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Lorentz-invariant phase-space integrals for decay and production processes involving # particles in the
final state—with integrand containing arbitrary invariant functions of momenta of particles—are trans-
formed into simple definite integrals over Mandelstam-like variables. Given the 7-matrix element squared
as a function of scalar products of initial- and final-state particle momenta, the results may be used for the
computation of the production cross section, decay rate, energy and momentum spectra, invariant mass

spectra, and angular correlations.

I. INTRODUCTION

HE experimental information about elementary-
particle interactions comes mainly from the study
of decay and collision processes. In theory, these pro-
cesses are described by the .S matrix. The experimental
consequences of the theory are obtained by integrating
the squared S-matrix element over the available final
states. The 7-matrix element squared being a Lorentz-
invariant quantity, its dependence on the initial- and
final-state particle momenta can appear only in the
form of scalar products of four-momenta. It is therefore
desirable that the integration over the final-state par-
ticle momenta (constrained by the condition of energy-
momentum conservation) be transformed into definite
integrals over the independent scalar products of four-
momenta. In the present note, we discuss such trans-
formations of phase-space integrals’ for decay and
production processes involving # particles in the final
state. Our aim is not merely to evaluate the phase-space
factor?; in other words, the 7-matrix element is not as-
sumed to be momentum-independent. In fact, the
constant-matrix-element approximation® cannot be ex-
pected to be good since dynamics plays an important
role and is of primary interest in the study of elementary
particle physics.

The number of scalar products of the type P;:P;
(15% 7) which can be formed from the four-momenta of
initial- and final-state particles in a decay or production
process is 3N (V —1), where N denotes the total number
of particles participating in the process. However, only
(3N —10) of these are independent. Hence, in general,
the 7-matrix element squared describing a decay or
scattering process may depend on (3N —10)-indepen-
dent Lorentz-invariant kinematical variables. Our aim is

1 An introduction to phase-space techniques may be found in
R. Hagedorn, Relativistic Kinematics (W. A. Benjamin, Inc., New
York, 1963); G. Killén, Elementary Particle Physics (Addison-
Wesley Publishing Co., Inc., Reading, Mass., 1964); and J. D.
Jackson, 1962 Brandeis Lectures (W. A. Benjamin, Inc., New
York, 1963), Vol. 1.

2 A recurrence formula relating the phase-space factors for #-
and (n—1)-particle final states was first given by P. P. Srivastava
and E. C. G. Sudarshan, Phys. Rev. 110, 765 (1958).

3 For a review of the statistical model and its applications see,
e.g., M. Kretzschmar, Ann. Rev. Nucl. Sci. 11, 1 (1961). See also
the critical review by R. Hagedorn, CERN 61-62, 183 (1963).
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to transform the integration of squared 7-matrix ele-
ment over the final-state particle momenta into integra-
tion over these (3V —10) variables. The transformation
is conveniently done by making a judicious choice of
(3N —10)-independent Mandelstam-like variables and
artificially introducing Dirac 6 functions, the arguments
of which define the Mandelstam-like variables. The
limits of integration can be obtained in a straightforward
manner without depending on involved geometrical
considerations. In the particular case, when the 7-
matrix element is a constant, the phase-space factor is
obtained as an integral of rank (n—2).

Given the 7-matrix element, the results may be used
for the computation of decay rate or cross section, in-
variant mass spectra of desired particles, and energy
(or momentum) spectrum of any of the final-state par-
ticles in the c.m. system. With a little modification,
angular correlations in the c.m. system can also be com-
puted. Thus, the formulas given here may be useful in
making a comparison of theoretical predictions with
experiment in order to test the basic assumptions of the
theory and may also be helpful in making spin and
parity assignments of resonances. The transformations
of phase-space integrals are discussed in Sec. IT. Some ap-
plications of the results are illustrated in the Appendix.

