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We have This gives us, as in (28),
‘ w I'(n—x)
Frlk—x)= 2 cn®— W = (1) EACBEL(0)/(n—k)!I.  (B12)
n=k I'(k—x)
IR The conditions necessary for the convergence of
w T'(w'+k—x) O . . . .
=3 o P—— (811) (B11) and all other series in this Appendix are given in
= T(k—x) detail in Sec. V.
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Present experiments on semileptonic decays indicate Fx/F,~~1.22. However, in contrast with the ap-
parent success of many other sum rules, asymptotic SU (3) symmetry and chiral SUR)QSU (3) algebra
tend to predict Fx=F,. This problem is studied in the approach which utilizes the SU 3)@SU (3) charge-
charge density algebra and a form of asymptotic SU(3) symmetry called the “SU(3) approximation.”
This approximation is assumed for the SU(3) raising and lowering operator Vg only in the zero-
momentum-transfer limit. It is suggested that the problem may reflect the fact that we have not yet taken
into account the full contribution of the boson spectrum. As one of the simplest and most interesting ways
of introducing a more complicated boson spectrum, we study mainly the contribution of the exotic mesons
with abnormal charge-conjugation parities. It is shown that the introduction of exotic channels removes
the difficulty of Fx=F,, while the essential features of other sum rules remain unaffected. The value
Fx/F.~1.22 can be obtained in our approach if there exists the 7 =% 0%k meson with mass around 1.1 BeV.
This value of the x mass can also be predicted from our intermultiplet mass formulas which are also based

on the SU (3) approximation.

I. INTRODUCTION AND SUMMARY

NE of the important problems of particle physics

is whether we have two Cabibbo angles, 64 and

Oy, or one angle. Recent developments in both the
experiments and the theory of semileptonic interactions
seem to favor one angle. If one assumes for the F.(s)
form factor of K s+ decay a form F, (s) = mg**(mg**+s)~!
F_(0), in agreement with present experiments, and
assumes the value 7 (0) =1, neglecting the second-order
SU(3)-breaking effect,’ the present? experimental rate
T'(K.57) = (3.8740.07) X 106 sec™! gives® a value sinfy
=0.21840.002 when compared with the rate of the
u-decay mode. On the other hand, comparison of the

* Supported in part by the National Science Foundation under
Grant No. NSF GP 6036.

1 M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264
(1964).

2 For a recent review, see, e.g., J. W. Cronin, in Proceedings of
the Fourteenth International Conference on High-Energy Physics,
Vienna, 1968, edited by J. Prentki and J. Steinberg (CERN,
Geneva, 1968), p. 281.

3S. Oneda and J. Sucher, Phys. Rev. Letters 15, 927 (1965);
15, 1049(E) (1965). The effect of electromagnetic #%-w® mixing
increases the value of sind by 1.7%. See Ref. 5.

K— u+v and m— u+»v decays gives* sinfq=10.2655
=+0.0006 if we assume exact SU(3) symmetry, Fx=F,,
for these decay amplitudes. However, this value of 64
may not reflect the true value if the first-order SU(3)-
breaking effect on the Fx/F is large. Let us turn to the
baryon leptonic decays. For the vector couplings at
zero momentum transfer, we usually adopt the SU(3)
values as in the case of F,(0), since the renormalization
is again of second order in the SU(3)-breaking inter-
action. However, for the axial-vector couplings, the
renormalization problem is more acute and the use of
exact SU(3) couplings appears to be more proble-
matical. Recently we have proposed® to work with the
broken-SU(3) sum rules for the axial-vector coupling
constants which can be obtained by using an approxi-
mation® called the “SU(3) approximation” and a chiral
SU(3)®SU(3) algebra. This approximation is certainly
a weaker assumption than exact SU(3) symmetry and

4 N. Brene, M. Roos, and A. Sirlin, Nucl. Phys. 131, 255 (1968).

5S. Matsuda, S. Oneda, and P. Desai, Phys. Rev. 178, 2129
(1969).

6 S. Matsuda and S. Oneda, Phys. Rev. 174, 1992 (1968). For
the early references and the summary, see S. Matsuda and
S. Oneda, Nucl. Phys. B9, 55 (1969).
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assumes, roughly speaking, that the SU(3) raising and
lowering operator Vi still acts as an SU(3) generator in
broken symmetry but only at the zero-momentum-
transfer limit. In the computation, this limit can be
realized only by taking an appropriate infinite-momen-
tum limit.

