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Regge Cuts and Iterative Procedures in Diffraction Scattering*f
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Freund and O'Donovan's dynamical model for Regge cuts is extended to proton-proton diGraction
scattering. The input Pomeranchukon is given a phenomenological representation corresponding to a Rat
trajectory. The question of which part of the total amplitude to identify with the input Pomeranchukon
is examined in the context of a generating-function formalism. Consistency with the above-mentioned
model and other physical requirements corresponds to restrictions on this generating function. We consider
some new and some previously proposed iterative models for diGraction scattering, to wit: (1) a rescattering
model (Van Hove), (2) a mixed rescattering-absorption model, (3) an eikonal (Chou-Yang, Frautschi-
Margolis) inodel, and (4) a It-matrix model. Models (2)—(4) are consistent with our requirements and
exhibit reasonable (and very similar) asymptotic differential cross sections. Possible modifications for
nonasymptotic energies are discussed.

1. INTRODUCTION

'HEORETICAL arguments for the existence of
Regge-cut contributions are persuasive and well

known. '' In a quantitative approach to these con-
tributions, a number of authors' 4 have proposed
dynamical approximations which may be viewed
physically as multiple Regge-pole exchange. In the
present paper, we extend one of these approaches, that
of Freund and O'Donovan (FO),' to nonforward
elastic scattering and also consider some previously
proposed approaches. The results of FO and other
authors' have suggested that the "cut corrections"
(or multiple-exchange contributions) are substantial
for elastic scattering but smaller for inelastic processes.

The Pomeranchukon remains something of a mystery.
Whether it is itself a pole or a cut or whether it has
zero or nonzero slope is not yet clear. We consider
here the simplest ansatz under the circumstances and
take the P to be a 6xed pole in the angular momentum
plane. With this fixed-pole ansatz, the "corrected"
amplitude which we obtain will have a diQerent t

dependence but will still correspond to a fixed pole in
the l plane at /=1. Had we assumed a nonzero slope
for P, the eth-order correction would contain a factor
(lns)' " and would thus represent an t-plane cut.

We are aware of the convict with t-channel unitarity
presented by a Axed pole in the absence of a special
family of shielding cuts, ' and the lack of an obvious
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mechanism for the generation of these cuts at /= j..'
We feel that this is not a serious problem, since (1)
our ansatz is a phenomenological one and is only meant
to approximately describe the amplitude near 1=0,
and (2) the fraction of the amplitude contributed by
shielding cuts decreases with increasing s.'

We consider proton-proton scattering at (asymp-
totically) high energies where we need only consider
the spin-nonQip amplitude. We also omit consideration
of lower-lying Regge trajectories.

We use the following normalizations:

5= 1+2iT,

ImT(s, 0) = sot.„i(s).

We parametrize the Pomeranchukon as follows:

P(s, t) =iP(0)e"(s/se),

(1)

(2)

(3)

thus putting all the t dependence into the residue
function which, assuming (3) to dominate the forward
peak in pp scattering, we must take to be of the form
P(0)e ' with a=5 BeV ' and P(0)=120. Note that
with P written in this form, the parameter a does not
have an s dependence, as we mentioned before. For so,
we take the usual value of 1 BeV' and are left with no
parameters to fit.

The model of Ref. 3 yields a contribution given by

i
A, (s,t) =

16m's

0 0(K)
Ch' Ch"P(s, t')P*(s,h") , (4)-

where

K(t, t', t")= —(8+ t "+t'") +2 (tt'+t't"+ tt")-+4th't"/s,

and P is the pole amplitude. Physically, this would
correspond to the contribution of the PP cut, even
though with the specific parametrization (3), Eq. (4)
is but a correction to the residue of a fixed pole at tt= 1.