II. TRANSFORMATIONS OF PHASE-SPACE
INTEGRALS

A. Production Processes

The phase-space integral to be evaluated for the scat-
tering process,

A1(q)+A2(q2) — '2::1 ai(pq),

is of the form

<s>n=[f[ / dp; 6(1>i2+m{"):|

(1

7=1

Xt (Q— El P)F(q1,905 ), (2)

where Q=g1+¢z, q12=—M 12, ¢2>=—M>?, and

F(gu,g2; o)
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is the 7-matrix element squared, summed over the
final-spin states and averaged over the initial spin
states.

The (3n—4)-independent Lorentz-invariant Kkine-
matical variables which uniquely specify a point in the
phase space and in terms of which all of 3(r41)(n+-2)
scalar products of the type P;- Py (j#k) formed from
the four-momenta ¢i, ¢z, and p; can be expressed, may
be chosen as follows:

s=so=—02 to=—(q1—p1)?,

n—2 Sr+

Ur4
ds, I1 I: / d”fD‘<3:Sr13/)>\(s,m,“?,u,)]“l/2]

©. =4 (M5, Mt M)y DA, M, M) T2y T
r=1
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ST=_‘(Q_§1 Pi)27 urz_(Q—'pH-l)?,
[1‘=h(q1-—p7‘+1)2; 1§7'§11-—2, (*5)

where p, denotes the four-momentum of the rth particle.
The symbols %, and s,—; used in the following expres-

sions have the following meaning:
uo=s; and s,_1=m,2. 4)

The phase-space integral ®, is then transformed into
a definite integral of rank (3n—5):

n—2

r=1

o4 n—2 tryge
X / i 11 [ / aLA—E9 1120 —m—ﬂm; wit), ()
0— r=1 b
where t
s/ ==(E P st =D+ T mi=3 i, ©)
o =1 =1
Er=[(s+M2—M?)(s+s, —s:)—=2s(rM 12+Zr mi®— }f Li1) JIN(S, M 1%, M2\ (s, 50,5,/) 742, )
i=1 =1
Nr= [25(3r+mr+12 ""Sr—l-,l) - (5+mr+12 —ty) (S"I'Sr _Srl)_—_”?\ (s;mf-i»lzruT)}‘(S)ST,STI)]—IIZ ’ (8)
?7':(wr'_gr"lr)[(l'—grz)(l_7772)1—1/2: (9)
w,=[(s+M2—M:2) (s+m 12 —u,) —2s(M2+m, 12 —1) NG, M2, M 2N(s,mr 1% u,) T2, (10)

and A(a,b,c) stands for (e2+b%-+c2—2ab—2bc—2c¢a). The limits of integration of variables s,, #, and f, are as

follows:
sr=( 22 my)?, Ser=(/sr1—m,)?, 1<r<n—2 (11)
i=r+1
(st =5, ) (55, —5")  [N(Sry#rpa?,Srp) NS, 8ry5, ) JH2
U =S+Mpy 12— =+ A R , 1<rn—2 (12)
2s, 2s,
(s+M2—M?) (stmppr?—u,)  [N(s,M1%M2)N(s,mr 2% u,) ]2
L =M 2y pr?— | L X,p, 0<r<n—2 (13)
2s 2s
where variables s, #,, and ¢, are then introduced and corre-
Xyo=Emee[(1—5) (1—n,) ]2, for 7>0 spondingly integrations are done over these variables,
a1 for r=0. (14) so that we have
=41, =0.

It should be noticed that the limits of integration of s,
depend only on the preceding s; variable (i.e., s,—1) and
the limits of integration of variables %, depend on the
variables s; and the preceding #; (j<r), whereas the
limits of the #, integration depend on the variables s,
u;, and the preceding #; (5<7).

In deriving the formula (5), a judicious choice of
(3n—4) Mandelstam-like variables is important. Once
this has been done, the rest is quite simple. Starting
from the phase-space integral (2), the integration over
d*p, is done using the 6 function which expresses the
energy-momentum conservation. & functions in the

n—2
e.=11 l:///dsrdurdt,]/dto F(sp; 1y )
r=1

X / B pr 5 m)S((Q— pr)5)5((gs— pr)* o)

n—2 41
<11 [ / s 60O =3 p)5ra1)

7=1

><a((@—pr+1>2+ur)a«q1—mﬂ%t»}. (15)
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Integrations over the four-momenta of all particles are
done in the c.m. system characterized by Q=0. How-
ever, coordinate reference systems with different orien-
tations in three-dimensional space are employed for
integration over the momenta of different particles.
Integration over d*p; is done in an obvious manner.
Integration over d*p.41 (1<7<n—2) is done using a
coordinate system of reference in which the vector
> i=1” pi points along the z axis. The x axis is chosen such
that q lies in the zx plane, making an angle cos™&, with
the z axis. In such a coordinate system the vector pr41
points in a direction (0r41,¢-11) given by cosfy. 1 =1, and
Cospry1={r Integrations over |pri1|, c080,11, Erp1, and
¢.41 are done in this reference system using the first,
second, third, and fourth é functions, respectively, in the
square bracket of expression (15). Now (Q—2 i1 pi)
is a timelike four-vector, and the variables s, can be
given the maximum freedom so that the fact that the
minimum value of the scalar product (—pi- p;) is mim;,
gives the minimum value of variables like —(pi+p;)?
and the maximum value of variables like —(p;—p;)%

[— (it 2)* Imin= (mitm;)*,
(16)
L= (pi— 1) Jmax=(mi—m;)?,
where m?= —p;* and m;*= —p;%. Hence the limits of
integration of variables s, given by (11) are obvious.
While integrating over cosf,; using the second 6 func-
tion in expression (15), the condition cos?6,41< 1 gives
a quadratic inequality in E,;; which in turn is related to
u, by virtue of the third é function. This inequality can
be written in the form (#,—u,.)(#,—u,_)<0, which
determines the limits of integration? of #,. Finally, the
limits of integration of variables /. are determined from
the fourth 6 function itself, using the fact that cose,i1
lies between —1 and +1.
The scattering or production cross section is given by
(5) apart from a multiplicative factor:

o(s)=c(s)®n,

where ¢(s) is a constant which depends on the c.m. en-
ergy (v/s). The invariant mass spectrum of desired
number of particles in the final state may be obtained
by suitably changing the order of integration of vari-
ables s,. In order to get the invariant mass spectrum of
(n—r) particles (3~ i—r+1" @), the integration over the
variables s; may be performed in the following
order:

n—2 r—1 n—2
II [ dsi— /der /dsq IT | dss.

=1 a=1 B=r+1

The limits of integrations are now changed in the follow-

4 An illustration of the determination of limits of integration in
this way may be found in R. Hagedorn, Ref. 1, p. 110.
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ing way:

r

o= (3 m, s =(V/5— 3 ma)?,

i=r+1 =1

sae=( 3 mibV/s), Sar=(/saa—ma)?, (A7)

=a+1

Sg—-= ( i mi)27

=p+1

spr=(V/sg-1—mp)?.

do/ds, is then obtained by dropping the integration over
sy. By suitably identifying the particle momenta, in-
variant mass spectrum of any (»—r) particles can be
computed. Energy spectrum of particle ¢; is obtained in
the c.m. system by dropping the integration over ds;
in (5) and multiplying by 24/s. The energy spectrum is
given by parametric equations

do d®,
—=2(/s)c(s)—,
dE, dsy (18)

Ey=(s+m®—s1)/24/s.

The parameter s; takes values in the range given by
(11). Similarly, the momentum spectrum of particle a;
in the c.m. system is given by the parametric equations

do 5,ma2,51) 12 d@,
_(y/s)e(s) o O
d|pi s

[p1] =[A(s,mi%51) ]2/ 24/s.

The energy or momentum spectra of all particles in the
final state may be computed in succession by suitably
identifying the particle momenta.

