for the integral.
Higher-order corrections can easily be calculated by
keeping more terms in (14). However, from numerical
results we have found that keeping up to second
derivative is sufficiently accurate. It should be noted
that the right-hand side of (15) is actually energy-
dependent, but the s dependence has been suppressed
for clarity.

The advantage of (15) is that it can. be evaluated
directly and does not suffer from the uncertainties of
numerical integration. In our analysis, angular dis-
tributions have been calculated using numerical inte-
gration routines and the formula (15). There is a
region where both the numerical routines and approxi-
mation (15) give the same result. Beyond that, for
larger 6 the integration routines become unreliable
and often give spurious structures such as bumps. These
bumps disappear if the integration accuracy is in-
creased appreciably. Of course, it shows that the
method is impractical. The dip-bump structures which
occurred in I'ig. 2 of Paper II, where all results were
obtained using a numerical integration routine, are
indeed spurious. The new results will be seen to be
completely smooth.

Iv. RESULTS OF ANALYSIS

As mentioned earlier, there are seven energy-inde-
pendent and four energy-dependent parameters in our
model. In principle, one expects that a least-squares
curve-fitting method will determine the parameters
reasonably well (we neglect errors of experimental
points). In practice, we have found that this is not so.

'2 Tables of Integral Transforms, edited by A. Krdelyi (McGraw-
Hill Book Co., New York, 1954), Vol. 1, p. 197.

for 4 large, we can proceed in the following manner.
Let us expand 1)/)(LV') in Eq. (10) around the value 6'.
~(~")=~(~)+(~"-~)~(~)

+(1/2()(~"-~')V'(~') (14)

neglecting higher-order terms. Inserting (14) in (10),
we get"
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not modified in any important way. It should also be
pointed out that the angular distributions at high
energies are insensitive to the phases of gr(s) and gs(s),
since the effect of interference between the various
amplitudes is small. Figures 1(o)—1 (r) are the pre-
dictions of our model at future accelerator energies
(70 GeV/c, Serpukov; 200 GeV/c, Batavia; 1600 GeV/c,
CERN colliding beam).

TABLE I. Values of the energy-independent parameters.

0Td R Pl P'R P1 P2

36.2 mb 1.2 F 0.249 0.801 Gev 2.163 Gev 0.615 F 0.338 F

In Fig. 2, we have given the 90'-fixed-angle scattering
predicted by our model from interpolation of the pa-
rameters gr(s) and g2(s), which have been determined

TABLE II. Values of the energy-dependent parameters.

Pr, (GeV/c)
Ig~(s)1 (GeV)
arg g (s) (rad)
Ig, (s)1 (GeV)
arg g~(s) (rad)

5.0
36.0

—0.248
151.0
—1.66

6.08
36.0

—0.248
103.0
—1.66

7.1
36.0
—0.248
63.98

—1.66

8.1
36.0

—0.248
52.97

—2.26

9.2
36.0
—0.248
42.25
—2.40

10.1
36.0
—0.248
39.50

—2.68

11.1
36.0
—0.248
36.97
—2.90

12.1
36.0

—0.75
33.00
—3.6

14.25
35.0

—0.90
22.00

—3.8

16.9
34.0

—1.05
16.00

—3.75

19.3
32.0
—1.25
10.30

—3.75

21.3
32.0

—1.25
8.75

—4.15
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from 6xed energy data. The experimental points are
those by Akerlof et al'. ~ Since the theoretical curve is
not a fit, but is obtained from interpolation, the agree-
ment with experimental results is gratifying. In Fig. 3,
we have shown the curve from which values of

~
gs(s) ~

have been interpolated. This is the only energy-
dependent parameter which is important for 90' fixed-
angle scattering. The dashed line is the extrapolation
of ~g&(s) ~, as given by the formula (16).

In Fig. 4, normalized diff erential cross sections (do/df)/.
(drr/df) ~ sar=e plotted against f for—various lab mo-
menta to indicate how pp elastic scattering changes as
we go to higher and higher energies. The regularity
with which pp angular distribution is varying is an
important point to note.

