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Ke have
I'(n —x)

Pz. (k —x) = Q c,&"'

l (k —x)

This gives us, as in (28),

c,„&"& = (—1)"—'6&"—"Pe(0)/(n —k)!. (812)

I'(zz'+ k —s:)
(k)Cn'+k

r(k —~)

The conditions necessary for the convergence of

(F11) (B11)and all other series in this Appendix are given in
detail in Sec. V.
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Present experiments on semileptonic decays indicate Frr/F, 1.22. However, in contrast with the ap-
parent success of many other sum rules, asymptotic SU(3) symmetry and chiral SU(3)QxSU(3) algebra
tend to predict Fzr =F . This problem is studied in the approach which utilizes the SU(3)QxSU(3) charge-
charge density algebra and a form of asymptotic SU(3) symmetry called the "SU(3) approximation. "
This approximation is assumed for the SU(3) raising and lowering operator V~ only in the zero-
momentum-transfer limit. It is suggested that the problem may reflect the fact that we have not yet taken
into account the full contribution of the boson spectrum. As one of the simplest and most interesting ways
of introducing a more complicated boson spectrum, we study mainly the contribution of the exotic mesons
with abnormal charge-conjugation parities. It is shown that the introduction of exotic channels removes
the difliculty of F~=F, while the essential features of other sum rules remain unaffected. The value
Fzr/I&' ~1 22 can be obtained . in our approach if there exists the I=

z 0+zz meson with mass around 1.1 BeV.
This value of the ~ mass can also be predicted from our intermultiplet mass formulas which are also based
on the SU(3) approximation.

I. INTRODUCTION AND SUMMARY

~~~NE of the important problems of particle physics
is whether we have two Cabibbo angles, gg and

Oy, or one angle. Recent developments in both the
experiments and the theory of semileptonic interactions
seem to favor one angle. If one assumes for the F+(s)
form factor of E',,s+ decay a form P~(s) =zzt&'(zrtz*'+s) '
F+(0), in agreement with present experiments, and
assumes the value F+(0)= 1, neglecting the second-order
SU(3)-breaking effect, ' the present' experimental rate
I'(E.s+) = (3.87&0.07) X10' sec ' gives' a value singY
=0.218&0.002 when compared with the rate of the
p-decay mode. On the other hand, comparison of the

* Supported in part by the National Science Foundation under
Grant No. NSF GP 6036.

' M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264
(1964).

' For a recent review, see, e.g. , J. W. Cronin, in P'roceedings of
the Folrteenth International Conference on High-Energy Physics,
Vienna, 1968', edited by J. Prentki and J. Steinberg (CERN,
Geneva, 1968), p. 281.

' S. Oneda and J. Sucher, Phys. Rev. Letters 15, 927 (1965);
15, 1049(E) (1965). The eBect of electromagnetic q -x mixing
increases the value of sine by 1.7'P&. See Ref. 5.

IC +tz+v and x. ~tz—+o decays givese sinfl~ ——0.2655
&0.0006 if we assume exact SU(3) symmetry, F& F, ——
for these decay amplitudes. However, this value of 8&

may not reflect the true value if the first-order SU(3)-
breaking effect on the Frr/F„ is large. I.et us turn to the
baryon leptonic decays. For the vector couplings at
zero momentum transfer, we usually adopt the SU(3)
values as in the case of F+(0), since the renormalization
is again of second order in the SU(3)-breaking inter-
action. However, for the axial-vector couplings, the
renormalization problem is more acute and the use of
exact SU(3) couplings appears to be more proble-
matical. Recently we have proposed' to work with the
broken-SU(3) sum rules for the axial-vector coupling
constants which can be obtained by using an approxi-
mation' called the "SU(3) approximation" a,nd a chira, l

SU(3) SU(3) algebra. This approximation is certainly
a weaker assumption than exact SU(3) symmetry and

4 N. Brene, M. Roos, and A, Sirlin, Nucl. Phys. 131,255 (1968).
' S. Matsuda, S. Oneda, and P. Desai, Phys. Rev. 178, 2129

(1969).' S. Matsuda and S. Oneda, Phys. Rev. 174, 1992 (1968).For
the early references and the summary, see S. Matsuda and
S. Oneda, Nucl. Phys. 89, 55 (1969).
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assumes, roughly speaking, that the SU(3) raising and
lowering operator Vtr still acts as an 5U(3) generator in
broken symmetry bu t only at the zero-momentum-
transfer limit. In the computation, this limit can be
realized only by taking an appropriate infinite-momen-
tum limit.

It may be claimed' that the accuracy of the sum
rules is of the same order as that of the Gell-Mann-
Okubo mass formulas, since one can derive these mass
formulas on the same footing, utilizing the same
algebra and the SU(3) approximation. Based on these
sum rules for the physical coupling constants and on
some of the recent experiments on the rates and the
V-A interference terms of the A. ~ p, Z —+ h, and n ~ p
P decays, we have derived" sinev=0. 225&0.002 and
sin0~ ——0.225&0.005. In agreement with this obser-
vation, Cronin' reported a value sin9=0. 227&0.006,
which is deduced from the world-average hyperon
P-decay rates by iitting with one Cabibbo angle 0.
Therefore, though we certainly need more accurate
experiments, there is at present no compelling reason
to assume two Cabibbo angles. If this is the case, the
value of F&/F seems to deviate from unity rather
significantly. For example, if we tentatively assume
sin8=0. 22, then Frc/F =1.22. Various attempts have
been made to derive the value of Fir/F . The first
attempts~ based on Weinberg's sum rules have had
difficulty, since they are based on the second spectral-
function sum rule which disagrees with experiment.
The model of broken chiral symmetry due to Glashow
and Weinbergs gives Frr/F = 1.08, and favors a mass
m„&670 MeV for the so-called ~ meson. So far, such a
~ meson has not been observed. In order to remedy the
inconsistency of the second spectral-function sum rule
which gives the exact SU(3) result, it has been proposed
to patch up the difhculty by replacing this sum rule

by the one which takes into account explicitly the first-
order SU(3) violation. ' "However, it was also realized
that these procedures rather tend to predict F~——F ." "
The purpose of this paper is to study this problem from.
a different approach which we have been pursuing

7 S. L. Glashow, H. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1968); H. T. Neih, ibid. 19, 43 (1968).

S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968).

'T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967).

R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(1967).

"This was erst observed by K. Kawarabayashi and W. W.
Wada, Phys. Rev. Letters 19, 1193 (1967); C. S. Lai, ibid. 20,
509 (1968); R. J. Oakes, ibid. 20, 513 (1968); Riazuddin and
Fayyazuddin, Phys. Rev. 172, 1737 (1968); J. Dooher, ibid.
179, 1530 (1969).

~2 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 17S,
2195 (1968). If the Eg mass is around 1230 MeV, F~~F, is also
obtained by P. K. Mitter and L. J. Swank, iVucl. Phys. 88, 205
(1968).

"For a review of extensive literatures on the related problems,
see S. Weinberg, in Proceedings of the Fourteenth lnterrtational
Conference on High-Fnergy Physics, Vienna, D'6h', edited by J.
Prentki and J. Steinberg (CERN, Geneva, 1968), p. 253.

recently. 6 The approach is as follows. '4 Instead of
utilizing the spectral functions, we deal directly with the
chiral SU(3)t35U(3) charge-charge density algebra.
Furthermore, we use the aforementioned SU(3) ap-
proximation for t/"~ instead of the so-called asymptotic
5U(3) condition imposed upon the spectral functions.
In this approach, the spins of the intermediate states
are also restricted to either sero or one, and the domi-
nance of the single-particle resonance approximation
is adopted as in the spectral-function approach. In the
spirit of the hypothesis of partially conserved axial-
vector current (PCAC), we also assume the gentleness
condition for the divergence of the partially conserved
vector and axial-vector currents. In this approach, we
have derived'4 sum rules which include the result
essentially equivalent to the first spectral-function sum
rule, However, in Sec. II we show that we shall also
encounter the problem of F~=F in other places, if
there is only one Emeson and one I(, meson in the spectra
of I=-,' 0 and 0+ mesons, respectively.

Therefore, the simplest and most natural way (to us)
to obtain over-all consistency is to assume that we have
not yet taken into account the full spectra of the spin-
zero bosons. This possibility does not seem unrealistic,
since in baryon spectra we have already observed the
recurrence of the multiplets of the same spin and parity.
Furthermore, one may also imagine the existence of
exotic spin-zero mesons with abnormal charge-conju-
gation parities. Although such exotic bosons may not
be constructed in the simple gq quark model, there is
no a priori reason to reject them. "For example, the
need for daughter parities has been brought out by the
Regge-pole analysis. Experimentally, " the recently
observed A~z(1270) meson might be a candidate for
the I=1 1 + meson, i.e., the abnormal p meson t or
the daughter of the 2++ meson As'(1315)j.For the sake
of theoretical interest (and also to remove the Fx= F ),
we assume the existence of such exotic mesons in this
paper. In Sec. III we discuss the modification of our
sum rules in the presence of such bosons and derive
the value of the Frr/F in terms of the mass of the
& meson which belongs to the 0++ multiplet in the sym-
metry limit. If the mass of another I( meson, I(', is not
very close to the mass of the E meson, then the mass
of the I(: meson is predicted to be around 1.1 BeV. In Sec.