It may be claimed® that the accuracy of the sum
rules is of the same order as that of the Gell-Mann—
Okubo mass formulas, since one can derive these mass
formulas on the same footing, utilizing the same
algebra and the SU(3) approximation. Based on these
sum rules for the physical coupling constants and on
some of the recent experiments on the rates and the
V-4 interference terms of the A— p, 2 — A and z— p
B decays, we have derived® sinfy=0.2254-0.002 and
sinf4 =0.22540.005. In agreement with this obser-
vation, Cronin? reported a value sinf=0.2274-0.006,
which is deduced from the world-average hyperon
B-decay rates by fitting with one Cabibbo angle 6.
Therefore, though we certainly need more accurate
experiments, there is at present no compelling reason
to assume two Cabibbo angles. If this is the case, the
value of Fg/F, seems to deviate from unity rather
significantly. For example, if we tentatively assume
sinf=0.22, then Fg/F,=1.22. Various attempts have
been made to derive the value of Fx/F,. The first
attempts’ based on Weinberg’s sum rules have had
difficulty, since they are based on the second spectral-
function sum rule which disagrees with experiment.
The model of broken chiral symmetry due to Glashow
and Weinberg® gives Fx/F,=1.08, and favors a mass
m,< 670 MeV for the so-called k meson. So far, such a
x meson has not been observed. In order to remedy the
inconsistency of the second spectral-function sum rule
which gives the exact SU(3) result, it has been proposed
to patch up the difficulty by replacing this sum rule
by the one which takes into account explicitly the first-
order SU(3) violation.®1 However, it was also realized
that these procedures rather tend to predict Fx = F,.1~13
The purpose of this paper is to study this problem from
a different approach which we have been pursuing
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Letters 19, 139 (1968); H. T. Neih, bid. 19, 43 (1968).

( 8 S.)L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
1968).

9 T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
470 (1967).

( 10 % J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
1967).

11 This was first observed by K. Kawarabayashi and W. W.
Wada, Phys. Rev. Letters 19, 1193 (1967); C. S. Lai, <bid. 20,
509 (1968); R. J. Oakes, zbid. 20, 513 (1968); Riazuddin and
Fayyazuddin, Phys. Rev. 172, 1737 (1968); J. Dooher, zbid.
179, 1530 (1969).

12 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968). If the K 4 mass is around 1230 MeV, Fx~~F, is also
c()btained by P. K. Mitter and L. J. Swank, Nucl. Phys. BS, 205
1968).

13 For a review of extensive literatures on the related problems,
see S. Weinberg, in Proceedings of the Fourteenth Internalional
Conference on High-Energy Physics, Vienna, 1968, edited by J.
Prentki and J. Steinberg (CERN, Geneva, 1968), p. 253.
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recently.® The approach is as follows.!* Instead of
utilizing the spectral functions, we deal directly with the
chiral SU(3)®SU(3) charge-charge density algebra.
FFurthermore, we use the aforementioned SU(3) ap-
proximation for Vi instead of the so-called asymptotic
SU(3) condition imposed upon the spectral functions.
In this approach, the spins of the intermediate states
are also restricted to either zero or one, and the domi-
nance of the single-particle resonance approximation
is adopted as in the spectral-function approach. In the
spirit of the hypothesis of partially conserved axial-
vector current (PCAC), we also assume the gentleness
condition for the divergence of the partially conserved
vector and axial-vector currents. In this approach, we
have derived sum rules which include the result
essentially equivalent to the first spectral-function sum
rule. However, in Sec. IT we show that we shall also
encounter the problem of Fx=F, in other places, if
there is only one K meson and one x meson in the spectra
of I=% 0~ and O+ mesons, respectively.

Therefore, the simplest and most natural way (to us)
to obtain over-all consistency is to assume that we have
not yet taken into account the full spectra of the spin-
zero bosons. This possibility does not seem unrealistic,
since in baryon spectra we have already observed the
recurrence of the multiplets of the same spin and parity.
Furthermore, one may also imagine the existence of
exotic spin-zero mesons with abnormal charge-conju-
gation parities. Although such exotic bosons may not
be constructed in the simple gg quark model, there is
no a priori reason to reject them.'® For example, the
need for daughter parities has been brought out by the
Regge-pole analysis. Experimentally,’¢ the recently
observed A,(1270) meson might be a candidate for
the /=1 1~ meson, i.e., the abnormal p meson [or
the daughter of the 2t+ meson 4,7(1315)7]. For the sake
of theoretical interest (and also to remove the Fx=F.),
we assume the existence of such exotic mesons in this
paper. In Sec. IIT we discuss the modification of our
sum rules in the presence of such bosons and derive
the value of the Fg/F, in terms of the mass of the
x meson which belongs to the 0F+ multiplet in the sym-
metry limit. If the mass of another x meson, «’, is not
very close to the mass of the K meson, then the mass
of the x meson is predicted to be around 1.1 BeV. In Sec.
IV we remark that one can also predict a « mass
around 1.1 BeV from the recently established!® /=1 0*
8 meson (m;~960 MeV) or the wx(1016) meson by
using the intermultiplet mass formula obtained from
the SU(3) approximation. Therefore, the over-all

14 S, Matsuda and S. Oneda, Phys. Rev. 171, 1743 (1968).

15 For example, there is the Gell-Mann-Zweig model that is
discussed by H. Harari, in Proceedings of the Fourteenth Inter-
national Conference on High-Energy Physics, Vienna, 1968, edited
by J. Prentki and J. Steinberg (CERN, Geneva, 1968), p. 195.

16 N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Séding, C. G. Wohl, M. Roos, and G. Conforto,
Rev. Mod. Phys. 41, 109 (1969). The 5(962) might belong to the
0%~ octet. However, the §(962) and 7 (1016) could also be related.
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consistency of the result is rather good. In Sec. V, a
comment is made on the sum rules for V — I4-[ decays.

II. PROBLEM OF Fx=F, AND THE
BOSON SPECTRUM

Consider the charge-charge density commutator
[V (), Vie]=VoE" (). €y

In the following, we write, for example, the isovector
vector and axial-vector currents as ¥V, (x) and 4,7 (x),
respectively, and denote the vector and axial-vector
charges as Vi and 4., etc. Let us sandwich Eq. (1)
between the vacuum state and the state of the 7=1% 0+
meson, called the x meson, with infinite momentum.
Then with the SU(3) approximation for the charge
Vxo [which implies that the Vg acts as an SU(3)
generator in this infinite-momentum limit ], and neglect-
ing many-particle continuum states, we obtain

lim [O1Vir*@) 567 Vol @)
— OVl Ve @) e @)]
= lim OV @l ®). @)

Here 6 is the 7=1 counterpart!” of the x meson and we
have assumed that there is only one kind of 0+ multiplet.
Since (0| Vo= (x) | 6~)=0, because of the conservation of
the current ¥V, (x), we obtain the following from Eq.
2):

F"fx(oo)=Fx- ©)

Here F, is the amplitude for the process k— e+t
through the current V,%(x), defined by (0] V,X*(0)
[« (p))=(2po)~'2F,p,. The function f,(s) is the form
factor for the vertex, defined by

®@) [V (0) | (0))= 2po2p0) 2 fu() (p+ )

where s=—(p—p')%

In this paper, along with the commutators of the
type (1), we always consider the following types of
commutators:

[Vom (%), Viel= 8.V, (2). )

This commutator gives information for quantities like
f«() which involve the high-energy behavior of certain
vertex functions which appear in the computation. The
commutator (4), which can be derived from Eq. (1) by
a term-wise differentiation, will be valid if all the quanti-
ties involved behave in a reasonable fashion. Although
the validity of this commutator might be less secure
than Eq. (1) under special circumstances, we here
assume its validity. If we sandwich Eq. (4) again
between the same states as in Eq. (2), we obtain, corre-

17 For simplicity we assume that the ¥ meson belongs to the
SU(3) octet.
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sponding to Eq. (2),
= lim_ O] Vro| )| Vo (%) [k~ (D))
= lim_ (0] 0,V (5) [ ~(0)).

If we take the usual gentleness condition!® for the diver-
gence of the current V,%*(x) [i.e.; the form factor of the
matrix elements of the current 9,V ,X(x) vanishes at
infinity], the right-hand side of the above equation
vanishes, and we obtain

Fyfu(=)=0. ©)

Therefore, Eq. (3), together with Eq. (5), implies F,= 0.
In broken symmetry this does not seem correct, and
in fact, as will be shown below, it leads also to the
result Fg=F,.

Consider now the commutator

[40™ (), Vie]= 405 (), ()

and sandwich it between the states (0] and |K(p)),
with |p|= c. Similar to Eq. (2), we obtain

Jim (01447 @) 7)o | Ve | K~ (0)
—O1 Vx| 407 ) | K1)
= lim 04" @K @) (7

Since F,=0, the second term on the left-hand
side of Eq. (7) vanishes. One can also show this,
1imy pi5e{0] Vo[ {K0] A= (x) | K=(p))=0, directly if
we consider the commutator 9,4, (x), Vo]
= 9,4,5%(x) inserted between the same states as in
Eq. (7) and use the gentleness condition for the matrix
elements of the 9,4, (x) and 9,4,5(x). Then Eq. (7)
leads to the equation Fx=F,. Except for the gentleness
conditions for the divergence of the vector and axial-
vector currents, we have essentially made two approxi-
mations: the single-particle resonance approximation
and the SU(3) approximation. The value of Fg/F,
seems to deviate from unity by =~209%,. The SU(3)
approximation seems to give a better accuracy judging
from the Gell-Mann-Okubo mass formula for the
pseudoscalar mesons,? and also from the value of ., (0).
Therefore, we are tempted to suspect that we have not
yet taken fully into account the spectra of 0+ resonance
states in the above computation. As mentioned in Sec. I,
one may introduce another ¥ meson, ¥/, which belongs
(say) to the JP¢=0%r— octet, in addition to the usual
x meson belonging to the normal 0+ octet. (One can,

18'Y. Nambu, Phys. Rev. Letters 4, 380 (1960); see also, e.g.,
J. Bernstein and S. Weinberg, bid. S, 481 (1960), especially Eq.
(6). In our particular case

limp( 4e(0] 8, VK (0) [~ (p) |k~ (p) ) o< limy | oot 2 (20) 272 —> 0.
19 Using the commutator [Vgo,Vxo]=0, the SU(3) approxi-
mation [F(0)=17] gives the usual value 10.4° for the 5’ mixing

angle, which brings the pseudoscalar-meson mass formula into
perfect agreement_with experiment. See_Ref. 6.
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of course, achieve the same goal by introducing another
x meson which belongs to the 0*+ multiplet but has a
larger mass.) If we have two x mesons, Eq. (3) will now
be replaced by

kax(oo)"}_Fx'f‘)—“,(m):I?K- (8)
F, is defined analogously to F,. Here f,*'(s) is defined
by
®° @) | Vi () [ (p))= (2po2pd )12
XL () (o4 2wt f= () (p—1")u]-
Since 9,7V, (x)=0, it follows that

S

Cf e (s).

m
J-(s) =

Therefore, Eq. (3) will now become

mx’z_'"mx2
Fofu(o0)+Fofo (o ><1+ > ~he

N

Thus we obtain Eq. (8). Equation (5) is now replaced by
MF fu(0)FmeF e f12¢ () =0. )

Equations (8) and (9) now allow us to have nonzero
solutions for F, and F, if m,#m,. In this case, Eq.
(7) will no longer? lead to Fx=F,. In the Appendix,
inserting the commutator [Age, Vo™ (x)]=34,%(x)
between the states (0| and |K°(p)), with |p|= =, and
using again the same gentleness condition, we show that
Fg=F, also follows if there is only one kind of 0— K
meson. In summary, we have argued that the problem
of Fg=F, may be related to our ignorance about the
boson spectrum.

III. Fx/F, AND x-MESON MASS

Previously we have derived!* the following relation
for the Fg/F ., assuming the existence of only one kind
of k meson:

F/Fr=1+F,Gxn/(mE—mx?). (10)

The essential assumptions involved were the SU(3)
approximation and the pion PCAC which only involve
the mass-shell extrapolation #,? — 0. Thus the xk — Kr
coupling Gyx~ in Eq. (10) is defined with a pion off the
mass shell. Equation (10) was derived by using the
charge-charge density commutators

[V (), 47+ ]= — 46" (x) (11)

and

0LV (x), A+ ]= —8,4,5" (x). (12)
The constraint equation (12) led to the condition
Iy (w0)—F_(0)=0for the Ky-decay form factors F . (s)

%0 Equation (7) now gives including the &’ contribution Fr=Fx
—(F/2) [ K5 (0)— (Fe/2) X% (), with  the constraint
mylx +KK(°° ) +mx’Fx’f+KKI( °°) =0,
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and F_(s), when we used the gentleness condition on
the maxtrix elements of 9,V ,%(x) and 9,4,%(x) at
infinity.

It is interesting to notice that Eq. (10) can be also
derived in a more indirect way by utilizing the informa-
tion obtained by the soft-pion result.?? Namely, if one
assumes unsubtracted dispersion relations for both
F.(s) and F_(s) [or the once-subtracted form for F.(s)]
with F,(0)~1 (such dispersion relations are dominated
by the K* and the x meson), and then imposes the soft-
pion constraint F. (mg?)+F_(mx?)=Fk/F. at s=mg?,
then one also arrives at Eq. (10).

We now combine Eq. (10) with the relation obtained
by using the partially conserved vector current (PCVC)
or the gentleness condition for 4,V ,%(x). That is, if the
form factors of (x%(p’)|d,V.%(x)|K+(p’)) vanish at
infinity,!® one obtains with F,(0)=1 [which follows
from the SU(3) approximation |

(13)

FKGKoK [ (mKZ_"mwQ) .

In the same spirit, this can also be derived? if we
compute {(7°(p)| Vk-|K*(p)) with |p| —» using
PCVC, 9,V . K(x)=Fm¢p.(x). Equations (10) and (13)
lead to

FK/F,rZ 1+ (m;<2 _mwz)/(mxg_sz) )
or, neglecting m,2,
me~mg(1—F/Fr)=112, (15)

If the value of Fg/F,~1.22 is used, the mass of the
meson is then predicted to be around 1.1 BeV. This was
noticed by us?* some time ago and later also by various
authors?® using different methods. However, at that
time we also became aware of the fact that consistency
of the theory in other places leads to Fx=F,. as dis-
cussed in Sec. II, if we bar the rather unusual circum-
stance that the commutator, Eq. (4), or the gentleness
conditions for 9,4,%(x) or 8,V,X(x) are not valid. In
Sec. IT, however, we argued that the problem of Fx=F,
will disappear if there exist more than one «-like object.
Our present task is to study how the result given by
Egs. (14) or (15) is modified in such a case.

Because of its theoretical and experimental interest,
we discuss in the following a rather general case where
one has, in addition to the usual P(JP¢=0-"1), V(1—),
and S(0**) mesons, the exotic mesons denoted by
P'(0——), V/(1—7), and S’'(0*~) which will contribute

(14)

21 This condition is the same as that imposed by H. T. Nieh,
Phys. Rev. Letters 21, 116 (1968).

22 We thank Professor S. Okubo for pointing out this to us.
For a thorough study along this line, see, e.g., J. C. Pati and K. J.
Sebastian, Phys. Rev. 174, 2033 (1968). In this paper a similar
prediction on the mass of the x meson can be made if F,(0)=1
is assumed.

% As in the case of PCAC, the Gk~ will be defined with the «
meson off the mass shell. However, in Ref. 22 it has been shown
that the result is not sensitive to this extrapolation.

2 S, Matsuda, University of Maryland Technical Report
No. 768, 1967, p. 17 (unpublished); L. N. Chang and Y. C.
Leung, Phys. Rev. Letters 21, 122 (1968). Sce also Ref. 22.
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to the exotic channels in the computation. However,
the introduction of exotic mesons is not an absolute
necessity. The result will not be changed much even
if we introduce higher-lying normal (0—+, 1——, and 0+ %)
mesons instead of the abnormal ones. Once we introduce
the abnormal mesons, mixing possibilities take place
between the I=7% states of normal and abnormal
octets of the same J7T.

& We shall show below that Eqgs. (14) or (15) may not
be modified drastically by the inclusion of exotic
channels. We also discuss some of the interesting sum
rules which will be modified by the contribution of
exotic mesons and have some experimental interest.
We now sandwich Eq. (11) between the states (0|
and |K—(p)) with |p|=c«. We obtain (v and K*¥
belong to 0~ and 1—+ octets, respectively)

0] VoX°(x) | K*(p))(K*(p) | A++| K=(p))

+O] V&' (%) | K* () (K* (p)| A= +| K=(p))

+(O0| VX' (x) | k(D) )k (p) | 4+ K=(p))

+ (0 Vo™ (x) [ &' (p) (¥’ () | A =*| K= (p))

—(0] A4+ |7~ (") }m=(0") | V&' (%) | K—(0))

= —(0] 45" (x) | K~(p)).

For the A.+ we use pion PCAC. The use of the com-
mutator (12) sandwiched between the same states
again leads to the condition F,(w)—F_()=0. Then

the last term on the left-hand side of the above equation
drops out to give

GK*GK*r K
|

GK*IGK*’er *

M2 o
FK FKGKK_W+ FK,GK’KM7(+
= : . (16)
r, m2—mg* m?—mg?

Here Gg* and Gk are defined by (0| V,.X(0)| K*(p))
= (2p0) " *Gr*e,* and (0| V,5(0)| K*(p))= (2p0) '
X Gr*e€,K* . The coupling constants involving the pion
are defined with the pion off the mass shell because of
the use of PCAC. We now consider the matrix element
(K*(p)|[Vgo,d.-]|7t(p))=0with |p| =« and use the
SU(3) approximation for Vgo and PCAC for 4,-. We
notice that matrix elements such as (K*(p)| Vxo|p(p))
and (K'(p)|Vge|rt(p)) at | p|— are not zero, since
there exist K*-K* and K-K’ mixing. Denoting as usual
these mixing angles by 0x*x* and 6xx’, we obtain

20 —sinfxx'Gr**K'~x°
=3 (mg*/m,) cosOx*k*Gpon+r~.

COSBKK’GK”K
17

If we take 8x*k* =0xx’'=0, we recover the previously®
obtained result, Gx*+g 0= (2) " (mr*/m,)Go.*:~2% In

25 The factor mx*/m, expresses the symmetry-breaking effect
and predicts the p width around 128 MeV, if we take I'(K* — K)
~49 MeV. This factor, in fact, significantly improves the dis-
crepancy between the experimental p width and the one predicted
by exact SU(3) symmetry. The remaining discrepancy might be
blamed for the mixing described by Eq. (17).
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A--]|7+(p))=0

AND SUM RULES

a similar way, from the (K**'(p)|[ Vs,
with |p| =, we obtain

cosOxx'Gr*' g *gk-—siNfOxk g 'Gr*'k"*r~

= —%\/Z(WLK*/M,,) sinf)K*K*'Gp,,+,,—. (18)

If there are no mixings, Gk*x*»-=0. This reflects the
fact that we cannot construct VPP coupling in the
SU(3)-symmetry limit, and under the SU(3) approxi-
mation Gg*x. coupling becomes nonvanishing only
through mixing.

Next we study the sum rules for vector meson — I+
decays. We sandwich Eq. (1) between the states (0]
and | K*(p)) with |p| — and obtain

— (0] Vio|k)(&| Vo™ () | K*(p))
— (0] Vreo|¥)(®| Vo™ () | K*(p))
(01 Vo () | p){p| Viee| K*(p))
=(0| VoX*(2) | K*(p)).

Again by con51der1ng the constraint given by the com-
mutator [ Vo™ (x), Vg ]= 9,V K (x) taken between the
same states, one can obtam information on the terms
(k=(p'=0)| Vo™ (x) | K~*(p)) and <'< (@' =0)| Vo™ (2)
| K—*(p)) at |p| — oo, If there is no ¥’ meson, the con-
straint requires (x(p'= O)[ Vot (%) IK—*(p)) 0 at
|p| — .14 However, even in the presence of the «’
meson the most natural way to satisfy the constraint
is to assume that both (k—(p'=0)| Vo™ (x)| K*(p)) and
(=(p'=0)| Vo= (x)| K*(p)) separately vanish in the
limit |p| — .26 Then Eq. (19) gives

(19)

(20)

In the absence of K*, Eq. (20) reduces to the usual
one. Similarly one also obtains the following from Eq.

D:

Gr*= (mx*/m,)G, cosOx*x* .

(21)

By using the commutator [Vo '(x),4 -+ =A™ (x)
together with the constraint given by [Vo™(x),4.+]
=9,4,™ (x), we have previously shown! that the Gell-
Mann—Zachariasen relation or Sakurai’s p dominance
follows in our approach,

%\/ZGPGMF =m0,

Gg*= —(mK*'/m ) SiIlHK*K*’G .

(22)

which is not modified in the present case. However, the
K* analog of Eq. (22) gets modified. Combining Egs.
(17), (20), and (22), we can write

V2Gx*Gr*k—0=V2 tanfx k. Gr*Gr*K
—}-mK*2 COSZOK*K*’/COSHKK’ y
and from Eqgs. (18), (21), and (22),
V2Gk*Gr*'k~='=V2 tanfxx'Gr*Gr*' K ~x°
+mg*? sin20K*K*'/cos(9KK' .
26 These vertices involve two independent form factors, and the

simplest way to satisfy the constraint is to assume that both of
these vertices satisfy superconvergence relations.
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Eliminating fx*x* from the above two equations,

= —+\/j tanOKK'
cosfxk’

GrGrrg—r GrrGReg 7 1
( )

mK*2 mK*/2

GrGrrg' 0 GreGR* K
X } . (23)
MK*Z mK*IZ

One can simplify further. Consider now

(E*(p)|[Vge,A=~]|7+(p))=0

(K*°(p)| [V, A--]|7H(p))=0
with |p|=; we obtain, corresponding to Egs. (17)
and (18),
Gr*x'*x~ COSOx g+ Gr*k *r~ SiNOx g = $V2 sinfg*x*
X (mu*/mp)Gprar+ar =

and

(24)
and

Gr*'k'*r~ CO8O0x k' +Gx*' Kk~ SiNOxx'= %\/7 CcOSOx*x*'
X (mg>/mp)Gp's'+x=.  (25)