In Fig. 5, (do/df)/(do/df), =s is plotted for small
—t. This figure shows that, in spite of our constant
diffraction parameters, a shrinkage of the diffraction
peak occurs. The shrinkage has already been noted in
Paper II. The reason for it is that there is a large con-
structive interference term between the diffraction
amplitude and the i=1 DWBA amplitude, and the
interference term decreases with energy in the normal-
ized differential cross section. Another point worth
noting is that the shrinkage with energy is larger the
further away we are from the forward direction. This
explains why the CERN group did not see any shrink-
age at small momentum transfers" $—f &0.1 (GeV/c)'7,
while the Brookhaven group consistently observed
shrinkage. 9
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In Fig. 6, do./dQ is plotted against the variable
r(=kq) for both present accelerator energies as well

as future accelerator energies. This type of data plot
best exhibits the special features of the present model;
namely, (i) the presence of a Gaussian diffraction peak
at small values of r, (ii) an Orear type of exponential

Pro. 3. Closed circles represent values of Ig2(s) I
determined

from Axed-energy angular distributions. Solid line is a hand-
drawn curve through these points. Values of g~(s) I

for the 90'
fixed-angle scattering are interpolated from this curve. Dashed
line is the extrapolation of lg2(s)

~
to higher energies according

to the parametrization (16).
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FIG. 2. Solid curve represents the 90 fixed-angle pp differential
cross sections obtained from interpolation of the parameters
g1(s) and g2(s). Experimental points are from Akerlof et al.
(Ref. 3).

' G. Hellettini et at. , Phys. Letters 14, 164 (1965); 19, 705
(1966).
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Ip 22
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Fzc. 4. Normalized pp differential scattering cross sections ob-
tained in this paper at present and future accelerator energies.
The curves show how the angular distribution varies with energy.
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falP' for intermediate values of r, and (iii) a near-90
region with a Ratter slope and strong energy dependence.

In Figs. 7(a)—7(c), we have shown similar plots for
three diferent lab momenta 12.1, 26.2, and 70 GeV/c
together with the individual contributions of the dif-
ferent amplitudes. These curves illustrate how the
three amplitudes in Eq. (4) dominate three different
regions in the angular distribution. Also, they show
that the interference between the amplitudes becomes
less important as the energy increases.

Finally, in Fig. 8, our normalized differential cross
sections are compared with the fourth power of the
proton magnetic form factor. The continuous curve is
the form factor curve obtained by using the vector-
meson —nucleon form factors predicted by the present
model. ' The short-dashed curve is the dipole 6t. Large-
momentum-transfer points are from Coward et al. ~ Our
model predicts that the pp cross section is going to be
appreciably below the proton form-factor curve when
70 GeV/c lab momentum is reached. This is in contrast
to the model of Abarbanel, Drell, and Gilman, "who
consider the form-factor curve to be the asymptotic
limit of (do/dt)/(d(r/d. t) =p.

Fro. 5. (do/dk)/(dn/dt) & p plotted against t for s—mali momen-
tum transfers. The curves show energy variation of the di8raction
peak obtained in this paper.
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Fro. 6. Calculated diAerential scattering cross sections plotted
against the variable z (=kg) for various values of the lab
momenta.

V. CONCLUSION

The present paper completes a phenomenological
investigation of high-energy pp elastic scattering which
we started two years ago. We have found that the
model proposed by us adequately describes all presently
available pp elastic-scattering data both regarding their
energy dependence and their angular dependence. In
this model, large-angle scattering is associated with
two hadronic core distributions of the proton and their
Lorentz contraction, It has been argued4 that these
distributions interact via exchange of vector mesons
co and another one co' having the same quantum numbers
as pp. From the values of the parameters p; and P;, the
rms radii for these distributions can be calculated, ' and
they are 0.44 and 0.20 F. Further confirmation of the
present model will strongly indicate that the proton
has substructure.

From the point of view of our model, data plots
which most stringently test its predictions are of the
type in Fig. 6. In a plot of this nature, three regions
characterized by their r dependence and energy de-
pendence should be seen at high s. The three regions
correspond to the diffraction region, a region dominated
by the i= 1 amplitude, and a region dominated by the
i = 2 amplitude. This point has been discussed in detail
in Paper III, so that we do not explore it any further.
The discovery by the CERN group of two different
slopes in a Orear-type plot' and the clustering of data
points of different energiess for 1.2 GeV/c&k&&2. 0

0 J. Orear, Phys. Letters 13, 190 (1964).
"H. D. I. Abarbanel, S. D. Drell, and F. J. Gilman, Phys. Rev.

Letters 20, 280 (1968); Phys. Rev. 177, 2457 (1969).
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GeV/c are probably the best evidence in favor of our

model.
One surprising result that has come out from this

analysis is the following. Originally we started with
this modeP trying to explain the break. phenomenon
observed by Akerlof et al.' We attempted to explain
the break as a transition from a region where the i= 1

amplitude dominates to a region where the i = 2 ampli-
tude dominates. This would have meant that the
phenomenon was indeed connected with the proton
structure in our model. With the present analysis,
which supercedes the earlier analysis, we 6nd that the

2 i=amplitude completely dominates the 90' region
and that this amplitude alone is sufhcient to give a
satisfactory agreement with the data of Ak.erlof et aL