IV we remark that one can also predict a ~ mass
around 1.1 BeV from the recently established" I= 1 0+
8 meson (m&~960 MeV) or the ortv(1016) meson by
using the intermultiplet mass formula obtained from
the SU(3) approximation. Therefore, the over-all

'4 S. Matsuda and S. Oneda, Phys. Rev. 171, 1743 (1968).
"For example, there is the Gell-Mann-Zweig model that is

discussed by H. Harari, in Proceedings of the Fourteenth Inter-
national Conference oe High-Energy Physics, Vienna, 1968', edited
by J. Prentki and J. Steinberg (CERiX, Geneva, 1968), p. 195.

' N. Barash-Schmidt, A. Barbaro-Galtieri, I. R. Price, A. H.
Rosenfeld, P. Soding, C. G. Wohl, M. Roos, and G. Conforto,
Rev. Mod. Phys. 41, 109 (1969).The B(962) might belong to the
0+ octet. However, the b(962) and rrtv(1016) could also be related.
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consistency of the result is rather good. In Sec. V, a
comment is made on the sum rules for V —+ l+l decays.

II. PROBLEM OF E~=E„AND THE
BOSON SPECTRUM

sponding to Eq. (2),

—lim (OIVrc Ix'&(xsl Up +(x) Ix (p))
I I I

= »m (Ol a„v„~'(x)I.-(p)).

Consider the charge-charge density commutator

LUp~ (x), Viral —Up" (x).

In the following, we write, for example, the isovector
vector and axial-vector currents as V„+(x)and A, +(x),
respectively, and denote the vector and axial-vector
charges as Vir and A, etc. Let us sandwich Eq. (1)
between the vacuum state and the state of the I=-,' 0+
meson, called the ~ meson, with infinite momentum.
Then with the SU(3) approximation for the charge
Ufo I

which implies that the Vrc acts as an SU(3)
generator in this infinite-momentum lirnitj, and neglect-
ing many-particle continuum states, we obtain

», I(OIU "(x)l~& |' IU I (p)&

—&olv I"&&"IU'(*)I
= lim &OI Usa+(x) Ix

—(p)). (2)
l u!

Here 5 is the I= 1 counterpart' of the K meson and we
have assumed that there is only one kind of 0+ multiplet.
Since (0

I
Vp +(x)

I
8 )= 0, because of the conservation of

the current V„+(x), we obtain the following from Eq.
(2):

F f (oo) =F

Here F„ is the amplitude for the process x~ e+i
through the current V„~(x), defined by &Ol V„~+(0)
lx

—(p))=(2pp)
—'"F„p„.The function f„(s) is the form

factor for the vertex, de6ned by

&x"(p')
I U.- (0) lx (p)&=(2pp2pp') &f„(s)(p+p')-„,

where s = —(p —p')'.
In this paper, along with the commutators of the

type (1), we always consider the following types of
commutator s:

LVp"(x),V~ ]= ~.V."'(x) (4)

"For simplicity we assume that the f(: meson belongs to the
SU(3) octet.

This commutator gives information for quantities like
f„(oo) which involve the high-energy behavior of certain
vertex functions which appear in the computation. The
commutator (4), which can be derived from Eq. (1) by
a term-wise differentiation, will be valid if all the quanti-
ties involved behave in a reasonable fashion. Although
the validity of this commutator might be less secure
than Eq. (1) under special circumstances, we here
assume its validity. If we sandwich Eq. (4) again
between the same states a,s in Eq. (2), we obta, in, corre-

If we take the usual gentleness condition" for the diver-
gence of the current V„~+(x)

I
i.e., the form factor of the

matrix elements of the current c)„V„~(x) vanishes at
infinity7, the right-hand side of the above equation
vanishes, and we obtain

Therefore, Eq. (3), together with Eq. (5), implies F„=0.
In broken symmetry this does not seem correct, and
in fact, as will be shown below, it leads also to the
result F~——F,.

Consider now the commutator

LAp +(x),Vie~1= Ap"+(x), (6)

and sandwich it between the states (Ol and IE(p)&,
with Ipl = oo. Similar to Eq. (2), we obtain

»m I&OIAp"(x)l~ &&~ IV~ Ilt (p)&

—(OIU I")&"IAo"(*)Iz (p)&j

= lim &0 I
A p"+(x)

I
E (p)) . (7)

lul

Since F„=0, the second term on the left-hand
side of Eq. (7) vanishes. One can also show this,
»m»t „(Ol Vir IK')&x'IAp +(x)IX (p))=0, directly if
we consider the commutator c)„LA„+(x),Viroj
= c)„A„~"(x) inserted between the same states as in

Eq. (7) and use the gentleness condition for the matrix
elements of the c),A„+(x) and c)„A„~+(x) Then E. q. (7)
leads to the equation F~——F . Except for the gentleness
conditions for the divergence of the vector and axial-
vector currents, we have essentially made two approxi-
mations: the single-particle resonance approximation
and the SU(3) approximation. The value of Frr/F
seems to deviate from unity by —20%. The SU(3)
approximation seems to give a better accuracy judging
from the Gell-Mann —Okubo mass formula for the
pseudoscalar mesons, "and also from the value of F+(0).
Therefore, we are tempted to suspect that we have not
yet taken fully into account the spectra of 0+ resonance
states in the above computation. As mentioned in Sec. I,
one may introduce another ~ meson, f~.", which belongs
(say) to the J~e=O+ octet, in addition to the usual
x meson belonging to the normal 0++ octet. (One can,

' Y. Nambu, Phys. Rev. Letters 4, 380 (1960); see also, e.g.,
J. Bernstein and S. Weinberg, ibid. 5, 481 (1960), especially Kq.
(6). ln our particular case

lim(p)„„(0(B„V, +(0) (x (p) ~x (p))crlim(p( .. m, 'P„(2pp) '"—&0.

'p Using the commutator LVrro, Vrco)=0, the SU(3) approxi-
mation )F+(0)=1/ gives the usual value 10.4' for the q' mixing
angle, which brings the pseudoscalar-meson mass formula into
perfect agreement, with experiment. See Ref. 6.
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f La'(s)—
m„,. —m2

f+""(~)-.

Therefore, Eq. (3) will now become

of course, achieve the same goal by introducing another
~ meson which belongs to the 0++ multiplet but has a
larger mass. ) If we have two)(mesons, Eq. (3) will now
be replaced by

F.f.(")+F"f+""'(")=F' (g)

F„ is defined analogously to F„.Here f+""'(s) is defined

by

&~"(p')
I V."(x)I~ (p))=(2P 2Po') ""

x[f ""'()(p+p'),+f ""'( )(p —p'),].
Since ())„V„+(x)=0, it follows that

and F (s),'" when we used the gentleness condition on
the maxtrix elements of r)„V„~(x) and c)„AP(x) at
infinity.

It is interesting to notice that Eq. (10) can be also
derived in a more indirect way by utilizing the informa-
tion obtained by the soft-pion result. "Namely, if one
assumes unsubtracted dispersion relations for both
F~(s) and F (s) [or the once-subtracted form for F+(s)]
with F+(0)~1 (such dispersion relations are dominated
by the E'* and the )( meson), and then imposes the soft-
pion constraint F+{mir')+F (mar') =F~/F, at s= mrr',
then one also arrives at Eq. (10).

We now combine Eq. (10) with the relation obtained
by using the partially conserved vector current (PCVC)
or the gentleness condition for c)„V„(x).That is, if the
form factors of (prp(p')

I
c)„V„~(x)IE+(p')) vanish at

infinity, 's one obtains with F+(0)= 1 [which follows
from the SU(3) approximation]

F„G„air+ =(mar'-—m. ') . (13)

Thus we obtain Eq. (8). Equation (5) is now replaced by

m„F„f„(~)+m„F„f+""'(~)=0. (9)

Equations (8) and (9) now allow us to have nonzero
solutions for F„and F„ if m„/m„. In this case, Eq.
(7) will no longer" lead to Frr=F . In the Appendix,
inserting the commutator [A&~, Vp (x)]= sA p (x)
between the states (OI and IKP(p)), with IpI = ~, and
using again the same gentleness condition, we show that
FE.=F also follows if there is only one kind of 0 E
meson. In summary, we have argued that the problem
of Fz=F may be related to our ignorance about the
boson spectrum.

III. Frr/F AND v.-MESON MASS

Previously we have derived'4 the following relation
for the Fir/F, assuming the existence of only one kind
of I(: meson:

Fir/F =1+F„G„ir /(m, ' mlr'). (1—0)

The essential assumptions involved were the SU(3)
approximation and the pion PCAC which only involve
the mass-shell extrapolation m ' —+ 0. Thus the I(: —+ ICz
coupling G„& in Eq. (10) is defined with a pion off the
mass shell. Equation (10) was derived by using the
charge-charge density commutators

[Upx'(x), A. ]=—A p~"(x)

a„[V„"(x),A. ]=—a„A„(x). (12)

The constraint equation (12) led to the condition
F+(~)—F (po) =0 for the E&s-decay form factors F+(s)

' Equation (7) now gives including the K contribution Ii =I'A-—(F„/2) f~~"( ~ )—(F„ /2) f~+"'( x& ) with the constraint;
m.F./~~" (~)+m;F„f+~"(~)=0,

Fir/F = 1+ (mac' —m ')/(m„' —ma'), (14)

or, neglecting m ',

m„mrr (1—F./Frc)
—' ". (15)

If the value of Fir/F, 1.22 is used, the mass of the )(

meson is then predicted to be around 1.1 BeV. This was
noticed by us'4 some time ago and later also by various
authors'4 using different methods. However, at that
time we also became aware of the fact that consistency
of the theory in other places leads to Fz=F . as dis-
cussed in Sec. II, if we bar the rather unusual circum-
stance that the commutator, Eq. (4), or the gentleness
conditions for c)„A„~(x) or B„V„~(x) are not valid. In
Sec. II, however, we argued that the problem of F~=F
will disappear if there exist more than one ~-like object.
Our present task is to study how the result given by
Eqs. (14) or (15) is modified in such a case.

Because of its theoretical and experimental interest,
we discuss in the following a rather general case where
one has, in addition to the usual F(J~~= 0 +), V(1 ),
and S(0++) mesons, the exotic mesons denoted by
F'(0 ), V'(1 +), and S'(0+ ) which will contribute

"This condition is the same as that imposed by H. T. Nieh,
Phys. Rev. Letters 21, 116 (1968).

"We thank Professor S. Okubo for pointing out this to us.
For a thorough study along this line, see, e.g. , J. C. Pati and K. J.
Sebastian, Phys. Rev. 174, 2033 (1968). In this paper a similar
prediction on the mass of the K meson can be made if J +(0) =1
is assumed.

~ As in the case of PCAC, the G,~ will be defined with the K

meson off the mass shell. However, in Ref. 22 it has been shown
that the result is not sensitive to this extrapolation.

'4 S. Matsuda, University of Maryland Technical Report
No. 768, 1967, p. 17 (unpublished); L. X. Chang and Y. C.
Leung, Phys. Rev. Letters 21, 122 (1968). See also Ref. 22,

In the same spirit, this can also be derived" if we

compute (prp(p)
I
V&-

I
E+(p) & with

I p I
~~ using

PCVC, c)„V„~(x)=F„m„'re„(x).Equations (10) and (13)
lead to
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to the exotic channels in the computation. However,
the introduction of exotic mesons is not an absolute
necessity. The result will not be changed much even
if we introduce higher-lying normal (0 +, 1,and 0++)
mesons instead of the abnormal ones. Once we introduce
the abnormal mesons, mixing possibilities take place
between the I= —,

' states of normal and abnormal
octets of the same J~.
IWe shall show below that Eqs. (14) or (15) may not
be modified drastically by the inclusion of exotic
channels. VJe also discuss some of the interesting sum
rules which will be modified by the contribution of
exotic mesons and have some experimental interest.
We now sandwich Eq. (11) between the states (ol
and IE (p)) with lpl = ~. We obtain (x' and E*'
belong to 0+—and 1 + octets, respectively)

&oI Vo '(x)l E*(p)&&E*(p)IA -
I
E &p)&

+&ol v. '(.) IE* (p)&&E* (p) IA. IE-(p)&
+ (ol vox (x)lx(p)&&x(p)I A-'I E-(p))

ol vox'(x)lx'(p)&&x'&p)I A -
I
E (p)&

-&ol A,
I

-(p')&& -(p )I v. '(x)l E-(p)&
= -&o

I
Ap +(x) IE-(p) &.

For the A + we use pion PCAC. The use of the com-
mutator (12) sandwiched between the same states
again leads to the condition F+(~) F(~)=0—. Then
the last term on the left-hand side of the above equation
drops out to give

Gz+Gz+ — + Gz+'Gz+' — +

a similar way, from the &E*'(p)
I
[Vzo,A, -]l ~+(p)&=0

with
I p I

= ~, we obtain

cosOKK Gx K z sln0xz'GK K vr

= —,%2(mx*/m, ) sine' Ir "G, ~ —. (18)

If there are no mixings, Gz*'z+ -=0. This rejects the
fact that we cannot construct V'PP coupling in the
SU(3)-synnTietry limit, and under the SU(3) approxi-
rnation Gz*'z coupling becomes nonvanishing only
through mixing.

Next we study the sum rules for vector meson —+ 3+1

decays. We sandwich Eq. (1) between the states &ol

and IE*(p)) with
I pl ~~ and obtain

-(ol v lx&&xl v, -'(x)l E*(p)&
—(0 I

Vxolrc'&&x'I Ve"(x) IE*(p)&

y &ol v, -"(*)Ip)&pl v IE*h»&
= &Ol Vsx+(x)IK*(P)). (19)

Again by considering the constraint given by the com-
mutator [Ve +(x),Vxo)= B„v„x+(x) taken between the
same states, one can obtain information on the terms

&x (p'=0)
I
Vs"(x) IE—

*(p)& and &x'(p'=0)
I

Ve +(x)

I
E *(p)) at

I pl
—+~. If there is no x' meson, the con-

straint requires &x (p'=0)
I Ve +(x) IE *(p))=0 at

lpl ~~.i4 However, even in the presence of the x'

meson the most natural way to satisfy the constraint
is to assume that both &x (p'=0)

I
V, +(x)

I
E'*(p)) and

&x' (p'=0)
I

Ve +(x)
I
E*(p)) separately vanish in the

limit lpl ~~.' Then Eq. (19) gives

mz* mz*'
Gx*= (mx /m, )G, cosex*x". (20)

~z ~,G.z- ' J'.-'G, 'z-. '
m —mz m ' —mz

Here Gx and Gx*' are defined by &ol V„x(0)IE*(p))
=(2Po) '"G *""* d (oI V. (o) IE*'(p))=(2po)-'"
&(Gz*'e„z*'.The coupling constants involving the pion
are defined with the pion off the mass shell because of
the use of PCAC. We now consider the matrix element
&E*'(p)

I [Vrr o,A. -g
I m+(p) &

=0 with
I p I

= ~ and use the
SU(3) approximation for Vxo and PCAC for A —.We
notice that matrix elements such as (E*"(p) I

Vxo
I p (p) &

and &E'(p)
I
Vxol ~+(p)) at

I pl —+oo are not zero, since
there exist E*-E*'and E-K' mixing. Denoting as usual
these mixing angles by ez'z*' and Ozz', we obtain

cos~zz''Gz*+z — ' —»n~zz'Gz'+z'- '
=-', (mx /mp) cos9x"x"'Gpo + —. (17)

If we take Oz*z*.——8~~'=c 0, we recover the previouslv'
obtained result, Gx*+x-,o=(2) '(mx /m, )G,O, + —." In

"The factor err'/m, expresses the symmetry-breaking effect
and predicts the p width around 128 MeV, if we take r &&* —+ It~)

49 MeV. This factor, in fact, significantly improves the dis-
crepancy between the experimental p width and the one predicted
by exact 5UI'3) symmetry. The remaining discrepancy might be
blamed for the mixing described by Eq. (17).

—,v2GpGp~+~-= mp') (22)

which is not modified in the present case. However, the
E* analog of Eq. (22) gets modified. Combining Eqs.
(17), (20), and (22), we can write

V2Gz*Gz*z- o ——K2 tan8zz Gz*Gz*z — o

+mac"' cos'tiz "z"/cosexx ',

and from Eqs. (18)„(21),and (22),

v2Gz*'Gz*'z-~o=v2 tan6zz Gz* Gz* z-~o

+mx *' sin'ex "x"/cos6xx '.

2' These vertices involve two independent form factors, and the
simplest way to satisfy the constraint is to assume that both of
these vertices satisfy superconvergence relations.

In the absence of E*', Eq. (20) reduces to the usual
one. Similarly one also obtains the following from Eq.
