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Lorentz-invariant phase-space integrals for decay and production processes involving n particles in the
final state —with integrand containing arbitrary invariant functions of momenta of particles —are trans-
formed into simple definite integrals over Mandelstam-like variables. Given the T-matrix element squared
as a function of scalar products of initial- and final-state particle momenta, the results may be used for the
computation of the production cross section, decay rate, energy and momentum spectra, invariant mass
spectra, and angular correlations.

I. INTRODUCTION

'HE experimental information about elementary-
particle interactions comes mainly from the study

of decay and collision processes. In theory, these pro-
cesses are described by the S matrix. The experimental
consequences of the theory are obtained by integrating
the squared S-matrix element over the available 6nal
states. The T-matrix element squared being a I.orentz-
invariant quantity, its dependence on the initial- and
final-state particle momenta can appear only in the
form of scalar products of four-momenta. It is therefore
desirable that the integration over the 6nal-state par-
ticle rnomenta (constrained by the condition of energy-
momentum conservation) be transformed into deftnite
integrals over the independent scalar products of four-
momenta. In the present note, we discuss such trans-
formations of phase-space integrals' for decay and
production processes involving e particles in the 6nal
state. Our aim is not merely to evaluate the phase-space
factor'; in other words, the T-matrix element is not as-
sumed to be momentum. -independent. In fact, the
constant-matrix-element approximation' cannot be ex-
pected to be good since dynamics plays an important
role and is of primary interest in the study of elementary
particle physics.

The number of scalar products of the type I'; I',
(i' ) which can be formed from the four-momenta of
initial- and final-state particles in a decay or production
process is scV(IV —1), where cV denotes the total number
of particles participating in the process. However, only
(3N 10) of these —are independent. Hence, in general,
the T-matrix element squared describing a decay or
scattering process may depend on (31K—10)-indepen-
dent I.orentz-invariant kinematical variables. Our aim is

' An introduction to phase-space techniques may be found in
R. Hagedorn, Eelatieistic Kinematics (W. A. Benjamin, Inc. , New
York, 1963); G. Kallen, Elementary Particle Physics (Addison-
Wesley Publishing Co., Inc. , Reading, Mass. , 1964); and J. D.
Jackson, 1ÃZ Brandeis Lectures (W. A. Benjamin, inc. , New
York, 1963), Vol. I.

'A recurrence formula relating the phase-space factors for n-
and (n —1)-particle final states was first given by P. P. Srivastava
and E. C. G. Sudarshan, Phys. Rev. 110, 765 (1958).

' For a review of the statistical model and its applications see,
e.g., M. Kretzschmar, Ann. Rev. Nucl. Sci. 11, 1 (1961).See also
the critical review by R. Hagedorn, CERN 61-62, 183 (1963).

to transform the integration of squared T-matrix ele-
ment over the 6nal-state particle momenta into integra-
tion over these (3X—10) variables. The transformation
is conveniently done by making a judicious choice of
(3E—10)-independent Mandelstam-like variables and
artificially introducing Dirac 8 functions, the arguments
of which de6ne the Mandelstam-lik. e variables. The
limits of integration can be obtained in a straightforward
manner without depending on involved geometrical
considerations. In the particular case, when the T-
matrix element is a constant, the phase-space factor is
obtained as an integral of rank (rt —2).

Given the T-matrix element, the results may be used
fol th.e computation of decay rate or cross section, in-
variant mass spectra of desired particles, and energy
(or momentum) spectrum of any of the final-state par-
ticles in the c.m. system. With a little modification,
angular correlations in the c.m. system can also be com-
puted. Thus, the formulas given here may be useful in
making a comparison of theoretical predictions with
experiment in order to test the basic assumptions of the
theory and. may also be helpful in making spin and
parity assignments of resonances. The transformations
of phase-space integrals are discussed in Sec.II. Some ap-
plications of the results are illustrated in the P ppendix.

II. TRANSFORMATIONS OF PHASE-SPACE
INTR GRALS

A. Production Processes

The phase-space integral to be evaluated for the scat
tering process,

S
A r(qr)+A s(qs) ~ Z a'(p, ),

is of the form

n

(p.= p d'p; 3(p;s+m;s)
i=1

X&'(Q —p p;)P(q, ,q, ; p,), (2)

where Q=qr+qs, qr'= 3fis, qs'= —3IIs', an—d

~(qr qs' p')
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is the T-matrix element squared, summed over the
6nal-spin states and averaged over the initial spin
states.

The (3n —4)-independent Lorentz-invariant kine-
matical variables which uniquely specify a point in the
phase space and in terms of which all of ~~(v+1)(m+2)
scalar products of the type P; Pz (j/k) formed from
the four-momenta q&, q2, and p, can be expressed, may
be chosen as follows:

$= sg = —Q, to = —(gy —py)

I
i=1

t;= —(qi —p, +&)', 1&r&e—2, (3)

where p„denotes the four-momentum of the rth particle.
The symbols No and s„ l used in the foHowing expres-
sions have the following meaning:

No—=sl and sn l=nsn . (4)

The phase-space integral (P is then transformed into
a definite integral of rank (3u —5):

~r+ n—2 "r+
(P„=-',vr(X(st&'pI2') } '"{$LX(s,Mp, SI,')j—'"} 'II ds„ II du„fp, ($,$„,$„')lb.(s,m„~p,u„)]—~~-"

to+ n 2 tr+

x dto II dt
C (1—4')(1— ')(1—f ')j '" P(.' ' t.) (5)

r r
s„'=—(P p;)'=s„+(r—1)s+g m;2 —P u, g,

r r

f„=P(s+3fP—3E,')(s+s„' s„) 2$(rMP—+Q—mP —Q t; g))P.(s,Mg', Hag')X(s, s„,s,'))—'t',
i=1 j=l

'gr $2$(sr+mr~1 sr+1) —($+mryl ur)($+$„sr )jP,($&—mr+1 &ur)A($&sr&sq ))
~,=(,-r,.,)E(1-&,')(1-~,')?'",
cv„=P(s+ilIq' —3II2')(s+m„+P u„)—2$(cVq'+m—,+q' —t„)jLX(sPIq' 7lIP)A(s, m, ' u )j 't2

(7)

(10)

and X( ba, )cstands for (a'+b'+c' 2ab 2bc—2ca)—. The—limits of integration of variables s„, u„, and t, are as
follows:

n

s„=(P m;)', s,+ ——(Qs„~—m„)', 1~&r~&u —2
i=r+1

(s„+m„+P—s„+~)(s+s„—s,') P(s„,m„+P,s„+~)X(s,s„,s„')j'"
u„y =$+m;+y

2sr
I&r&e—2 (12)

t, p=cV P+m, +P.
2$

($+3fg' 3I2') (s+m, +~' u—„) P.(sPIg' Mg—')X( , 's, m'u )7.'~'

+ X„~, 0~&r&~u —2 (13)
2

where

g„~=g„&,WL(1 —~„2)(1—~„2))'t2, for r) 0
=&1 for r =0. (14)

It should be noticed that the limits of integration of s„
depend only on the preceding s, variable (i.e. , s„z) and

the limits of integration of variables n„depend on the
variables s, and the preceding u; (j (r), whereas the
limits of the t, integration depend on the variables s;,
u;, and the preceding t, (j(r).

In deriving the formula (5), a judicious choice of

(3u —4) Mandelstam-like variables is important. Once
this has been done, the rest is quite simple. Starting
from the phase-space integral (2), the integration over
d'p is done using the 8 function which expresses the
energy-momentum conservation. 8 functions in the

~-=II
r=l

ds, du, dt„dto F(s„;u„ t„)

&& d'p ~(p'+ ')~((Q —p)'+ )~((& —p)'+to)

n—2

XII d'p+ &(p,+ '+m. ')b((Q-p p*)'+s, )
2=1

&& b((Q —p.+~)'+u )b((V~-p +~)'+t.) ~ (15)

variables sr, N„and t„are then introduced and corre-
spondingly integrations are done over these variables,
so that we have
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Int, egrations over the four-momenta of all particles are
done in the c.m. system characterized by Q=0. How-

ever, coordinate reference systems with' different orien-
tations in three-dimensional space are employed for
integration over the momenta of different particles.
Integration over d'p~ is done in an obvious manner.
Integration over d'P, +q (1~& r~& 22—2) is done using a
coordinate system of reference in which the vector
P,=q' p, points along the s axis. The x a,xis is chosen such
that q| lies in the sx plane, making an angle cos '$„with
the z axis. In such a coordinate system the vector p,+l
points in a direction (8,+&,@,+&) given by cos8„+|=p, a.nd

cos$,+~=f„Inte. grations over
~ p„+~~, cos8,+~, E„+~, and

@„+r are done in this reference system using the erst,
second, third, and fourth b functions, respectively, in the
square bracket of expression (15). Now (Q —P„=~"p;)
is a timelike four-vector, and the variables s„can be
given the maximum freedom so that the fact that the
minimum value of the scalar product (—p,"p, ) is m, m;,
gives the minimum value of variables like —(p, +p;)'
and the maximum value of variables like —(p, —p,)':

(—(p,+p;)'];„=(m, +m, )',
j mgÃ ~s ~g p

where m = —p' and m,'= —pp. Hence the limits of
integration of variables s„given by (11) are obvious.
While integrating over cos8,+l using the second 8 func-
tion in expression (15), the condition cos 8,+~&~1 gives
a quadratic inequality in E„+1which in turn is related to
Nr by virtue of the third 8 function. This inequality can
be written in the form (u„—u,+)(u„—u„)~&0, which

determines the limits of integration of I„.Finally, the
limits of integration of variables t, are determined from
the fourth 8 function itself, using the fact that cosP„+~
lies between —1 and +1.

The scattering or production cross section is given by
(5) apart from a multiplicative factor:

0 (s) =c(s)(P. ,

where c(s) is a constant which depends on the c.m. en-

ergy (Qs). The invariant mass spectrum of desired
number of particles in the Anal state may be obtained

by suitably changing the order of integration of vari-
ables s„.In order to get the invariant mass spectrum of

(I—r) particles (P;=„+q"a;), the integration over the
variables s, may be performed in the following

order:

ing way:

n

s„=(P m)',
j=r+1

r

s.+=(V's —Z m;)',
i=1

r
=( P m, +gs„)', s.+ ——(Qs. ~

—m.)', (17)
i=a+I

sp =( g m)'
i=P+1

sp+
——(Qsp g™p)'.

do/ds„ is then obtained by dropping the integration over
s„. By suitably identifying the particle momenta, in-
variant mass spectrum of a22y (22 —r) particles can be
computed. Energy spectrum of particle al is obtained in
the c.m. system by dropping the integration over ds&

in (5) and multiplying by 2+s. The energy spectrum is
given by parametric equations

d(P„
=2(+s)c(s)

d$1

Zr = (s+mP —sq)/2+s.

The parameter sl takes values in the range given by
(11).Similarly, the momentum spectrum of particle a|
in the c.m. system is given by the parametric equations

(P =(2r/4$){SP.($ My' M 2)]—'t'}"—'

n—2 8r+ — ul+

X d{2g ds„ du&P, (s m 2 uz)]—1/2

n—2
— ~r+

do P.(s,m22, $,)]'&2 dO

=(2V $)c($)
s+m&' —sg dsg

~ p,
~
=P(s,mg, »)]»2/2~$.

The energy or momentum spectra of all particles in the
6nal state may be computed in succession by suitably
identifying the particle momenta.

Angular correlation between an initial-state particle
and a final-state particle in the c.m. system is easily ob-
tained. Thus the angular correlation between particles
A & and a& may be computed by replacing the to integra-
tion by integration over t o=pi q2/(pi~ ( qi) (lt m.ay be
noticed that tp=2Ip=O and, therefore, {2——~2.) Making
this transformation, we have

n—2

ds; -+ ds„g ds.
a=1 .

n—2 du„{X(s,s„,s„')X(s,m„+,',u„)}—&i2

The limits of integrations are now changed in the follow- d~ {(1—~'')(1 —~,')(1—|-,') }-'t'

4 An illustration of the determination of limits of integration in
this way may be found in R. Hagedorn, Ref. 1, p. 110. &&J (s,. ; u„; („). (20)
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In the particular case when F(s„)=1, the expression
(28) gives just the phase-space factor. "

The order of integration of variables N„and t, cannot
be interchanged in (5), since the limits of integration of
variables t„depend on I;. Furthermore, integrations
over the four-momenta of all final-state particles were
done in the c.m. system in obtaining (5). Making use
of Lorentz invariance, it is possible to integrate over
the four-momenta of different particles in different
inertial frames. If we choose to integrate over d'p, +i in
a frame of reference in which Q —g;=t' p;=0, it is more
convenient to choose the variables t„ in a slightly differ-

ent manner. VJith variables s„and N„still de6ned by
(3), the variables t„are now defined as'

r+1
t„=—(qt —P p;)', 0&r&iz —2. (29)

(P„can now be written in two different forms which
diGer in the order of integrations over the variables u„
and t„. If the integration over the variables t„ is to be
done first, 6' should be transformed in such a way that
the limits of integration of f„do not depend on I;. In
that case, we have

n—2 8r+ SrdSr dt.

dlrn—2 ttr+

X F(s„;zz„ t,), (30)
L) (s s s ')]'"L(1—5 ')(1-~ ') (1-i ')7"'-

(P„=t ~L),(s,M ts,Ms') 7-'t' g 40
[X(s„s„+t,m„~is)]'i' „=i, L) (s„,t, t,Ms')]'"

where s„' is given by (6) and

P, =L2s„(s+Ms' —Mrs)
—(s+s„—sr ) (st+Ms tg i)]

&&L),(s,s„,s„')) (s„,t, i,Mzs)] '", (31)

characterized by Q —P,=t' p;=0:

r r

$,=Q (qi —P p, )/lQl lql —P y, l

= —qz Q/lqzl lQI
rtr =

l 2sr(tr tr i mr+i )—
+(s„+m„+is s„+i)(s„+—t„ i Ms')]-

)&@(s„m„+is,s„+i)X(s„,t„ t,Ms')] '", (32)

(33)

r r

n. =(qt —2 y') p.+i/lqt —2 y'I ly+il,

t r =cospr+1 y

(37)

,=L(.+.,—.,')(.,+ —;)-2,(+ "'-")]
Xp (s,s„,s„')X(s„m,+is,s~t)] '". (34)

where p,+t is the angle between the following two
planes: (i) the plane defined by the vectors Q and

(P, i'y;) (or qi —P;=t'p;) and(ii) theplanedefinedby
the vectors p,+i and (qi —P;=i"y;). The limits of inte-
gration' of variables t, and I, have been obtained from
their definition using the fact that zl„and t'„can take
values only in the range —1 to +1.

In the particular case when F does not depend on any
of the variables N„we have

The limits of integrations of variables s„are given by
11) and

P.(s„m„+is,s„+t)X(s„t„ t,Mzs) 7'I'
7

2Sr n—2 8r+

(
(sr+mr+1 srp1) (st+ tr 1M2)-

tt+ = tr 1+mr+1'——
2

0~&r~&e —2) t g=—Mg2

(s+s„—s,') (s,+m„+i' —s„~t)
N„g ——s+m„+is—

2$,

(33)
6'-=(s~)" ' lI

n—2 — &r+ dt,
F(s t.) (38)

LX(s„t, i,Mz')]'t'

p.(s,s„,s„')X(s„,m, +is,s„+i))'t'

2sr

&&((,q„+L(1—$ )(1—
zl s)7'tz) 1&~ r~&z2z. (36)

&„zl„, and „tivge nby expressions (31)—(33) have the
following geometrical meaning in the reference frames

A similar expression for the phase-space factor has been ob-
tained by B. Alrngren, University of Lund report (unpublished).
The author is thankful to Dr. J. S. Vaishya for drawing his atten-
tion to this report.

Further, if the function P does not depend on any of
the variables t„also, the expression (38) can be reduced
to (28). Scattering or production cross section, invariant
mass spectra, and energy spectra (in the c.m. system)
of final-state particles may be computed as discussed

It may be seen that with this definition of variables tr, the
integration over the four-momenta of all particles can be con-
veniently done in the c.m. system also.

~ It may be noticed that the limits of integration of ur in the
formula l5) and the limits of integration of t, in (30) are not ob-
tained in an identical fashion.
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earlier. Angular correlation between particles Al and
a& (in the c.m. system) may be computed by changing
the integration over to into integration over qo. However,
for the computation of angular correlations among
final-state particles in the c.m. system, only Eqs. (23)
and (26) are appropriate.

B. Decay Processes

The phase-space integral to be evaluated for the
decay process

The phase-space factor in this case is the same as in the
case of collision processes with s replaced by M2, where
M'= —Q'. However, in general, the transformation in
this case would be somewhat different. In particular, it
is obvious that the set of variables f„will have to be
defined in a different manner. The (3zz —7)-independent
Mandelstam-like variables which uniquely define a point
in the phase space may be defined as follows:

"=—(Q —Z p*)', u. = —(Q —p.+i)',

is of the form

n

~(Q) ~ Z ~*(p')
i=1

t.= —(Q-2 p;)',

1 ~& r &&zz —2 (41)

n

&&~'(Q-Z p')~(Q; p'), ». (40)
i=1

The meaning of symbols so, s„ 1, No, and 31 which are
used in the expressions below is quite obvious (so=M',
s„ i—=m„', uo =—si, ti =—ui). The phase-space integral
S„ is then transformed into the following definite in-
tegral of rank (3rz —7):

~r+ tt1+

S., = M"" 'i g ds,
43XI2 r=1 r- tt1-

n—2 &r+

dui g
r=2 P, (M', s„,s„')A(M', m„~ , iz)u5't'

dt.
F(s„;u„; t„), (42)= —,— C:&(M', t -,t.—'))'"D1—

& ')(1-~ ')(1—~'))"'
where s„' is given by (6) (with s replaced by M') and

2I lI (M', s„s,')&(M', m„+i',u„))'~' P (M', s„s„')X(M', m,~iz,u„))'t'
t-, =(,-&,~,)L(1-&,')(1-~,')?'",

X(M', t„t„')—X(Mz, t, i,t„ i') —X(M', m„+i2,u,) 2M'(t„ i+m„+iz —t„)—(M'+m„iiz —u„)(M2+t„ i —t„ i')
Qlr =

2P(M')tr i, tr 1)X(M &mr~i rur)) P(M rtr 1&tr—i)~(M'&mr+i rur))

r+1 r+1 r
t,'= —(Q P )'=t„+(r—1)Mz+P m;z —P u;,

i=2 i=2 j=1

X(M', s„,s„')+X(M',t„ i,t„ i') —X(M', mi', si) (M'+s„' s,)(M'+t„ i—' t„ i) —2M'(—s„'+t„ i' —miz)

2P, (M rsrrsr )X(lV ~tr l~tr i )) P(M &sr)sr )X(M )tr—lrtr —i ))
X(M' s +i,s,+i') —X(M', sr, sr') —X(M'&mr+i &ur) 2M'(sr+mr+iz —s„+i)—(3P+mr+i2 —u„)(M'+s, —s„')

(45)

(46)

tr+ tr-1+mr+1 2
(M'+m„„iz —u,)(M'+t„ i —t, i')

P(M2, m„,',u„)~(Mz, t. ..t, ,'))'tz

2&2

The limits of integrations of variables s„and N„are given
by (11)and (12) and the limits of integration of variables
t, are

r r

~.=p.+i (2 p')/I p.+iI I2 p'I,
(49)

t r =Cosfr+1 r

ing geometrical meaning in the rest frame of decaying
particle:

E,=(Z p;) (2 p;)/IZ p;I I 2 p;I,

p & ~I (1 p &)(1 & z))i/z) (4g) where p,+i is the angle between the planes defined by
the momentum vectors pi (or g, z" p;) and P;=i'p;

$„, rt„, and f„defined by Eqs. (44)—(46) have the follow- and the vectors p,+i and P;=i"p; (or Q;=„+z"p;).
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tra and energy spectra ofThe invariant mass spectra
frame of decaying partic e

from (42) in the same way as discussed in
the case of collision processes. Angu ar cor

inte ration into integration over
which gives the cosine o ang e e w
and p. in the rest frame of A. Ke have'

~2(n—3)

4%2

81+ 82+ 2 2 1/28 u ul)8(ul ul —)dslds2p, (M2, m&2, sl) X(M,m2, ul

lI. M' m22, ul)7'/2)( (M2+sl ml r/1')+ (M'+m ' —ul) t ji(M )mi, si)/ (

~r+ dQrr+ n—2-

r= — 8r-

F( u / ) (50)
2 ] 2 1/2X(M2, /, , /,', '))'/2L(1 —$,2) (1—g,2) (1—l,r

are iven by (24) and (25) with s re-where I& and N&~ are given y
n," and t„givenplace y . sip db 3f2. Using therelation between „an

s. 46 and 47), integration over/„can ban be changed
over „and distributions in f„c anbeg

in the case of collision processes. n

u„; /„do otd dotcul c ( „'u, ;
of the variables, lower-ran, gk inte rais may e o a'

for X)n.

hase-s ace integrals into definite

d the varia es s„an

that it is not unique an in som
ns of these variables may e use u .

np cribe an alternative rans o
phase-space integral S„in terms o e o

pendent variables:

r—or+1

s.=—(e. Z p' —Z p')',
i=r—1 t=r tr

/. = —(Q —2 p~)',
a=2

(51)

u = —
LQ

—(1—")p.—p+1, 2&r&n —2

where
for r an even integer)

=0, for r an odd integer.
4

llowin definiteX)n is t en rah transformed into the o
'

g
integral:

S„=(lr2/4M2)M2/" —'&

2
— 8r+

Xg ds„
dlr

2 I (1-cr) /2'M2)g""p. (M'sp 1)sp 1')l&,(M ysplu4p(s„~l,u,+1,M2) l&,(u„m„+1,

XF(s„;u„; I,„), (52)

where

s2 '=s2„+(r—1)M'+P (s2j 1 u2j 1)$2r —$2r
~=a

(53)

I
$2.+1=L(M'+s2, —s2, ') (M'+ j2„1—4„1

2M'(s, +/—, m&2)j—
1'2, 1'=(2, 1—tl+(r —1)M2+m22

—1/2 (56)X t X(M2,S2„,S2„')jl(M2, /,'2„,,t„,

+Z (s2j i —u2/ 1), (54)
2=2

br pM (s2r+1+~2r—1 /2r+1)

/—(M2+s2, +1—u2„+1)(M'+/2„ l —/2, 1

2/2 =$(M2+s2„~1—u2„+1)(M2+m„+12—u, „g2r

2—2M'(s2, ~1+m2„+1'—m2„+2

2 u —1/2 (57)Xp, (M2 s,„+l,u„+1)X(M2,m2„~1,u2„

the an ular correlations in three-body decays
1 Ph 40 140 (1968).(55) is given by M. M. Ni, . MXP(M &$2y+1&u2ppl)X(M 1$2p ly4p
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g2r+1 f2M'($2r+ $2r+1 $2r+2)

—(M +$2r+1 Q2r+1)(M +$2r $2r )]
)(,P (M r$2r+1&212r+l)X(M &$2rr$2r )] r (58)

$2r]+ —i2r—1+2122r+1

(M +2222r~l S2r) (M +i2r 1 —i2r 1)—

2%2

(59)

—(M +2222r~l —B2r)(M~+i2r 1 $2r 1 )]-
gP, (M r2222r+1 rQ2r)X(M )f2r lrf2r 1 )] p (60)

Li2rgl]+ 4r 1+$2r—+1

(M +$2r+1 +2r+1)(M +i2r—1 i2r—1 )

M2r+1 L2M (i2r—1 isr+1+$2r+1)

—(M +$2r+1 N2r+1)(M +i2r—1 i2r—1 )]
gP(M r$2r+lyB2ryl)X(M rfsr —lri2r —1 )] ~ ( )

P(M r$2r+l&Q2r+ 1)X(M &i2r—ly t2r 1)]—
&&/X„,]„(6S)