(see Fig. 2). Therefore, the break phenomenon is no

longer connected with the transition from one region
to another, rather with the energy dependence of the
optical potential. We are thus led to conclude that
while the existence of two Orear-type slopes in pp
scattering is connected with the proton substructure,
the break phenomenon of Akerlof et al. is connected
with the inelastic production processes. Notice in Fig.
3 Igs(s) I changes in a very different way for 9.2 GeV/c
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that in this model the high-energy large-momentum-
transfer scattering amplitude obeys the Mandelstam
representation. Also, the vector-meson —nucleon form
factors predicted by this model have the right analy-
ticity and highly oscillatory spectral functions (see
Appendix). For fixed t and s-+ ao, the model shows
that only the diffraction scattering prevails: do/dt
=de~"~' On the other hand, for 8 fixed and s~ ,
do/dQ e '»s& in conformity with results obtained from
analyticity and boundedness. "'~

APPENDIX

It has already been shown in Ref. 25 that the form
factor

Pro. 8. Solid line is the theoretical form-factor curve obtained
in Ref. 6. Short-dashed curve is the dipole fit. Long-dashed
curves are the normalized pp angular distributions obtained in
this paper at a number of lab momenta. Large-momentum-
transfer data are from Coward et at. (Ref. 7).

(pr, (12.1 GeV/c. Other authors have also suggested
a possible connection between the break phenomenon
and the production processes. ' "

We would like to point out that various dip-bump
structures obtained earlier in Fig. 2 of Paper II are
spurious and were produced by the numerical inte-
gration routine. The analytic approximation which we
have developed now LEq. (15)j serves as an efficient
check on any structure and provides an accurate evalua-
tion of the integral at large momentum transfer.

Our plot of (do/dt)/(do/dt) i=a against t for variou—s
energies (Fig. 4) shows a systematic and smooth varia-
tion of pp elastic differential cross sections. This is in
contrast to the Chou- Yang model, where dips should
occur because of the diffraction zeroes. "'4 In particular,
the shoulder at t= —1.5 (GeV/c)' is interpreted in this
model as evidence for the first dip structure and should
accordingly become prominent with higher energy. In
our model, it is associated with the transition to i = 1.

DWBA region and essentially remains the same even
with considerable increase of energy t compare Fig.
7(a) with Figs. 7(b) and 7(c) at r=1.0 GeV/cj. This
feature may experimentally distinguish between the
Chou-Yang model and our model. Also, by 70 GeV/c
we predict pp differential cross sections which fall
below the asymptotic values predicted by the Chou-
Yang model at t&15 (GeV/c)'. —

Finally, we mention some of the theoretical aspects
of the present model. It has already been pointed out"

"J.J. J. Kokkedee and L. Van Hove, Phys. Letters 25B, 228
(1967).

~T. T. Chou and C. N. Yang, Phys. Rev. Letters 20, 1213
(1968).

~L. Durand, III, and R. Lipes, Phys. Rev. Letters 20, 637
(1968)."M. M. Islam, Phys. Rev. 178, 2144 (1969).

1 "ImF (t')dt'
I'(t) =- (A2)

To determine the imaginary part of F(t) on the cut,
notice that for t&/z' and t= t+i0,

p(/" t)"'&z(—p(/" t)"")—
,'zrzp(t /z')' 'H "—(p(t——/')'")

= s~zp(t /')"'Lji(—p(t /")'/')—
+iI'i(p(t —/')"') j (A3)

Therefore,

F(t) (1~P)1/2(t +s)1/4&re/4

y j I s(p(t —/zs)z/z)+ I'is(p(t —/tzz)z/s)]U4

&& exp(-,'i arctanLI'i(p(t —/z')'")/

This gives

ImF (t) = (-,'zrP)'/'(t —/z')'/4

x LJ '(p(t-~')"')+I"(p(t-~')'")7"'
)&sin{-'zr+ —', arctanL Vz(p (t—/z') '/')/

For large t,

ImF(t) = (-', zrp)"'(t /z')i/' sinj -,'p(—t—/z')"' —szr).

Hence the spectral function of the form factor oscillates
very rapidly as t —+ . This is of course expected, since
the discontinuity of a form factor, which falls off like
e j'j"' as t ~ —~ and is polynomially bounded, must
oscillate infinitely many times. '8

"F.Cerulus and A. Martin, Phys. Letters 8, 80 (1964}."G. Tiktopoulos and S. B. Treiman, Phys. Rev. 161, 143/
(196S).

ss A. Martin, Nnovo Cimento 37, 671 (1965).

F(t) =9(/' —t)"'&i(p( '—t)'")J" (A1)

is analytic in the complex t plane except for a right-
hand cut and vanishes for jt j

+ao. The —cut starts at
t = /z'. Hence F (t) obeys the following dispersion relation:


