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Extended Lee Model with an Arbitrary Number of Possible Baryon States*
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The application of Tomonaga s intermediate-coupling approximation to an extended Lee model in
which the single baryon may exist in k possible states is outlined. The intermediate-coupling solution of
such a model is shown to be characterized by a class of polynomial functions which are defined by a three-
term recurrence relation. The bound states correspond to the zeros of these polynomials, but there is no
simple relation between the bound states of the model with k possible baryon states and the next "higher"
Lee-type model with i+ I possible baryon states. Furthermore, an algebraic solution of the problem is not
possible for k +5, because the order of the secular equation is equal to the value of k. Some specific results
are given for the n=3 sector of the extended Lee-type model with four possible baryon states. It is con-
jectured that all extended Lee models of this type will exhibit a strong-coupling "isobar" spectrum of the
type found by North for the cases of the ordinary Lee model and the Bronzan-Lee model.

' 'N a footnote to his recent article on the Bronzan-Lee
& ~ model, ' North points out that several other versions
of the Lee model may be approximately solved by
using harmonic-oscillator wave functions. It has also
been pointed out that Tomonaga's intermediate-
coupling approximation' gCA) is also applicable to
the ordinary Lee modep or the Bronzan-Lee model, 4

and again leads to an approximate solution in terms of
harmonic-oscillator wave functions. In fact, North's
strong-coupling approximation (SCA) may be re-
garded as a special case of Tomonaga's ICA. As already
noted in Refs. 3 and 4, the principal advantage of
Tomonaga's ICA is that it eliminates the large source
assumption inherent in North's treatment.

The object of the present paper is to indicate how
Tomonaga's ICA may be used to solve an "extended
Lee model" with k possible baryon states, where k is
any integer greater than or equal to 2. This model will
henceforth be referred to as ELM-k; for example, the
ordinary Lee model' is KLM-2, and the Bronzan-Lee
model is KLM-3. Although the extended Lee model
is only a very simple mathematical model, it is never-
theless interesting to And that the ICA bound-state
energy spectrum becomes much richer and much more
complex as the value of the integer k increases.

The present article is organized as follows: First we
discuss the ICA solution of the extended Lee model
with four possible baryon states. Then the analysis is
extended to the case of ELM-k by introducing a par-
ticular class of polynomial functions. The energy levels
in the ICA actually correspond to the zeros of these
polynomial functions. In principle, the determination
of the ICA solution to the KLM-k problem is very
straightforward. However, in order to determine the
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ICA solution explicitly, it appears to be necessary to
use a computer, and such computer calculations do not
appear to be advisable at this time in view of the
unrealistic nature of the model. In this connection,
however, it should be noted that the ELM-k problem
is closely related (from a mathema, tical point of view)
to the problem of a tt'-level atom interacting with an
electromagnetic field. Thus, one cannot rule out the
possibility that the polynomial functions defined here
may also turn up in problems of physical interest.

SOLUTION OF THE MODEL WITH FOUR
POSSIBLE BARYON STATES

A nonrelativistic, extended Lee model with four
possible baryon states (henceforth referred to as the
ELM-4) may be defined by the Hamiltonian

+=+mes++int++baryon &

where'

PVmqs —~ COQQQ (SJr,
&

Knt= {eLs(1+rs)Xr ) Q ntaa+H. c.}

+{f(r Xr~) Q u„at+H. c.}

+{gt -,'(1—rs) Xr ) P utat+H. c.}, (3)

IIbaryon= 4L(1+rs) X (1 rs))ev

+-,'f(1—rs) X (1+ra))err

+4L(1—») X(1—»))«(4)
a~t and aj, are the creation and annihilation operators
of a meson with momentum k, and

Nk (2ir) si' U(r)e' ——d'ar

where U(r) is the nucleon source function, which is

'Here, for example, (r Xr+) means the "direct product" of
the two 2)&2 matrices 7 and r+.

l85 1894



185 LEE MODEL WITH ARBITRARY NUM BER OF BARYON STATES 1895

normalized according to where

U(r)d'r=1. (6)
GO= COp

k

coI, denotes the total energy of a nonrelativistic meson
with momentum k, oui, ——k'+-'„where energies are
expressed in units of 2ns. Here e is the bare (Ir,P,1V)

coupling constant, f is the bare (Ir,1V, U ) coupling
constant, g is the bare (Ir,U, V ) coupling constant,
and e~ U z may be regarded as the bare S, U, V masses,
respectively.

The only processes allowed by the Hamiltonian (1)
are

(qicA);.= (2—s—a"a)5;., (13)

where the normalization condition

P fa'=1 (14)

We also note that the reduced-space operator of total
charge is a diagonal 4)&4 matrix whose elements are
given by

P+Ir

1V+Ir +-+ U,
U +Ir +-+ V

(7a)
has been taken into consideration.

(7b) It should also be noted that North's SCA' may be
regarded as a special case of Tomonaga's ICA, that is,
it corresponds to the specific choice

where the four possible baryon states are henceforth
referred to as "proton" (P), "neutron" (1V), U, and U.
It is clear from the allowed processes (7) that the
ELM-4 conserves the total electric charge of the hadron
system. This corresponds to the fact that the operator
of total charge

fi=& "ns,

E=P ng .
A:

(16)

——,'L(1—rs) X (1—rs)] —Q as'as (8)

We therefore con6ne our attention to the ICA, hence-
forth omitting the subscripts ICA.

We now seek simultaneous eigenfunctions of IIzc~
and qzcx in the form

(1+.$ 2+~ 2+d s)—I/2 n4'n —I

E 5 5 3

(18a)

(18b)

(18c)

0 =(n~) '"(a') ~t(9a)

(9b)

CIt; ~ IcC,

as~ feat.

The trial function f& is then chosen to minimize the The desired eigenfunctions P„satisfy
lowest set of eigenvalues of the reduced-space Hamil- H =PICA n n nq
tonian, which turns out to be

(19)

(20)rlicA4'n (n 1)fn ~

oiata egat
ega &rata+ eIV

0 fga. 0 0

0
0

gQa"
IOata+ s V,

0
fQa'

Ma a+ srI

cga

One can easily verify that the secular equation which
yields the energy eigenvalues of the matrix equation
(19) is given by

commutes with the total Hamiltonian (1). Just as in
the case of the ordinary Lee model (ELM-2) or the

(17)Bronzan-Lee model (ELM-3), the eigenvalues of the
total-charge operator are restricted to the following

where the harmonic-oscillator functions P„are defined

is equivalent to the following substitution of reduced-
space operators in the Hamiltonian: ag„=0,

0
f'(n —1)'"

n 2+eU yn- —
g'(n —2)'"

n y„()s~ nIs-
e'(n)'~s n 1+eN' —y—

0 f'(n —1)'"
0 0

0
0

g'(n —2)'"
n 3+ev

(21)

I T. D. Lee snd D. Pines, Phys. Rev. 92, 883 (1953).' G. R. North, Phys. Rev. 164, 2056 (1967).



1896 H. H. N I C KLE

where the notation has been simpli6ed somewhat by
introducing

(22a)yn=+n/~ p

e'=—eQ/(o,

f'= fQ—/~,

g =gQ/"

e N, U, V= ~N, U, V ~

(22b)

(22c)

(22cl)

(22e)

—g2Q2~ —1 (23)

will guarantee that the sector m=3 has one energy
eigenvalue which vanishes, i.e., the value of the bare
mass ~v is adjusted so as to make the physical V particle
have the same mass as the physical U particle, physical
neutron, and proton.

Making these choices for the bare masses, the secular
equation (21) can be rewritten in the following form:

S4(y-) = (n —3+g"—y-)S3b-)
—(n —2)g"S,(y„)=0, (21')

where

e'Qn
S2b-) =

e'gn n —1+e"—y„
(24)

e—y„

S,(y„)= e'gn n 1+e"—y —f'(n 1)"' . (—25)

f'(n —1)'~2 n 2+f" —y—
Note that the secular equation for the ordinary Lee
model (ELM-2) is simply

S2(y.) =o, (26)

and the secular equation for the Bronzan-Lee model
(ELM-3) is given by

S,(y ) =0. (27)

It is clear from the secular equations (21'), (26), and

(27) that for arbitrary values of the bare coupling
constants e, f, and g, there is no simp/e relationship
between the spectra of the ordinary Lee model
(ELM-2), the Bronzan-Lee model (ELM-3), and the
ELM-4. In the ICA, and in North's SCA as well, the
energy eigenvalues for sector e correspond to the zeros
of the corresponding polynomials S2(y ), S3(y ), and