The limits of integration are

$2r—1 — ~2r—1 ~2r
LX,],= —t„~„+L(1—t„2)(1—&„2)]1~2. (69)

n

f $2„1]+=(+$2„2—P 212;)',
s=2r+1

n

/$2,] =( Q m;)2,
i=2 r+1

)$2r]+ (2r $2 r 2 "/$2 r 1)-—

(62)

(63)

The meaning of the symbols s„ 1, I„ 1, t„1, so, and Nl
is clear from the definitions given in (51) ($„1—=$„2,
Qn —1=sn —2 for e even; s~—1=mn' for n odd; so—=M',
sl—=$2 and t~ 1—=ts12).

In the particular case when the function F is inde-
pendent of all u, and t„we have

'"+ ds„

Lgsr+1]g =M +$2r+1

(M +$2r $2r )($2r+$2r+1 $2r+2)
&&+ (P.($„2N„2,222„+12)]&'-"'~2

Ph(IV r$2rr$2r )}(~2rr$2r+1~$2r+2)]

2$2p

fN2„]g ——Ms+2222, ~12

(M +$2r+1 +2r+1)($2r+1+2122r+1 2222r+2 )

2$2r+1

L}1(M y$2r+lr+2r+1)}1($2r+lr2122r+1 q2122r+2 )]2 2 2b ll/2

7

2$2r+1
(65)

($1+m2' —m12) (M'+$1—$2)
it~ ——M'+m22—

2$1

P.($1,2121',2122')X(M2, $1,$2)]' '

2$1

"It should be noticed that the integration over ug, +I precedes
the integration over u2r Lunless 2r=22-2, in which case N2, +1

1, which is not one of the (312 /} independe—nt variablesg.

)&P.($„2,$„1,$,]'""}F($,) . (70)

We conclude this section with the following remarks:

(a) The range of integration over the variables $„
I„,and t„becomes narrower with increasing v. It is par-
ticularly so for the variables N„and t„. It is because the
transformed phase-space integrals 6'„and S„are either
of the form g['J d$„]gLJ dg, ]gLJ'di„] or of the form
gLJ'd$, ]gLJ'dk, ]gLJ'dN, ]. It is therefore obvious
that in the former case, for example, the range of inte-
gration of variable t'„ for Axed values of va, riables s;,
I;, and t; (j&r) (on which depend the limits of integra-
tion of i,) will be very much restricted. Hence, in any
practical calculation, the values of the variables I„
or t„or both (for r) 1, say) may be restricted to such a,

narrow range that the function F($,; I„;t,) remains
practically constant within the range of integration, in
which case the integration becomes trivial.

(b) It has been stated that all of -'21V(1V —1) scalar
products of the type P; P& (jAk) can be expressed in
terms of (31V—10) such independent scalar products.
For E~& 5, all such scalar products can. be expressed as
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a tiuear combina, tion of (31V—10) independent variables
(x,):

P:„PI, Q——n;x;,

invariant quantity which we denote by F(e,p~), and
can be expressed in terms of two independent Mandel-
stam-like variables which may be taken to be

.=-(e-p.), =-(Q-p.) . (A2)
where the coefficients e; are independent of x;. In such
a case the coefficients n; can be obtained simply by using
energy-momentum conservation. However, for S~&6
some of the scalar products P; PI, (.whose number goes
on increasing with increasing 1V) will always be such
that the coeScients o.; themselves depend on variables
x,. It is not possible, in such a case, to obtain n; simply
by using energy-momentum conservation. The coe%-
cients o,, may, however, be calculated by making use of
symmetry arguments which do not depend on geom-
etry. This is illustrated in the Appendix.