(1):

Gx*'= —(mrc "/m, ) sin8x x*'G, . (21)

By using the commutator [Ve '(x),A +)=As +(x)
together with the constraint given by [Ve '(x),A +j
= ci„A,~+(x), we have previously shown" that the Gell-

Mann —Zachariasen relation or Sakurai's p dominance
follows in our approach,
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Eliminating Hz*z*' from the above two equations,

/G»~»*»-. o G»*'G»*'»
! +— = ——+&2 tan8»»

m»*' 82z*' cosezz'

Gz'Gz*z' ~' Gz*'Gz*'z'- o

(X — + . (23)
hz~2

One can simplify further. Consider now

«*'(p) II U,A--]I "(u)&=0

G» "»'+~ cos8»»'+G»"»'w sin8»»'= s~2 cos8»*»"
X(m»*/mp )Gp „+ —. (25)

If the mixings are small, Eq. (25) implies" that
G»*'»'+„=';42( m-'»/ m')G, ~ +„' and Eq-. (24) gives
G»*» 0, i.e. , G»*»' is zero in the SU(3) limit and
becomes nonvanishing only through mixings in the
SU(3) approximation. Multiplying Eqs. (24) and (25)
by G»'/m»' and G»~'/m»~', respectively, and using
Eqs. (20) and (21), one obtains

Gz+Gz+z' — Gz*'Gz'*z"—

tPsz+

= —tanezz'

G»+G»+»+~ G»*'G»*'»+~ -)-
+ —

I (26)
fez* m»*'

By combining Eqs. (23) and (26), we obtain

Gz+Gz'z' — Gz*'Gz*'z .—

+
mz~ SPAZ*'2

cosOKK ~ (27)

This is the modification of our previous E*analog" of

p dominance, Eq. (22), i.e., G» G»»+ =m»'. -
Combining now Eqs. (16) and (27), we finally arrive

at the desired result:

~z (FKGK» T FK GK»—=cos8»»'+I — — +— !. (28)
p km„s —m»s m. s —m», &

Equation (28) reduces to previously obtained Eq. (10)
when there is no E-E' mixing and no ~' meson. The
magnitude of F„and Ii „would be of comparable magni-
tude (or IF„ I

might be smaller" than IF.I) since both
of them are of first order in the symmetry breaking.

'7 For the E, one can consider the diagram K ~X+71-—+ vacuum.
Since GI,It ))G„Ig, a similar mechanism for the F,' leads to

«*"(1)II U,A--]l (1)&=0

with Iy! = ~; we obtain, corresponding to Eqs. (17)
and (18),

G»*»'+ —cos8»» +G»*»+ sin8»» = s—&2 sin8»*»"

X(m» /mp )Gp + (2—4)

The mixing angle Ozz must be small. "If it is large it
will affect the Gell-Mann —Okubo mass formula for the
pseudoscalar mesons. In fact the F+(0) of the E,s'
decay is now given by cosezz'. A reasonable guess may
be that cos8»» is 1 within an error of about 5%%uo. Thus
in Eq. (31) we may take cos8»» ~1.Therefore, except
for the case when m„~m», the prediction of Eqs. (14)
or (15) will be approximately preserved and at the same
time the problem of Fz=Ii has been taken care of by
the introduction of the ~' meson. It may be noted that
our result is free from the knowledge of the F„and the
magnitude of the ~Ex coupling and depends essentially
only on the mass of the ~ meson. The above argument
indicates that. our previous discussion on the E&&-decay
form factors" will not be modified significantly by the
inclusion of the ~' meson. We have F~(0)= cos8»»'~1,
so we expect that the parameter $ will remain small and
negative.

IV. x MASS AROUND 1.1 BeV

By using commutators such as ! U»o, A -]=0 and

! U»o, A -]=0 and the SU(3) approximation, the follow-

ing intermultiplet &m,ss formulas of the hybrid type can
be derived' "

IC' n'= E—"'—p' = E**'(14'20)—A sir'
=E~' —Ag'= E* —p

'
~2 I2 2 2 —I2 I2-=E —~'=. —S =~ —S'=" . (32)

Here E', for example, denotes the square of the E-meson
mass. In the derivation we have ngelected the mixing
effect in the I= s states. The formulas include the SU(6)
result, E' —m'=E*' —p', and agree with experiment
rather well for the cases where identifications of reso-
nances are established. If we identify" either the 8(962)
or the 7riv(1016) with the I= 1 0++ meson, 8, then Eq.

8 As in Eq. (18},the K'Em coupling takes a nonvanishing value
under the 5U(3} approximation only through the K-K' mixing. We
expect this mixing to be small since charge-conjugation invariance
forbids the 0++-0+ mixing except for the K-K' mixing.

2'The same argument as for K-K mixing also holds here. See
Ref. 28."S. Matsuda and S. Oneda, Phys. Rev. 169, 1172 (1968}."S. Matsuda and S. Oneda, Phys. Rev. 179, 1301 (1969).

However, we notice that the SVT coupling vanishes
in the SU(3) limit whereas the SU(3)-symmetric SFF
coupling can exist. Thus, we expect that" G„z ))G„z .
Therefore, unless the value of m„ is very close to mz,
we may neglect the K' term in Eq. (28), i.e.,

F»/F„= cos8»» +F„G„» +/(-m„' m»—'). (29)

On the other hand, Eq. (13) will also be modified to

F„G„»+ +F„-G„»+ =(m-»' —m ')cos8»» . (30)

However, by the same reasoning which led to Eq'
(29), we may also neglect the x' term in Eq. (30)..