S4(y„). Although there does not appear to be any
simple relationship between the zeros of the poly-

Just as in the case of the ordinary Lee model

(ELM-2), e~ is set, equal to e'Q'40 ' in order to make the
lowest-energy eigenvalue of the sector n=1 vanish.
Furthermore, just as in the case of the Bronzan-Lee
model (ELM-3), eo is set equal to f'Q'cv ' in order to
make the lowest-energy eigenvalue of the sector v=2
vanish. As one would expect, it also turns out that the
choice

nomials S~(y„), S3(y„), and S4(y„), there is a very
simple relation between these three polynomials:

S4(y„)= (n —3+g"—y„)S,(y„)—(n —2)g"S2(y„). (28)

Furthermore, one can prove that the three energy
eigenvalues of the Bronzan-Lee model for a given
sector n= 1—

q lie between the fomr energy eigenvalues
of the ELM-4 for the same sector e, and also that the
tmo energy eigenvalues of the ordinary Lee model for a
given sector e will lie between the three eigenvalues of
the Bronzan-Lee model for the same sector.

Expanding the 4&(4 determinant S4(y„), one can
rewrite the secular equation (21) in the form

yn +a3yn +a2pn +alyn+ao —0
q

where

ao
—=n(n —1) (n —2) (n —3),

(29a)

(29b)

a;—= 4n+6 e"—f" g—".— — (29e)

Using standard methods for the solution of quartic
equations, " in principle one could obtain exact ex-
pressions for the four roots of Eq. (29).

Once the exact roots of the quartic equation have
been determined, one proceeds in the same way as for
the Bronzan-Lee model. 4 The first step is the ansatz

where the a„and P„are to be chosen so as to minimize
the lowest-energy eigenvalue 8„ for the sector n and
simultaneously satisfy the normalization condition
(14). The ansatz (30) implies the following relation
between the values of a& and Q for the nth sector:

n (o„+P„=Q„. (31)

The lowest-energy eigenvalue 8„ for any given sector
n can be expressed as a function of 4d„and Q„—call it
+ (~,Q„). Then, using relation (31) between ~„and
Q~, one can easily determine the total derivative of
E (~„,Q„) with respect to 4e„: dE„/d~„=(4'„/cjoy„)
+c4n(&&~/BQ ). The minimization condition dE„/
d~~=0 then yields one relation between n„and p„,
and the normalization condition (14) yields a second

9 This is a special case of the following theorem: lf the k char-
acteristic roots of a real symmetric matrix are distinct, they are
in general separated by the k —1 characteristic roots of each
diagonal submatrix of order k —1. A proof of this theorem is
given, for example, in H. W. Turnbull and A. C. Aitken, An
Introduction to the Theory of Canonical JjrIatrices (Blackie R Son
Ltd. , London, 1932},pp. 101, 102."See, e.g., Handbook of M athematical Fgnctions arith Forrnllas,
Graphs, and 3Eathematical Tables, edited by M. Abramowitz and
I. A. Stegun (U. S. Government Printing Once, Washington,
D. C. 20025, 1964), Sec. 3.8.3, pp. 17, 18.

aq—= —4n'+18n2 —22n+6 —(n —2) (n —3)e'2

—n(n —3)f"—n(n —1)g"—(n —3) (e'f')'
n(fY)—' ("fY—)' (29c)

a2= 6n' 18n+—11+(2n 5)e"+—(2n 3)f'2—
+(2n 1)g"+(—"f')'+(eY)'+(f'g')' (29d)



I.EE MODEL WITH ARBITRARY NUM BER OF BARYON STATES

relation. Hence the parameters c2„and P„are uniquely
determined for any sector e—= 1—

q and for arbitrary
values of the coupling constants e, f, and g and of the
momentum cutoff R ' (except that the results cannot
be extrapolated to the point-source limit 2=0). Thus,
in principle at least, the ICA solution of the ELM-4 is
essentially no more difficult to obtain than the solution
of a quartic equation. (For the sector n=3, one of the
energy eigenvalues vanishes as a consequence of our
choices for the bare masses. Hence the solution for the
n =3 sector only involves the solution of a cubic
equation. A strong-coupling solution for this particular
sector is given in the Appendix. )