If the mixings are small, Eq. (25) implies*® that
Gr*x'*-=3V2(mg*/m, )G, »+.~ and Eq. (24) gives
Gr*x'»0, i.e., Gk*x'x is zero in the SU(3) limit and
becomes nonvanishing only through mixings in the
SU(3) approximation. Multiplying Eqs. (24) and (25)
by Gg*/mx*® and Ggs«'/mgx+"?, respectively, and using
Egs. (20) and (21), one obtains

GrGrik' - Gr¥GR*K'*r~
!

1 = —tanfgx’
- —
Gr*Grrg*r~ Gr*GR*EK*r~
X f . (26)
- —

By combining Egs. (23) and (26), we obtain

GrGrig*n~ Gr*GrR*K*7r~
} = COS@KK’ .
MEK*'2

@7

M+

This is the modification of our previous K* analog!* of
p dominance, Eq. (22), i.e., Gx*Gx*x *»—=mg*.

Combining now Egs. (16) and (27), we finally arrive
at the desired result:

FK FxGxK_r+ FK/GK'KJrW—
-—=COSOKK’+( l > (28)

me—mg® M —mis

T

Equation (28) reduces to previously obtained Eq. (10)
when there is no K-K’ mixing and no «’ meson. The
magnitude of 7, and F,- would be of comparable magni-
tude (or |F, | might be smaller?” than |F,|) since both
of them are of first order in the symmetry breaking.

27 For the F, one can consider the diagram x — K7 — vacuum.

Since Grrr>Grrx, a similar mechanism for the Fy leads to
]F A"I < [F K|-
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However, we notice that the S’PP coupling vanishes
in the SU(3) limit whereas the SU(3)-symmetric SPP
coupling can exist. Thus, we expect that?® Gg - >Gvkx-
Therefore, unless the value of m, is very close to mxg,
we may neglect the «’ term in Eq. (28), i.e.,

FK/F,.-= COSHKKr—i-FKGKK“,,-*'/(’m,‘Z—"mK2) . (29)
On the other hand, Eq. (13) will also be modified to

F.Gxtr+FoGogte= (mg?—m.2)cosbgg . (30)

However, by the same reasoning which led to Eq”
(29), we may also neglect the ¥’ term in Eq. (30).
Therefore, from Eqs. (29) and (30) we obtain

Fr/Fr=1+4[(mg?—m.2)/(m2—mg?)] cosbgx:. (31)

The mixing angle fxx: must be small.? If it is large it
will affect the Gell-Mann-Okubo mass formula for the
pseudoscalar mesons. In fact the F,(0) of the K.
decay is now given by cosfxk-. A reasonable guess may
be that cosfxk- is 1 within an error of about 5%. Thus
in Eq. (31) we may take cosfxx=~1. Therefore, except
for the case when m~mg, the prediction of Egs. (14)
or (15) will be approximately preserved and at the same
time the problem of Fx=F, has been taken care of by
the introduction of the «” meson. It may be noted that
our result is free from the knowledge of the F, and the
magnitude of the kK coupling and depends essentially
only on the mass of the x meson. The above argument
indicates that our previous discussion on the K;3-decay
form factors® will not be modified significantly by the
inclusion of the ¥’ meson. We have F, (0)= cosfgr'~=1,
so we expect that the parameter £ will remain small and
negative.

IV. x MASS AROUND 1.1 BeV

By using commutators such as [Vko,4,-]=0 and
[Vge,A--]=0and the SU(3) approximation, the follow-
ing intermultiplet mass formulas of the hybrid type can
be derived®:3t:

K2 —72= K*2—p?= K**2(1420) — A 25
K= A= K¥—y?

=K —q =2 — 2= § = e

(32)
Here K2, for example, denotes the square of the K-meson
mass. In the derivation we have ngelected the mixing
effect in the /=% states. The formulas include the SU(6)
result, K?—x2=K**—p?2 and agree with experiment
rather well for the cases where identifications of reso-
nances are established. If we identify'® either the §(962)
or the 7x(1016) with the /=1 0*+ meson, §, then Eq.

28 As in Eq. (18), the ¥’ K= coupling takes a nonvanishing value
under the SU(3) approximation only through the k-« mixing. We
expect this mixing to be small since charge-conjugation invariance
forbids the 0*+*-0*~ mixing except for the x-x" mixing.