High-energy pp elastic scattering displays a strong
forward peak, indicating the contribution of many

7 J. Finkelstein and C. I. Tan, Phys. Rev. Letters 19, 1061
(1967).
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partial waves and reminiscent of "diffraction" scat-
tering in optics. It has been suggested that elastic
scattering be viewed as the "shadow" scattering pro-
duced by absorption into many open inelastic channels.
Then, with an ansatz for the "overlap" function, the
elastic scattering could be calculated. In the multi-
peripheral Amati-Fubini-Stanghellini model, the over-
lap function exhibits a Regge behavior, ' and it is
tempting to identify it with a Regge pole in inelastic
scattering or with the Pomeranchukon in elastic scat-
tering. This is what we call rescattering. This, however,
would produce a second-order correction having the
same sign as the first-order for an imaginary amplitude,
as was pointed out by Finkelstein and Jacob," who

argue that, experimentally, the corrections should have
opposite signs (i.e. , the second-order correction should
be absorptive). Frautschi and Margolis' have used a
different approach by parametrizing the elastic S matrix
in the Glauber fashion and identifying the Pomeran-
chukon (which they take to have nonzero slope) with
the first Born term, thus producing a secondary
structure to (do/Ch)» beyond the forward peak, in
rough agreement with what one might expect for
asymptotically high s. The "diRraction minima" they
predict are not observed at present energies, but might
well be filled in by lower-lying trajectories, the real
part of the amplitude, spin-Hip amplitudes, etc." Ke
should mention that this Glauber-type iteration was
used earlier by Chou and Yang, " whose "input, "
obtained from a geometrical picture of interpenetrating
hadron matter densities, would correspond to a
Pomeranchukon of zero slope and with t dependence
taken proportional to the square of the proton electric
form factor. They obtain the same sort of diffraction-
minimum structure. Yet another approach is that of
absorptive corrections. This is essentially equivalent
to identifying the Regge pole with the amplitude on
the second sheet, reached by going through the elastic
cut in the s plane. "These approaches are examples of
procedures which generate a secondary structure in
(do/dt)» beyond the forward peak with the Pomeran-
chukon (assumed to dominate the forward peak) used
as the input.

Ke may view these approaches as diferent attempts
to answer two questions: (A) What form does P, the
input Pomeranchukon takei" and (B) What part of
the amplitude does the input Pomeranchukon represents

Of course this is a somewhat oversimplified statement
of the problem, since these questions are inextricably
related to one another and, besides, the phrasing of
(A) and (B) represents a sort of parametrization of
our view of the problem.

8 L. Van Hove, Rev. Mod. Phys. 36, 655 (1964).
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193 (1963).
'0 J.Finkelstein and M. Jacob, Nuovo Cimento 56K, 681 (1968).
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(1968).

When one has answered (A) and (B), one can then
proceed to the total amplitude via iterative procedures.
We propose to examine several possibilities for (B)
under out ansatz (3) for (A). We recall that Eq. (3),
or any other ansatz for (A), should satisfy the require-
ment that I' dominates the forward peak. On the other
hand, an answer to (B) makes little difference for
—0.5 BeV'&t(~0 (the forward peak), but becomes
iinportant for larger values of ~t~. Indeed, while we
do not, in the present paper, consider the amplitude
at very large values of

~

t ~, where the behavior
T expL —const+( —3)j is expected" and, to some
extent, observed, we wish to emphasize that, unless a
diferent mechanism is responsible for the behavior
of the amplitude in this region, the large-angle be-
havior is crucially dependent upon the answer to (B).

We now proceed to examine several approaches to
(B) with the ansatz (3) for (A). We will find it expedient
to discuss these in the context of a generating-function
formalism which is particularly suited to our zero-slope
ansatz for I'.

ImT;;= P (5)

where i is a two-proton state, k is summed over many-
particle states, and I'~ is the phase-space factor.

As a first attempt to answer question (B), let us
identify the "overlap function, " i.e., the first term on
the right-hand side of (5), with P(s, t) the input
Pomeranchukon. With this assumption, we arrive at
the model of Van Hove. ' We shall call this the re-
scattering ansatz. We then obtain the rescattering
equation

ImT g ImP+ T~tI'T——g. (6)

Iteration of this equation yields (for T, P imaginary)

T„=i'+i Pti'P+i P~I'~ i I'TP)

ti
PtlP

i
rP+" .

It is easy to verify that this corresponds to

» A. A. Anselm and I. T. Dyatlov, Phys. Letters 248, 479
(1967l.

2. RESCATTERING MODEL

For completeness, and to introduce our generating-
function formalism, we consider rescattering as an
approach to question (B).