SOLUTION OF THE MODEL WITH A

POSSIBLE BARYON STATES

It is now more or less obvious how to generalize or
extend the ICA approximation to the case of an
extended Lee model with k possible baryon states.
Instead of e', f', g', etc., let us denote the corresponding
parameters by g, ', with i=1, 2, 3, , k —1 (i.e.,
gi'=eQ~ ', g2' fQco '——, g2' ——gQa& ', etc.). If Si(y„) is
defined to be equal to unity, and S2(y ) is defined by
Eq. (24) with e' replaced by gi', then one can easily
verify that the three-term recurrence relation

S'(y-) =Ln —(2—1)+g'-i' —y-js'-i(y-)
—g; 2'2Ln —(2 —2)js, 2(y„) (32)

can be used to determine the polynomial S&(y„), whose
zeros correspond to the energy eigenvalues of ELM-k.
LHere we are completely ignoring the problem of
choosing n„and P„ to minimize the lowest-energy
eigenvalue E„=~y„, where y„denotes the smallest
nonvanishing zero of the polynomial Sl, (y„).It appears
that, in general, this part of the problem will have to
be solved numerically. ]

In order to simplify the present discussion, we
henceforth confine our attention to the case of "global
coupling"; that is, all coupling constants are assumed
to be identical. Then the recurrence relation (32) may
be rewritten in the form

S;(y„)=Ln —(2—1)+X—y„)S, ,(y„)
-l [n-('-2))s; 2(y-), (33)

where
(34)

We reiterate that the three-term recurrence relation
(33) can be used to find S&(y„) for arbitrary integer
values of k, since S~ was defined to be equal to unity
and

where we have replaced y„by x in order to simplify
the notation. Then one can easily verify that the
recurrence relation (33) implies

G= (n+X —x)«G —Xn«2G —«2G'+X«2G' (36)

or
—(G'/G) =t '+(x n)—t '+gx(1 —Xt) '. (37)

One can easily integrate Eq. (37) to obtain

—lnG= —t '+(x n)—lnt —x ln(1 —Xt)+const, (38)

or

where

(1 Xt — (1 1
G(* «) =Go(to/t)* "I—«pl —— (39)

E1-X«,

Go= Q Si(x)to'.
l=l

APPENDIX: EXPLICIT SOLUTION OF ELM-4
FOR SECTOR n=a

For the sector n =3, Eq. (29) simplifies to

y2(y2' (6+e"+f"—+g")y2'
+ (11+e~2+3f~2+5g~2+e~2f&2+e~2g~2+f 12g~2)y

—(6+6g"+3f"g"+e"f"g"))=0. (A1)

The appearance of the zero root in the m=3 sector is
due to our particular choice for the bare mass of the
V particle, namely,

g2Q2~
—1 (23)

The other three roots of Eq. (A1) may be written
in the form

A rather cursory examination of Chap. XIX of Vol. 3
of the Bateman Manuscript Project," has failed to
identify G(x,t) with any of the generating functions
listed there.

In summary, one can easily use the recurrence
relation (33) or the generating function (39) to deter-
mine S2(x). In order to determine completely the ICA
solution for ELM-k, one must also determine the lowest
zero x of the polynomial S2(x) and then choose n„and
p„ to minimize x. Although we have not been able to
obtain an explicit expression for the ICA eigenvalues
for arbitrary values of k and for any arbitrary sector
e=—1—

q, it is nevertheless clear from the present
analysis that explicit solutions could be obtained by
using a computer, at least for relatively small integers k.

S2(y„)—=n(n, —1)—(2n —1+X)y„+y„'. (24) y, '=2+ '(e"+f' +g")+2(+—c) cos—p (A2a)

In an attempt to identify the polynomials defined
by (33), let us introduce the generating function

y,"=2+2 (e"+f"yg") (gc)(cos2y-
+v3 sin22&), (A2b)

G(x, t)
—=P St(x)t',

l=l
(35)

' A. Erdelyi, W. Magnus, F. Oberhettinger, and I'. G. Tricomi,
Higher Transcendental FNnctions (McGraw-Hill Book Co., New
York, 1955), Vol. 3, pp. 228-282.
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y4'" =2+2 (~"+f"+g") (—&~) (c»24 We also note that x—=cos 2& is related to cosr/// by the
~3s;ni@) (A2c) well-known trigonometric relation

r//=cos '—
c c/

(A2e)

lf (7/6)~/2 5f/2+ 1gl2 1 (~/f/)2

-(~—g ) + (f'g-)'+-"+ f" -g"—-
—(1/18)~"(f"+g")—(1/») f"(~"+g")
—(1/18)g" (~"+f")+(1/27) (~"+f"+g")