Some of the results of this work were applied to study
some production processes. " " After the manuscript
was submitted for publication, we learnt that a scheme
similar to ours had been used for the construction of a
Monte Carlo program for generating e-particle produc-
tion amplitudes at CERN. "
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APPENDIX

The transition probability per second is then given by

(M—my)&

R=—=
256x'3f ' (,+,) 2

dSy dut F(st, ut), (A3)

where the limits of integration of variable N~ are

(st+me' —m, ') (M'+st —mt')
utp =M'+m22—

2$y

P.(st, mg', m3'))t(M', st mt )$'
(A4)

If F(st,ut) is simple enough, the integration over uz may
be done analytically; in particular, if F(Q; p;) =F(s&),
we have

dut F(st)

=LF(st)/st]P, (s~,m2', mP)X(M', st,mt') j'". (A5)

The energy and momentum spectra of particle a&, for
example, in the rest frame of particle 3 are given by the
parametric equations

Some illustrations of the use of the results stated in
the text are given below.

A. Three-Body Decays

We consider the decay process

~(e)- (p.)+"(p.)+"(p.),
which is described by the T-matrix element defined by

and

dut F(st ut)
dE& 128~'3f'

Ft (M'+mP st)//2M——,
—

=(128m'M') '(M'+mt2 —st) '

(A6)

(flsli&=i(2~)'t'(Q —g p)
&&L) (M2, mt2, s,)j~~2

lptl =P.(M', mt', st) j"'/2M,

dut F(st,u&),
(A7)

&&(2Vh) "'g (2VE)—'"(flTlt). (Al)

Now, l (f l
T li) l

' summed up over the final spin states
and averaged over the initial spin states is a Lorentz-

"S.C. Bhargava, Phys. Rev. 174, 1969 (1968)."S.C. Bhargava, Nuovo Cimento SSA, 815 (j.968)."R.Dntt and P. Nanda, Nnovo CinMnto 60A& 'I06 (1969).
"Program zowL, CERN Library %-505 (unpublished). We

also received a report (unpublished) by E. Byckling and K.
Kajantie, in which a Monte Carlo method for phase-space inte-
gration is given.

where the parameter s~ takes values in the range
(m2+m3)' to (M —mt)'. The invariant mass spectrum
of particles a2+a3 is given by

dut F(st,ut)
&

d$g 256m'iV'

sg ——Mg3'.

The angular correlation between particles a~ and a2 in
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aitiC e1 A is obtained asthe rest fram

mg)2 dsl —u )&(1 ''dR

„,)p(~2, mA»((~ +„—mi')+~3~3
(mg+m3)1

(A9)

pody D eQRgs

cay processesatics of fou
~

the k.lnema
.

bles describinge en en e].stam-m-lil;e &aria e

(A11)

the following

2 s„mi'),
2, 1 —gi') /4~2j 1, (A1O)

lereni=p'p"
2 —m') —»I- ' ',

112 s,+&(~ m'~'

1 f(~2+$1 ml )( +
2 y(~2 m $1)(1—"Il )j

~ +m2' ——.

, 2) (m2'/~' "
ui —

XP sim2, ma

,=-(e—p)'
efined Rs c

),
„,= -(e-P )'2

transformed 'jnte ral &4 'sThe phase-space in g e ed

dl1

~2= —(Q —P2 —P2
'

~

(3f—m1) 2

m2+mg+m4) 2

(&sy—m2) 2

(mg+m4) 2

d$2
P (M' s2,s2') X(iV',m2, uir

t2+

'"1 ~')'", (1-l-")p, (iv2, m22, Q2) 5'~'(1 q2'— (A12)

r 2 we obtain$2 in e o integration over l 2,$~ integration into in egChanging the t~ in e
' '

o in eg

sl+ S2+

d$2
P(M y$2y$2 )$

112+

(A13)
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' ' '
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d$2
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'
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-1 (1—h')"'X d)1
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(&a—my) 2

du1tp+

t2 (q
(A16)

eeii al 1'o(luc'ts pi poq p2'p31
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i e ei ht variables. T e corn
'

t e — e integrh phase-space integr
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d$1

p

7l $
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dO. d(P3

4p. (s M12,M22)]'/2dfo d o

8j+ d$1
3 pi p2 p3) +m4

1 P3) +t2 P3 /4X
dt1du1ul+

2 1/2 (1 t. 2)1/2i/2(1 & ) /P.(s,m2', ui) j
F(sysii top'o)~tii ui

P.(SM 'M2')7 '"=4' $)
dQ dP

d$1

P.(S,si, mio)]'/2
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