Angular correlation between an initial-state particle
and a final-state particle in the c.m. system is easily ob-
tained. Thus the angular correlation between particles
4 and a; may be computed by replacing the # integra-
tion by integration over {o=p1-q1/|p1|]d1|. (It may be
noticed that £,=170=0, and, therefore, {o=w,.) Making
this transformation, we have

9 b
+mi?—s1  dsy

(19)

@ = (m/4s){s[N(s, M 12, M ;2) 12} n2

-+1 n—=2a Srt ul+
X/ dio IT |:/ dsrl/ dua[N(s,mou1) 712
—1 r=1 81— ul—

n—2 Urt
XH [/ dur{)\(S,ST,ST/))\(S,mT+12’uT) }_1/2:|

=2

<1 [/ r d"'{<1—£r2><1~nr2>(1-fﬂ)r"{l

XF(sy; ur; tr). - (20)
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The variable ¢y occurring in F(s,; #,; #,) or elsewhere
now stands for the following:

(S+’WL12 —Sl) (S+M12 —Mzz)
2s

to=M12+m,?

N(s,ma%s)N(s, M 12, M 5?) /2
+§U[ (s,m1%51) (25 M%) ] e
S

From (20), the angular correlation do/d{, is obtained
in an obvious manner.

Angular correlation between two final-state particles
is a bit difficult. From the definition of 7,, we know that

RAJENDRA KUMAR

®n =3[ N5, Ms%, M 5%) J7H{s[A(s, M 1%, M 5?) J 12}
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in the c.m. system,
,

777-=Dr;»1'2 pi/’lpﬂrll IZ pi[ .
[ 7=1

=1

(22)

Hence, n1=p1-ps/|p1| | p2| is the cosine of angle between
the momentum vectors of @; and as. Using (8), integra-
tion over #; can be changed into integration over 5; and
we can solve for #; in terms of 7y, s, 51, and s2. The limits
of s; and s, integrations become more restricted since
they now depend on 7;. However, the limits of integra-
tion as given in (11) may still be used subject to the
condition that #; (which is now a function of 7y, s, sy,
and ss) lies between i and u.y given by (12). We,
therefore, have®

d51d520(1/t1 —%1._)0(M1+’—141)

+1 s1+ So+ n—=2 Srt
x/ dm/ / HU dsr]
-1 s Joas {(sFsi—ma®)Fni(s+ma?—ur) [ N(s,m1%,51) /N(s,ma2, 1) [H2) r=s L,
n—2 + du

u: , to+
X1I [ ; } /
r=2 Up— [)\(S,sr,sr ))\(*5‘77’7'1'-{—12,7’“)]1/2 to—

where

ur=s+mo>—3{ (s+s1—m1?) (s1+m2>—s3)

. ,i_fl: [ dt,
1
=0 I A T TR R

]F<sr; wit), (23)

—m[A(s,s1,71%) JN(s1,m0%52) — (m9%/5) (L —=n1®)A(s,51,m1%) ]2} [s1A (5,02, 50) (1 —mi2) /As L (24)

and

(s1Fma? —s5) (s+s1—ms?) [MGs1yma?,52)M (s, 51,m0%) /2

U4 =S+WL22
251

d®,/dn1 describes the angular correlation between par-
ticles @; and @s. Thus, by suitably identifying the mo-
menta of particles, angular correlation between any
two particles in the final state may be computed.
Finally, the angular correlation between certain
planes defined by the particle momenta in the c.m. sys-
tem can be obtained. By definition, {, (1<r<n—2) is
the cosine of the angle between the two planes: (i) the
plane defined by the vectors q; and ;" pi, and (ii)
the plane defined by the vectors pry1 and ;1" p; (or
> i—rt2” Pi). Using the relation between the variables
¢y and £, given by (9) and (10), ¢, integration may be
changed into integration over {, with limits of integra-
tion of {,from —1 to 41 for all values of ». Hence the
integration over the variables {» may be done in any
order and do/d{, then describes the angular correlation
between the two planes defined above. We have

x a2 g, il Y
e =2 | d R "
s ./;1 o }——:«[1 [ -1 (l—ﬁ'rz)llz] El Ii/”‘ ) :I

w1t n—= ur+ du,
B[ ]
</7; ' r=2 Ur— [)‘(sthsr,)jllz

1—

XF(sr; ur; 1:(50)), (26)

+ . 25)
231 (

where the variables /. occurring in F(s,; #,; ;) can be
expressed in terms of ¢, by using (9) and (10).