+(2/9) (&'f'g')' (A2f)

From now on we shall con6ne our attention to the
special case of "global coupling, " that is, we assume
e=f=g. In this case, Eqs. (A2d) and (A2f) simplify to

+g 2 (A3a)

Hence

g
2 (A3b)

cosy=ig/2( —+g/2) 2/2= (1/2g/)(1+Ig/ 2) 2/2. (A3c)

Expanding the right-hand side of Eq. (A3c) in powers
of —'g" one 6nds

cosr// =(1/2g')L1 —-'g' '+(5/24)g' ' —(35/432)g' '$
+o(g' ') . (A4)

In other words, if 2 (4o/gQ)2 is very small compared to
unity, then the angle r/Ir will turn. out to be slightly less
than —,'m. rad, in which case the lowest-energy level is

given by

&2(~,Q) =&2"=2~+g'Q'~ ' gQ(1+—2g' ')"
X (x—Way), (A5a)

where
S=COS2$ l

y—=sin —2'Q.

(A5b)

(A5c)

%e also note that the separations between level I or
III and the lowest level II are given by

I II E I Q II gQ(3+gl 2)1/2(v/3g+y) (A6a)

P III,II=+ III g II —2gQ(3+gl —2)1/2y (A6b)

In the extreme strong-coupling limit, —,'$ —+ 622r rad, and

g I,II 2g 111,11~2~ggQ

that is, the solutions E3 and E3 are each widely
separated from E3" in the strong-coupling limit as
g~ OO ~

where

+g/2+ 1fl2 1 g/2 I
( ///f2/2+ ///2g/2 +f /2g/2)

+l ("'+f"+g"), (A2d)

where
Q ~ +1/2

EV—=g 24/, 24.

{A12)

{A13)

In view of the similarity between E3, E3 ", and
Z2s"""""" (in particular, the fact that all three
contain a term proportional to sP/g2Q2), we strongly
suspect that the corresponding expansion of E„ for
ELM-4 vill lead to the appearance of an "isobar"
term -22oP/g2Q2. However, because of the cumbersome
nature of the algebraic solution of the quartic equation
(29), this conjecture has not been verified. Furthermore,
we believe that the same kind of isobar term (i.e., a
term -n4o2/g2Q2) will also appear in the corresponding
expansion of A'„referring to the ICA solution for the
mth sector of ELM-k. However, if k&4, an algebraic
solution of the secular equation S/, (y ) =0 is, in general,
not possible.

Now let us return to our discussion of the ICA
solution for the 22=3 sector of ELM-4. Using Eq. (31)
to replace Q by nco+P, the lowest-energy eigenvalue
becomes

+2( )g-+2-pg +(gp) =+2($:+(g-)j--
+212pg'4o+ (gp)')'/2 COS(2&+-,'2r), (A14a)

4'—3x=cosp,

where cosg is given by Eq. (A3c). Using Eqs. (A4) and
(A8), one can easily verify that

*=K~+I'2 (~/gQ) —(v3/144) (~igQ)'
—(25/648) (io/gQ) 2+ (39743/2'X3')

x( /gQ)'+o(g' ') (A9 )
y= 2

—I'2v3 (~/gQ) —(1/«4) (~/gQ)'
+ (25v3/648) (rd/gQ) '+ (397/2' X3')

X(~/gQ)4+O(g'-'). (A9b)

After tedious but straightforward algebra, one finds

8,=g2Q2rd
—' —V3gQ+ (7/6)o/ —(11v3/72)

X (4o2/gQ) + (1/36) (4o2/g2Q2)+ (107V3/2' X3')
x( /gQ)+o( / Q). (A10)

At the corresponding stage in the ICA calculation, the
lowest-energy levels for the m=3 sector of the ordinary
Lee model and of the Bronzan-Lee model are given by

&""=l +-:g'Q' ' —lg'O' 'I1+1o(/gQ)'
+( /gQ)'7'"

=6(~'/g'Q') —30(~'/g'Q')+O(~'/g'Q'),
E Bronzen-Lee~46 ( 2/g2Q2)