Therefore, from Eqs. (29) and (30) we obtain

F»/F = 1+!(m»' —m„')/(m. ' —m»')] cos8»» ~ (31)
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(32) predicts that m„ is around 1.10—1.13 BeV. Then
from Eq. (14) [or from Eq. (31) assuming cos8rrrr ~1),
we obtain" Fir/F ~1.22. The fact that we arrive at
the same value of the mass of the ~ meson from two
diferent sources of information seems to strengthen
our argument since both the derivations are consistently
based on the sanie SU(3) approximation and the chiral
SU(3) SSU(3) algebra.

There is some preliminary evidence" for the existence
of a f(: meson with mass around 1.1 BeV.

V. VECTOR-MESON~ 1+1 DECAY SUM RULES

Previously we have obtained in our approach sum
rules for the vector-meson —& l+ l decays. "In particular,
we have obtained

it is found, may be attributed to the existence of V'

mesons. Experiment, at present, is still not accurate
enough to make a definite statement. Of course, we
must also keep in mind the possibility that there may
exist a recurrence of the 1 meson in the higher-mass
range. In that case, Eqs. (33)—(35) will also be modified,
though the effect may not be very large if the niasses
of the new vector mesons are large.
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APPENDIX

and
G~ = -',V2G, cos8(m~/m„)

G„=—,'&2Gp sin8(m„/mp) .

(33)

(34)

We consider the commutator [Axo, Vo '(x))
=-',Aox'(x) and sandwich it between the states (0 I

and
IK'(p)), with

I yI = ~. Then we obtain

Gp'/m p'= G„'/m„'+ Gp'/mp' (35)

We remark here that even if we consider the existence
of the exotic vector meson V', these results do not
change. In the computation, the contribution of the
V' states appears through mixing as in Eqs. (20) and
(21). However, in the final result it drops out and
Eqs. (33)—(35) are not affected.

On the other hand, the existence of the V' meson
will affect the Gell-Mann —Okubo mass formula. In our
approach, consideration of (K*'(p)

I
[Vrro, Vxo)

I
E*'(p))

= 0 with
I yI = ~ and the SU(3) approximation leads,

in the absence of V' mesons, to an &u=@ mixing angle
8 given by'4

Here 8 is the usual &u = P mixing angle defined by co = cos8
cvi+ sin8 ~8 and g = cos8 co8 —sin8 &0,. [co ~ a&i and P ~ &vs

in the SU(3) limit. ]Eliminating 8 from these equations,
we obtain the so-called first spectral-function sum
rule 9, 10,14

Iim [(0 I
Vo '(x)

I p)(p [Are'IKO(p))
I pI ~no

—(0IArr IK'&(K'I Vo"(x) IK"(p)))

= »m —-'(o
I
A ox(~) IK'(p) &. (A1)

tpl

Again, if one uses the commutator 8„[Ax',V„'(x))
= —,'8„A„rr'(g) sandwiched between the same states as
in Eq. (A1) and assumes the gentleness condition for the
matrix elements of the operators B„A„~~'(x),one obtains

K'&(K'I Vo"(~) IK'(y)& =o
I pl

Thus by replacing Azo by 2[vxo, A o), Eq. (A1) can be
written in the form

lim (ol v, -'(~) Ip')(p'ILV, A. ) IKo(p)&

= lim -'(0IA '(x) IK"(p)&
f p[ ~oo

3m ' —4m'*'+m '
sin'8

3(m, ' —m ')
(36)

Using the SU(3) approximation for Vrro and PCAC for
A, this equation gives

In the presence of V' mesons, this will be modified.
Therefore, the discrepancy between the value of 0 de-
termined from the V —+ l+l decays and that of 8, if

"This value is, of course, subject to error due to the approxi-
mation F+(0)=cos91qK =1 and the neglect of the ~' contribution.
The determination of m, will certainly be helpful in obtaining a
feeling for these approximations."T. Trippe, C. Y. Chien, E. Malamud, J. Mellema, P. K.
Schlein, W. E. Slater, D. H. Storkland, and H. K. Ticho, Phys.
I etters 24$, 203 (1968).

I 2G~*~p oG,
Gp + — P —i+~

p 1r '7l

2 G, +- V2 2m, m~*

On the other hand, we have previously'4 obtained
G,/V2G, +„=m,' [see Eq. (-22)), and 2Grr*xo 0/G, +

=mrr*/m, .25 Therefore, we are again led to the equation.
F~——Ii . However, similar to the case discussed in Sec.
II, the above conclusion will not be obtained if there
are two I= —,

' 0 + mesons E and E'.