In the particular cases when the function F is simpler,
®, can be reduced to lower-rank integrals. If, for ex-
ample, it does not depend on any of the variables ¢,
integrating the expression (26) over all {, gives ¢

1 n—2 St ul+
®u=-Gm) 1 I1 [ / dsT:| f duy
S r=1 Srm Upm

n—2 Ur+ d%r
[
=2 L e [N(S,80,5,) ]2

Further, if F does not depend on any of the variables
u, as well, integration over all %, gives

]F(s,; ). (27)

1 n—2 s+ ds,
v I [ [ = 0ensamiyn

S r=1 — Sr

X[}\(Sn_2,7%n-12,mn2>]1/ZF(ST)- (28)

5 For n=3, s2=S$p—1=m,2 It is understood that there is no inte-
gration over sy in this case.
6 The result could have been obtained by removing

ﬁ“ [/dtr 6(lr+ (q1—?r+1)2)]
=0

frfom (15), in which case integration over d¢,41 gives just a factor
of 2.
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In the particular case when F(s,)=1, the expression
(28) gives just the phase-space factor.”

The order of integration of variables #, and ¢, cannot
be interchanged in (5), since the limits of integration of
variables #, depend on #; Furthermore, integrations
over the four-momenta of all final-state particles were
done in the c.m. system in obtaining (5). Making use
of Lorentz invariance, it is possible to integrate over
the four-momenta of different particles in different
inertial frames. If we choose to integrate over d*p.41 in
a frame of reference in which Q—>_ ;1" p;=0, it is more
convenient to choose the variables /. in a slightly differ-

$,ds,

n-BODY DECAY AND PRODUCTION PROCESSES

n—2 Sr+
Ou=3rDA M2 T T | /
r=1 s

e [INGSrySrp1, M) 12
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ent manner. With variables s, and #, still defined by
(3), the variables ¢, are now defined as®

r+1

L=—(p—2 p9)% 0<r<n—2. (29)
=1

®, can now be written in two different forms which
differ in the order of integrations over the variables #,
and ¢,. If the integration over the variables Z, is to be
done first, ®, should be transformed in such a way that
the limits of integration of #, do not depend on #;. In
that case, we have

to+ n—2 tr+ di,
di I1 [ / ——————:!
:|-/;0— ’ r=1 tr= [)‘(sfytf—lyM22)]1/2

du,

n—2 ur+
xIT [
r=1

where s,/ is given by (6) and

£r=[257(3+M22_M12)
- (S+sr—srl)(sr+M22"tr—1)]

X[)‘(S’ST)ST,))‘(sf;tf—hMZZ)]_1/2’ (31)
Nr= [Zsr(tr —lr —mr+12)
+ (5"1'_“7711-+12 _‘sr+1) (3r+tr—-1 _M22)]
XD\(Sr;mr+12:5r+l>k(srytr—lfo)]_lm; (32)
&r=(wr—Em) (1 =&AL =2 ]2, (33)

wr=[(s+s- =57 ) (SrF-Mpp1? —Srp1) —25:(5+Mrta? —u,)]
XOA(S, 87,8 IN(Srsegr®,srpn) T2, (34)
The limits of integrations of variables s, are given. by

(11) and
(s,+mr+12 “"Sr+1) (sr+tr—1 —M22)

bra =tr_1Fmrii®

2s,
. DA(Sryr 12,8 rp DN (S b1, M 52) JH2
+ 2. )

0<r<n—2;t1=M?> (35)

(sHsr—s/)(srFMpp12—Sr11)

Uy =SFMpsr?
2s,
| [BYGRICE N ARLE SR e
f
2s,

X{&mE[(1=£) (=202, 1<r<n—2. (36)

£, 1r, and ¢, given by expressions (31)-(33) have the
following geometrical meaning in the reference frames

7 A similar expression for the phase-space factor has been ob-
tained by B. Almgren, University of Lund report (unpublished).
The author is thankful to Dr. J. S. Vaishya for drawing his atten-
tion to this report.