Let us write the s-channel unitarity equation some-
what symbolically as
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8
Channel

(a)

follows from these two observations that the total
amplitude resulting from any such iteration will be
expressible as a sum over graphs of the type shown in
Fig. 1(c), each graph entering the sum with a certain
coe%cient determined from the iteration procedure.

I,et us symbolically denote by (P)" the amplitude
obtained by calculating the graph of Fig. 1(c) t simi-
larly, we would write A 8 G for the graph of Fig.
1(b)7. We can write this, for n, &~2, as

S
Channel =P

(b)

,P,

(P)n-
(167r's)" ' dt, .dt. V't"l(t; t, t„)

n

&&+ P (s,t,), (14)

(C)

FIG. 1. (a) Diagrammatic relation holding for a purely imaginary
amplitude. (b) Diagrammatic representation of the amplitude
obtained by combining amplitudes A, 8, and C with two-particle
on-mass-shell intermediate states. (c) The amplitude ! Eq. (14)g
obtained by combining the amplitude P successively n times with
two-particle on-mass-shell intermediate states.

where Ti(s, t)—=P(s, t) and, for 1V ~&2,

where 9 &"'(t; ti. . .t„) is defined in Appendix C (we
use here the notation of Martinis'4).

Using Eq. (3), we get

(P)"=4(0)9'/~. ) (G~-'/1V)'" (13)

We may associate, with each of the iterations we
consider, a generating function g(x) such that

'T(,t)=C(0)+g'(0) P+(1/2 )g"(o)(P) ('P)+".—=g(iP) . (16)
N—1

T ' ' ( ,t) =
167t-'s i'=&

dt' dt"T; (s,t') In the case of the rescattering iteration, Eq. (6),
we have

with E~=1. A combinatorial solution of this recursion
relation is presented in Appendix 3, where it is shown
that

K~ (21V—2)!/1V t (1V 1)—!—7'. (12)—
We finally obtain that iteration of Eq. (6) with our

input (3) for P(s, t) yields

t' s ~ (21V—2)!
Tn(s, t) =iP(0)~ — Q G~ ' — e'"~. (13)

Ã (1V!)

We now choose to write this in a somewhat different
form. Let us call attention to two things. First, for a
purely imaginary amplitude A (s, t), At(s, t) = —A (s,t),
which we depict in Fig. 1(a). Second, the iteration
represented by Eq. (7) and those which we will consider
below involve multiple scatterings with two-body on-
mass-shell intermediate states, as in Fig. 1(b). It

e(K)
&& T~- *(s t") (9)

gK
After some manipulation, (9) becomes (see Appendix

)
T '"'( t)=('/1V)K 0(0)(/ o)G" ' '"" (1o)

where G=—P(0)/16rrass and K~ obeys the recursion
relation

N-1
K~= Q KiKN; for 1V&&2,

3. IMPACT-PARAMETER REPRESENTATION

The formulas of this section will enable us in the
following to sum up the various iterative expressions
in closed form.

The partial-wave expansion, with our normalization,
reads (at high s)

T(s,t) =16m g fi(s)Pi(s),
L=o

(21)

"M. Martinis, Imperial College report, 1MS (unpublished).

Note that gir(x) is simply related to the function f(x),
obtained in Appendix 8, by gis(x) = f( x). We—can-
view Eq. (17) as a solution to Eq. (6) in the following
fashion:

In our symbolic notation, Eq. (6) becomes

Trt=P+s(Trit) Trr (18)

Since I' and T are, under our assumptions, purely
imaginary, this becomes

Trr = sP (iT)'. . —
Solving this equation as a simple quadratic, we get

iT,=-', L-—1~(1+4')its]. (20)

Choosing the sign corresponding to Tri P+, we-—
arrive at Eqs. (16) and (17).