2f9 The same argument as for -« mixing also holds here. See
Ref. 28.

30 S, Matsuda and S. Oneda, Phys. Rev. 169, 1172 (1968).

31 S, Matsuda and S. Oneda, Phys. Rev. 179, 1301 (1969).
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(32) predicts that m, is around 1.10-1.13 BeV. Then
from Eq. (14) [or from Eq. (31) assuming cosfxx~~1],
we obtain®? Fg/F,~1.22. The fact that we arrive at
the same value of the mass of the ¥ meson from two
different sources of information seems to strengthen
our argument since both the derivations are consistently
based on the same SU(3) approximation and the chiral
SU3)®SU(3) algebra.

There is some preliminary evidence?® for the existence
of a k meson with mass around 1.1 BeV.

V. VECTOR-MESON — /! DECAY SUM RULES

Previously we have obtained in our approach sum
rules for the vector-meson — /41 decays.!* Inparticular,
we have obtained

Gy=3V2G, cosb(mgy/m,) (33)
and

Go=3%V2G, sinf(m,/m,). (34)

Here 6 is the usual w= ¢ mixing angle defined by w= cosf
w1} sind wgand ¢ = cosf wsg—sinf w;. [w — wiand ¢ — ws
in the SU(3) limit. ] Eliminating 6 from these equations,
we obtain the so-called first spectral-function sum
rule’Q, 10,14

G/mpt= Gt /ml Gy mg?. (35)

We remark here that even if we consider the existence
of the exotic vector meson V', these results do not
change. In the computation, the contribution of the
V’ states appears through mixing as in Egs. (20) and
(21). However, in the final result it drops out and
Egs. (33)—(35) are not affected.

On the other hand, the existence of the V' meson
will affect the Gell-Mann—Okubo mass formula. In our
approach, consideration of (K**(p)|[ Ve, Vxo]| K*(p))
=0 with |p| = and the SU(3) approximation leads,
in the absence of ¥’ mesons, to an w=¢ mixing angle
0. given by

3mt—dmg?+-m,*

3(my2—m.?)

(36)

sin?f,, =

In the presence of V’ mesons, this will be modified.
Therefore, the discrepancy between the value of 6 de-
termined from the V — I+[ decays and that of 6,, if

32 This value is, of course, subject to error due to the approxi-
mation F,(0)=cosfxk-=1 and the neglect of the «’ contribution.
The determination of m, will certainly be helpful in obtaining a
feeling for these approximations.

33T, Trippe, C. Y. Chien, E. Malamud, J. Mellema, P. E.
Schlein, W. E. Slater, D. H. Storkland, and H. K. Ticho, Phys.
Letters 24B, 203 (1968).
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it is found, may be attributed to the existence of V'
mesons. Experiment, at present, is still not accurate
enough to make a definite statement. Of course, we
must also keep in mind the possibility that there may
exist a recurrence of the 1=~ meson in the higher-mass
range. In that case, Eqgs. (33)-(35) will also be modified,
though the effect may not be very large if the masses
of the new vector mesons are large.
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APPENDIX

We consider the commutator [Ago, Vo™ (x)]
=%4,%°(x) and sandwich it between the states (0| and
|K°(p)), with |p| = «. Then we obtain

lim [O]Vi" (@) [o)o | 40| K@)
— 0] 4 x| KON K| Vo™ (2) | K°(p))]
= lim —30[ 46 [R®). (AD
Again, if one uses the commutator 9,[Axo,V,.™(x)]
=19,4,%(x) sandwiched between the same states as

in Eq. (A1) and assumes the gentleness condition for the
matrix elements of the operators 8,4 ,%°(x), one obtains

lim (0 | Axs | RO(KO| Vo™ () | K(p)) =O0.

Thus by replacing Axs by 2[ Vgo,4,], Eq. (A1) can be
written in the form
lim O Ve (@) |06 LV, ]| R0))
= lim 1014 | R'w)).
pl—o0
Using the SU(3) approximation for Ve and PCAC for
45, this equation gives

1 ZGK*K%.“ Gp 1

F‘ll‘=i_FK-
2m ,m i+

— —(z 0

2 Gprtam V2 T

On the other hand, we have previously!* obtained
G,/V2G yrts~=m,? [see Eq. (22)], and 2Gx*k'x9/Gpr*x~
=mx*/m,.?® Therefore, we are again led to the equation
Fx=F,. However, similar to the case discussed in Sec.
IT, the above conclusion will not be obtained if there
are two /=% 0—* mesons K and K'.