wr— [N, ) TPLA= &) A=) (A=) ]2

]F(s,; 5 t), (30)

characterized by Q—>_ ;1" p;=0:
£=0Q - (m—X p)/|Q||—X pil
i1 1

=—q:-Q/[a[]Q],
(37)

7.

r=(@=2 )bt/ [ 0= B (Dol

g=1
r=CoS¢r41,

where ¢r41 is the angle between the following two
planes: (i) the plane defined by the vectors Q and
(X im1” pi) (or q1—2_s=1" pi) and (ii) the plane defined by
the vectors pry1 and (q1—2_s=1" ;). The limits of inte-
gration® of variables ¢, and #, have been obtained from
their definition using the fact that 7, and ¢, can take
values only in the range —1 to +1.

In the particular case when F does not depend on any
of the variables #%,, we have

n—2 Srt+
¢u=(m) I1 [ / ds,]
r=1 Sp—

n—2 trt dtr
<[ [ R, 69
r=0 lrm [)\(sr,tr—lyM22)]1/2

Further, if the function F does not depend on any of
the variables ¢, also, the expression (38) can be reduced
to (28). Scattering or production cross section, invariant
mass spectra, and energy spectra (in the c.m. system)
of final-state particles may be computed as discussed

8Tt may be seen that with this definition of variables ¢, the
integration over the four-momenta of all particles can be con-
veniently done in the c.m. system also.

9 It may be noticed that the limits of integration of #, in the
formula (5) and the limits of integration of ¢, in (30) are not ob-
tained in an identical fashion.
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earlier. Angular correlation between particles 4; and
a; (in the c.m. system) may be computed by changing
the integration over #, into integration over n,. However,
for the computation of angular correlations among
final-state particles in the c.m. system, only Egs. (23)
and (26) are appropriate.

B. Decay Processes

The phase-space integral to be evaluated for the
decay process

4@ aip) (39
is of the form
zo,,=1:11 [d*p:8(p2+m?)]
X0~ pIF(Q; p), n>3. (40)

=1

RAJENDRA KUMAR
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The phase-space factor in this case is the same as in the
case of collision processes with s replaced by M2, where
M?=—Q? However, in general, the transformation in
this case would be somewhat different. In particular, it
is obvious that the set of variables #, will have to be
defined in a different manner. The (3% —7)-independent
Mandelstam-like variables which uniquely define a point
in the phase space may be defined as follows:

=== p), wr=—=(Q=pes0?,

1<r<n—2 41)
r+1
L=—(Q—=2 pd? 2<r<n—2.
i=2

The meaning of symbols s, .1, %, and # which are
used in the expressions below is quite obvious (so=M?2,
Sn1=ma?, #o=Ss1, L1=u,). The phase-space integral
D, is then transformed into the following definite in-
tegral of rank (32—7):

D.=

7T2 n—2 Srt ul+ n—9 Upt d’ll,
M2(n—3) H |:/ dsr]/ duy H [ :I
402 =1/, wie r=2 L), [N, N2 om0y 12 0,) ]2

st dt,
<[ DNty AL — £ (1= —;r2>]”2]F(S” ity (@
where s,” is given by (6) (with s replaced by M?) and
r+1 41 r
= —(EZ pi)2=t,+(r—1)M2+§2 mﬁ—gl uj, (43)
N, s1,5: ) NP troatea) =N M2ty s1)  (MPs) —50) (M2t —t1) = 2M (s, s/ —m22)
B LN 51,8 INM 2ty rd ) TH2 - AL, 50,8, M2ty 1yt o) M2 ’ (44)
MM, 5r41,8r41") =N M2 57,5," ) =N M2 a®00)  2M3(S4-Mpir2 —Spp1) — (M2 —1,) (M 245, —s5,")
"= 2INM 2, 51,5 M2 M1 2y 00,) M2 B DAL, 0,8 IN(M 20102 00,) TH2 » &)
Cr=(wr—Em)[(1—=EH A =2, ]2, (46)
=)\(M 2t ) =N M2t syt a) —NM 2,012 0,) =2M tratmepa®—t) — (M24mep2—u,) M2+t 1—1,_y") @