REGGE CUTS I N D IFI RACTION SCATTERING

which, in the impact-parameter representation, becomes

T(s,t) =Ss.s bdb f(s,b)Js(b& t)—. (22)

if(s,b) =g
S~s

xdx f'(s, x')J—o(bx)
~

. (23)

With our ansatz (3),

thus

8zs
xdx P(s, x')—Js(bx) = —Ge-""' (24)

00

The relation between g(x) and the impact-parameter
representation is given by (see Appendix C)

FIG. 2. (a) Diagram repre-
senting the two-particle dis-
continuity corresponding to the
leading-cut correction in the re-
scattering model of Sec. 2. The
shaded parts represent the
Pomeranchukon amplitude.
(b) Mandelstam-type diagram
giving a cut contribution on the
physical sheet of the s plane,
discussed in Ref. 3 in connection
with the diagram of Fig. 2(a).

iT(s, t) =Ss-s bdb Js(xg t)g( —Ge b —t4 )
—

(25) S

(b)

and we may express the total cross section as

ob.,(s-+ ~)= —8~ xdx g( —Ge *"4'). (26)

If we define S(s,b) by

f(s,b) = [S(s,b) ——1]/2i, (27)

we can then express the unitarity condition on T(s, t) as

~S(s,b)
~

~&1 for 0&~b( oo, as s~ ~ . (2&)

The diagram shown in Fig. 2(b) is thought to give
a cut contribution on the physical sheet, unlike the
diagram of Fig. 1(a). We discussed these diagrams in
Ref. 3 and suggested that the physical-sheet behavior
of Fig. 2(b) might be approximated by the second-sheet
behavior of Fig. 2(a). Since the discontinuity on the
second sheet is the negative of that on the first sheet,
our model takes Fig. 2(a) with a minus sign as the
leading cut-contribution.

Ke now suggest that a possible modification of Eq.
(6), consistent with this model, is

From Eqs. (22) and (23),

S(s,b) =1+2g( Ge b't4—') . (29)
ImTM =ImP — TMtI TM . (3o)

4. MIXED RESCATTERING-ABSORPTION MODEL

If the iteration (7) were correct, we would have to
identify the leading-cut correction (hereafter referred
to as the second-order term) with the diagram of Fig.
2(a). As is well known, ' perturbation theory suggests
that this is not a bona fide cut contribution. "Further,
if I' is taken to be purely imaginary, the second term
in (7) has the same sign as the first term. As we men-
tioned previously, Finkelstein and Jacob" have shown

that, in the cases they consider, experiment favors a
relative minus sign between these two terms. Also, for
the parameters we have specified for Eq. (3), the sum
for T(s,t) in Eq. (13) is divergent.

We now consider approaches to question (8) that
are consistent with the model of Ref. 3. The first case
we consider is a modification of the rescattering method
motivated by this model.

"For a sum of ladders in a 4' theory of scalar particles, for
instance, the moving-cut contribution of the two-particle dis-
continuity represented by Fig. 2(a) is cancelled at high s by the
contribution~of inelastic intermediate states and the cut behavior
only appears, on the second sheet reached by continuing through
the s-plane elastic cut.

That is, we identify I' not with the overlap function,
but with the overlap function plus twice the elastic
discontinuity. It is easy to check, using our previous
results for rescattering, that the expression for T
corresponding to Eq. (30) is just

(s) co

T (s,t)=iP(0)l —
I 2 (—1)~+G—

(sor Ã 1

(2E—2)!
X e"'~ (31)

i.e., the same as our rescattering expression, Eq. (13),
except for the factor (—1)~+'. This alteration of signs
is consistent with the results of Gribov" and is thought
to be a general feature to be expected in such multiple-
scattering approaches. It is this alternation of signs
which makes the existence of dier action minima
possible.

The generating function corresponding to Eq. (30)

gbl(x) = —,'L1—(1—4x)'t'j. (32)
"P. N. Gribov, Zh. Eksperim. i Teor. Fiz. 53, 654 (1967)

/English transl. : Soviet Phys. —'JETP 26, 414 (19681$.
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IOO—

IO=

-I
IO

————COCCONI ego/, (965

to'=—

lO

~4
IO

lo =

IO =

-v
to =—

lo

4

~ ~

~ ~
~ I
~ ~

I

~ I

0

I

I

I

I
I
I

~+ ~

j ~
L

3

t in BeV

FIG. 3. Proton-proton asymptotic
differential cross section according to
(a) the mixed reseat tering-absorption
model, (b) the E-matrix model, and
(c) the eikonal model. The data shown
are those of Cocconi et at (Phys R. ev..
138, 11165 (1965)j.For —0.8 BeV'&t
~(0 (the forward peak), experimental
data correspond closely with the
curves and are not shown.

gi"i(0))0 for all n. (33)

(e) "Unitarity is satisfied asymptotically" means
that —1&g(x) &0 for —G&x~&0.

(f) "The total cross section is finite" means /from
Eq. (26)j that

0&
' Ch—g(x)(~.
g S

We Inay translate our requirements into conditions
on the generating function g(x) as follows:

(a) "T=O if P=O" means that g(0)=0.
(b) "The Pomeranchukon corresponds to the leading

(first-order) term" means that g'(0) = 1.
(c) "The FO model yields the second-order term"

means that g"(0)=2.
(d) "The successive terms alternate in sign" means

that
do !T(s,t)!'
Ch 16m s'

(34)

However, we cannot apply this expression to the series
(31) for Tv (s,t), since this series is divergent. Unlike
the other cases we will consider, in which the corre-
sponding series are convergent and well behaved, the
present case is analogous to trying to utilize a power-

Ke see that the physical requirements which we impose
do not completely specify the iterative procedure, but
rather serve to limit the possibilities to those procedures
corresponding to generating functions satisfying con-
ditions (33). Our rescattering expression is thus not
acceptable, since it fails to satisfy several of these
conditions. ger(x), however, is an example of a gen-
erating function which satisfies all the conditions (33).

With our normalizations (1) and (2), we have
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series expansion outside its radius of convergence. To
clarify this, let us note that formally summing the
series (31) (using the method of Appendix C) leads us
to the expression Lsee Eqs. (25) and (32)]

Since T(s,t)~P(s, t) for small t, we have

ImT (') (s,t) —a.)se1",
ImT (') (s,t) a „use"',

so that to is given by

(3"t)

i T)ts(s, t) =8m.s bdb J()(b+—t) to (2/—a) 1n(o~,pi'/a. ,p&) —0.6 BeV' (38)

X2L1—(1+4Ge ")' )'"j (35)

Conversely, we can view the series (31) as the result
of expanding [1—(1+4Ge "'14~)"'j in a power series
in Ge ~'~ and then performing the integration in b.
This is clearly not a valid expansion, since 4G&1. To
calculate (do/dt)3r, we must use the expression (35)
for Tjs(s, t). The Romberg method of numerical inte-
gration yields the results shown in Fig. 3, curve a.

The total cross section is given by

a ~'""(s-+ ao) = 16m.a{(1+4G)'"—1
—lnL-', +-', (1+4G)'t'3)

where o.&,t, and a.,) are the asymptotic pp total and
elastic scattering cross sections. The models we consider
exhibit to in the range —0.8 to —0.95 BeV', and
(tp)~ —0.9——5 BeV'.

The iterative procedures which satisfy (33) are all
equivalent to second order and it is the higher-order
terms which distinguish them.

6. EIKONAL MODEL

The eikonal method of Arnold' corresponds to
writing the 5 matrix in the impact-parameter repre-
sentation as

=41 mb. g —g2ig (39)

S. DIFFRACTION MINIMA

We wish to point out that our conditions (33), and
condition (d) in particular, do not necessarily imply
the existence of diffraction minima (actually, zeros).
Such minima occur only when

T( )[ [ Q T(x)[
N even N Odd

changes sign. The cases we consider consistent with

(33) do display these minima.
Ke expect the first minimum to occur when, roughly

speaking, the amplitude passes from single- to double-
exchange dominance. We can write a simple relation
for the approximate value of t (call it t()) for which we
expect this first minimum, and to is approximately
determined by the conditions (33).

"W. N. Cottingham and R. I'. Peierls, Phys. Rev. 137, 3147
(1964); R. Henzi, Nuovo Cimento 52A, 772 (1967); 57A, 301
(1968).