The results of North's strong-coupling treatments
applied to the n=3 sector of ELM-4 would be obtained
by taking fk 1V I/2N/, . In——other words, we should
replace 4o and Q according to the following rules:

r/1 ~ Q =E P i/1//N//, (A11)
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where

~s (&+p~—1)2

IP=cos ')

E2p+g2 (K+pM
—1)2j312)

(A14b)

Hence Z3 has been expressed as a function of cv only.
The minimization condition

dEs/dos= 0 (A15)

(14)

then leads to one relation between cr and P, and the
normalization condition (14) leads to a second relation,
namely,

By choosing a specific model for the momentum cutoff
and then resorting to a computer solution, it is clear
that one can obtain numerical vahies of E3 for arbitrary
values of the bare coupling constants e, f, and g. Also,
we wish to emphasize that since the quartic equation
(29) can be solved exactly for arbitrary integer values
of m, the analogous program can also be pushed through
for any sector of the ELM-4. Thus, the ICA solution
of the EI.M-4 is well understood, even though it is
relatively cumbersome to obtain explicit results. It
should also be noted that the problem becomes more
complicated for ELM-k (with k &~5) because one can no
longer determine E„(&o,Q) by algebraic means, i.e., one
apparently has to resort to a computer at an earlier
stage in the ICA solution.
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cs Independence of Internal Regge Couplings at Zero Momentum Transfer*

CHUNG-I TAN AND JIUNN-MING WANG*

Joseph Henry Laboratories, Princeton University, Princeton, Em Jersey Oh'540

(Received 29 April 1969)

Based on the analyticity properties of production amplitudes, we prove that the Reggeon-Reggeon-
particle coupling X(ti, ts, o&) is independent of the a& angle when either ti or ts vanishes. This phenomenon is
connected with the fact that the surfaces t&=0 and t&=0 are asymptotes of physical boundaries on which
costa is not de6ned. Our ending allows a considerable simpli6cation of phenomenological analyses of multi-
particle production data.

ITH the accumulation of high-energy production
data for hadron collisions, it becomes increas-

ingly interesting to study further the models which
have been designed to describe such phenomena. One
such model is the multi-Regge model' (hereafter re-
ferred to as MRM). This model is designed to describe
the multiperipheral events where the invariant sub-
energies of the final particles are much greater than
the corresponding momentum transfers. It is now
known" that in MRM, in addition to the adjacent
momentum transfers squared, it is very natural on
group-theoretical ground to introduce an additional
angle co to describe the internal Regge couplings. There
have been several attempts' ' to determine the depen-
dence of the internal coupling on the angle co. It is the

*Work supported by the U. S. Air Force Once of Scienti6c
Research, under Contract No. AF 49(638)-1545.

'For a list of references about MRM, see Chang Hong-Mo,
rapporteur talk, in Proceedings of the Fonrteenth International
Conference on High Energy Physics, Vi-enna, Z96Z (CERN,
Geneva, 1968), p. 391.'¹Bali, G. F. Chew, and A. Pignotti, Phys. Rev. 163, 1572
(1967).

3 Chan Hong-Mo, K. Kajantie, and G. Ranft, Nuovo Cimento
49A, 157 (1967).

4R. A. Morrow, Phys. Rev. 176, 2147 (1968); R. Lipes, G.
Zweig, and W. Robertson, Phys. Rev. Letters 22, 433 (1969).

purpose of this paper to point out that the internal
Regge coupling associated with the leading asymptotic
power term is independent of the co angle if any one or
both of the momentum transfers squared associated
with this vertex are zero. )In this paper we refer to
the asymptotic power term sl 1('»S2 '("~ as the leading
power term if crt(tr) and o.s(ts) are both parent tra-
jectories. j The internal coupling associated with lower
powers can be dependent on co. This is a consequence of
analyticity properties of the production amplitudes
and has a simple geometrical interpretation.

From factorization of the leading power term, the
leading internal Regge coupling which appears in three-
particle production is the same as those which appear
in m-particle production. Therefore, for the purpose of
the present paper, it suffices to discuss the production
amplitudes with only three final particles. We define
the notation as follows (see Fig. 1):

tr= (p —q)' ts= (p' —q")'
sr = (q+q')', ss= (q'+q'") ) s = (p+p')'

The u angle is dined to be the spatial angle between
the plane formed by the three-vectors y' and q" and
the plane formed by y and q in the rest frame of q'.