2[}\ (M2’tr_1,tq-_1/))\(M2, mr+12:u7‘)]1/2

The limits of integrations of variables s, and #%, are given
by (11) and (12) and the limits of integration of variables
ir are

(M2+mypa—u,) (M2t 1—t,—1")
2Mm2
DML e u N et ) T2
.
2M?
X{—EmE[(1-5) (1 —n,2)]"2}.
&, ns, and ¢, defined by Eqs. (44)-(46) have the follow-

tr:[: =lr—1+mr—|—12

(48)

ML gyt INM 210012 00,) T2

ing geometrical meaning in the rest frame of decaying

particle:
,

6= (E 9)-(Z /1% Bl IE 0

=1

- , (49)
Nr =Pry1- (Z=:1 pi)/,pﬂ-ll I §1 p"l ’

$r=C0S¢,11,

where ¢..1 is the angle between the planes defined by
the momentum vectors pr (or >_;—o"p;) and > ;1" ps
and the vectors pr and X imq” pi (OF 2 imrya® Pi).
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The invariant mass spectra and energy spectra of
final-state particles in the rest frame of decaying particle
are obtained from (42) in the same way as discussed in
the case of collision processes. Angular correlation be-

3)n =
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tween the particles ¢, and @, is obtained by changing
the #, integration into integration over the variable 7,
which gives the cosine of angle between the vectors p;
and p» in the rest frame of 4. We have!®

ds1dss[ N(M2mn %, s1)N(M 2 me2,01) 260 (201, — 1) 0 (1 —11_)

2 +1 s1+ s2+
Mz(n_S)/ dnl/ /
4M* -1 si— J s2— { (M2—|-s1—m12)+171(M2+m22—-ul)[:}\(Mz,ml2,sl)/)\(M2,m22,u1)]1/2}

n—2 r+ n—2 urt du,
X1I [ / dsr] II [ ]
r=3 Sr— r=2 Ur— [}\(M2ysrys7‘/))‘(M27m7‘+12;u7)]1/2

dt,

Xﬁ2 [ r+
=2 Ly [Nt lod ) TPL(A—= D) =0 (1 =52 ]2

where #; and u;,. are given by (24) and (25) with s re-
placed by M?2. Using the relation between {, and ¢, given
by Egs. (46) and (47), integration over ¢, can be changed
into integration over ¢, and distributions in {, can be
obtained as in the case of collision processes. In the par-
ticular cases when F(s,; u,; .) does not depend on some
of the variables, lower-rank integrals may be obtained
for D,.

In transforming the phase-space integrals into definite
integrals over Mandelstam-like variables, we have
throughout defined the variables s, and %, as given in
Eq. (3). Though this choice is convenient, it is apparant
that it is not unique and in some particular cases, other
definitions of these variables may be useful. As an ex-
ample we describe an alternative transformation of the
phase-space integral D, in terms of the following inde-

]F(sr; wit), (50)

D, = (r?/ AU M09

pendent variables:

n r—eér+1

s,=—(e 2 pi— 2 pi)?,
T=r—1 i=r—er

r41 (51)
tr=—(Q=X p3% 1<r<n—2

i=2
U= —[Q'_(l_er)Pr'—pH—l:P; 2<7’< n—2

where
er=1, for r an even integer

=0, for r an odd integer.

D, is then transformed into the following definite
integral:

n—2 8r+ n—2 ur+ du,
<[ [ o | ]
=1L/, =2 L)y INGSrtytrgt, MOty 1y, M2) T 2DN (M2, 511,87t YN 2, 5 1y000) ] 0012

1+ n—2 trt+ dir
X / an [T I: :l
e r=2 L) [Nt rmrybeea) PPN 2 s g’ ) ] O [ (1= £,2) (1 —1,2) (1 —¢,2) ]2

where

Sor’ =sorH(r—1)M*+2 (s2-1—2i1)

J=1

(53)
tor1 =lor1—l+(—1)M2+my?