We may now inquire whether we can clear up the
divergence encountered in the Van Hove rescattering
expression LEq. (13)j in the same fashion. The answer
is that we cannot. The equation for iTz(s, t) corre-
sponding to Eq. (35) involves the factor (1—4Ge 'I'~)"'
in the integrand. Since 4G&1, this is an imaginary
number for small b and thus gives a nonsensical result.
For harp scattering, the magnitude of the forward peak
would require that 4G~0.91, which is less than 1, and
in that case the Van Hove expression is convergent.
Thus, as has been noted previously, ' an unmodified
Van Hove model may be applied to mp diffraction
scattering but is unable to accommodate pp diffraction
scattering. None of the acceptable models we consider
suffers from this difficulty.

The generating function g~(x) is thus

a~(x) =k(e'*—1), (42)

which satisfies all of the conditions (25). The total
amplitude is

( s ) (2G)x—i

Te(s, t) =iP(0)~ —
~ P (—1)~+' e"t~. (43)

k s()1 ))(=i iV(E!)

Unlike Eq. (32), this sum is convergent and the re-
sulting (da/dt) ~ is shown in Fig. 3, curve e, as

a~"'(s —+ ~)=38.2 mb,
(t()) i, = —0.8 BeV'

(44)

7'. EC-MATRIX MODEL

In the model we now consider, we answer question

(B) by parametrizing the elastic 5 matrix as

S= (1+iP)/(1 —iP). (45)

This is analogous to the single-channel E-matrix
parametrization of the 5 matrix, with I' playing the

rs R. C. Arnold, Phys. Rev. 153, 1523 (196'tl.

The answer to question (B) is provided by identifying
X with the Fourier-Bessel transform of the E amplitude.
This corresponds in our notation to

S= exp(2iP) . (4o)

This is essentially the procedure used by Chou and
Yang, "who take P(s, t) ~

~
proton electric form factor

~

'
X (s/s()), corresponding to a flat Pomeranchukon tra-
jectory, and by Frautschi and Margolis, 4 who take a
Regge pole with nonzero slope for P(s,t).

In terms of T, (40) reads

iT= —,'t exp(2iP) —1j. (41)
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role of the E matrix. In terms of T, this is

iT= iP/(I —iP) .

The generating function grr(x) then becomes

gjr(x) =x/(1 —x) . (47)

As in the eikonal case, this sum is convergent. The
differential cross section (do/dt) jr is plotted in Fig. 3,
curve b, and has a behavior very similar to that of
(d(r/dt) jj and (do/dt) j(j.

gjr(x) satisfies the conditions (33) and is automatically
consistent with our application of the model of Ref. 3.
Tjr(s, t) is given by

S 61'—1

Tx(s, t) =iP(0) —2 (—1) "—e'"" (4g)
So N=1

three of these procedures, one of which (eikonal) has
had extensive previous use, and we note that (1) they
are all equivalent to second order La consequence of
the restrictions on g(x)7, (2) they all display diffraction
minima, and (3) they all have a t dependence com-
patible with exp'eriment (see Fig. 3). Additional con-
ditions on g(x) resulting from the imposition of further
physical requirements might serve to further narrow
the class of acceptable iterative procedures. The most
natural way to proceed to nonasymptotic energies
seems to be to put proper Regge trajectories into the
single-scattering term. "
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APPENDIX A

(tp) x= —0.8 BeV'.

8(E)
dt" exp(a, .t.'+ a )vt")Ij.~-j(t)=8. NONASYMPTOTIC ENERGIES

p(0) ln(1+G)
total fs ~ (g) )— In this appendix, we indicate the derivation of Ec[.

(10). In the steps connecting Eqs. (9) and (10), it is
necessary to employ the integral

0

At nonasymptotic energies, we might ask questions
similar to (A) and (B) for lower-lying proper Regge
trajectories. For a proper Regge-pole amplitude con-
tributing to elastic scattering (call it I(.'), we have
answered (A) once we know the residue, the trajectory,
and the signature. For (B), there is a wide range of
possibilities. Two simple possibilities are

iT=g(iP)+iR, (boa)

iT=g(i(P+R)); (50b)

i.e., we could consider putting E. directly into the
amplitude or, alternatively, into the single-scattering
term. As Chiu and Finkelstein" have argued in con-
nection with their model, the most natural choice
seems to be (50b), since the total amplitude then
contains all of the cuts in which the proper trajectories
participate. Equation (50a) clearly does not contain
these cuts.

Q. CONCLUSIONS

We have seen that the diffraction behavior of
(do/dt)» (s~ p()) can be obtained in a variety of ways
depending (A) upon the form of the Porneranchukon
contribution, and (B) upon which part of the total
amplitude it represents.

We have formulated the various possibilities for (B)
in terms of a generating function g(x). Consistency with
the model of Ref. 3 and other physical requirements
translate into restrictions on g(x) which in turn define
a class of acceptable iterative procedures. We examine

'9 C. B. Chiu and J. Finkelstein, Nuovo Cirnento 57A, 649
(1968).

exp-
(ajP+2aja))); cos8+app)'~' 2 sin'(-,'8)

&&i (aj+a~ j)—(ajP+2aja~; cos8+a~ jP)'"

I , j)(((t)j= ( )
aj+aNj-

With the form (3) for T ')(s, t), repeated application of
(9) shows that T(+)(s,t) must be of the form

T' '(s, t) = iP~(0) (s/sp) (—1)~+'e""" (A3)

Equation (A2) then becomes

Ij,z; (t) = Lx j(N —j)/aN7e('(

and the relation (9) becomes

i( 1)&+')s—y
Tj(, (~)(s,t) =

16prspaN (sp/

N—1

(A4)

Pj (0)Pip j(0)t (N j)7e'j~)2.—(AS)—

/—exp
~ (aj+a~;)

2 sin'(-', 8) E

+(s +2aa~;cose+s» )'~'), (A1)

where
cos8= 1+t/2pp 1+2t/s.

To order 1/s, cos8 —+ 1 and
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This provides a recursion relation for P~(0): or

Lf(x)]'—f(x)+x=0,
N—1

pz(0) = p p, (0)pz;(0)j (N —j), (A6) the solution of which is
1.6~souX ~'=&

(86)

and with the definitions

Pi(0)
6—=

i6xspa

p~(0) X

P (0)GN—1

f(x) = -,'$1—(1—4x)'t']. (88)

Expanding the two expressions for f(x) in Taylor's
series, we see that we must choose the minus sign to

(A7) ensure K~&~0 for all E. We get

we obtain the recursion relation, Eq. (11).

APPENDIX B

In this appendix, we present a combinatorial solution
of the recursion relation

N—1

K~ QK,K——N;, 1V &~ 2, Kg ——1.
j=o

The expansion is

The solution to Eq. (11) is thus

(2$—2)!

(89)

Assuming a generating function for the series EO, K~,
~ ~ (with Ko——0), we have

f(x)=Ko+Kgx+ +Kgx~+ ~ ~ ~ . (81)

(In this appendix, use the term generating function
in the usual sense of combinatorial mathematics; it
has a different meaning in the text of the paper. )

Multiplication of generating functions

C(x) =A (x)8(x)
implies

APPENDIX C

In this appendix, we present some background for
the impact-parameter representation (Sec. 3).

In Eq. (14), we use the same notation as Martinis, '4

although our normalization (1) differs slightly from
his. The factor V "~(t; t~ .t„) is given by

C;=Q a;b, ;,
j=o

(83) where &;= —2p&(1+s;).
Athigh s andixedt, tl, t2, ~, t,

where C(x) =Co+C~x+ ~, etc.
From Eq. (11), we have v & &(& t, r )=-'~ -& bdb Jp(bg-t)

Q K~x"= Q (P KKN )x~.
N-2 ~'=0

(84) Xg Jp(bg —t,). (C2)
i~1

Substituting f(x) for A(x) and B(x) in (82), we get Combining these relations with Eqs. (14) and (16),
and using the Fourier-Bessel relation

Pf(x)]'= Q (Q KKN )x".
N=0 j=o

(85)

F(x) = Jo(xy)y F(x')Jo(yx')x'dx' dy, (C3)
Combining (84) and (85), we get

f(x)—Ko—Kix= Lf(x)]'—Ko' —(KAo+Ko&)'x,

0

we obtain Eq. (22), with f(s,b) given by Eq. (23).