+i (s25-1—u2i1), (54)

7=2

227 = [2M2(52T+1+t2r—1 _t2r+l)
— (M2 +sprp1—tzry) (M2 tor 1— 120 1) ]

XN, s9rp1,u2rs )N farsylara ) 712, (55)

XF(sr; t4r5 1), (52)

£2r+1 = [(M2+S2r _S2r,) (M2+t2r—l _t21\—1,)

- 2M2(s2r+t2r—-1 - m12):]

XA, 591,50 N M2 tor_1ylarr’) T2, (56)
Nar =[ (M 242,11 —t2r11) (M 24120112 —t43,)
—2M2(S9rp1FMari 1 —marye?) ]
XN, $20 1,000 )N 220y 1% 005,) T2, (ST)

10 A formula for the angular correlations in three-body decays
is given by M. M. Nieto, Rev. Mod. Phys. 40, 140 (1968).



1872
Nery1= [2M2(52r+s2r+1"' s2r+2)

— (M2+Szr+1_u2r+1) (M2+Sgr—32/>]

XM 2,52, 41,1000 DN M2, 597,50, ) T2, (38)
.(‘r:(wr_sr’?r)[(l—frz)(l _777'2)]_1/2) (59)
wor =[2M%(t9,_1—1t2r+M2ri1%)
— (M2 +-map® —to,) (M2 -tor 1 —12r—1") ]
X [)\(M2:m2r+12;u2r))\(M2:t2f~1)l‘21‘~1,)]~1/2 ) (60)
worp1=[2M?*(tor_1—tory1-+S2r11)
— (M 2+-s2rp1—tpp1) (M P+ log_1—l2—1") ]
X [)\(szs2r+11u2r+1)}‘(Mzrl‘?T—l)t?T—l/)]—l/z . (61>
The limits of integration are!*
[su_l]_ = (m21~1+m2r) 2 )
: (62)
[sor1]e=W/Sor—e— 2. my)?,
1=2r+1
I___s2r]—-= ( Z ml')z ’
i=2r+1
(63)
[sor = (V/S2r—a—/S2r-1)?%,
[uorp1]e=M*+s2rp1
(M2+Szr —Szrl) (32r+32r+1 "'Szr+2)
2321‘
i[)\(Mz,sw,327,)>\(52r,52r+1,32r+2):]1/? ’ (64)

2521'
[u2rj;|; =-A42'I"7n27‘+12

(M2+s2r+1 _'u2r+1) (s2r+l+m2r+12 - m27+22)

2S2r+1

ONM 2 52001, 107 1 DN(S2rp 1, Mary 12, M2y 02) JH2
.

- 259y ’
. (65)
e Mt (s1Fmao2—mi2) (M2+s51—s59)
= Mo —
1 ? 251
A(s1,m12,ma)N(M2,51,52) J1/2
:i:[ (s1,m1%,me 2 (66)

2S1

1Tt should be noticed that the integration over tar41 Precedes
the integration over #sr [unless 2r=#n—2, in which case tary1
=1n-1, which is not one of the (3#—7) independent variables].
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[tor o =tor_1mary1?

(M2 -mopi 12 —u0,) (M2+tor_1—19,—1")
2M?

J;[)\ (Mz,m2r+127u2r)}\(MZ,th—I,zQT—l/)]I/2
|-

2M*

X[X2 ], (67)

[tor1 e =tor 1452041

(M2-s2r41—t9, 1) (M2+tor_1—1or—1")
2M2

¢D\(M %82, Uar DN(M %l 1ylart) ]2
T
2M?

X[ Xorp1lse, (68)

[ijd:z _Ernr:!:[(l_£r2>(1_77r2)]”2- (69)
The meaning of the symbols s,_1, %,_1, ta_1, So, and u;
is clear from the definitions given in (51) (s,_1=5,_s,
Un_1=Sn_o for n even; s,.1=m,? for n odd; so=M?2,
#1=S5; and {,_1=m,2).

In the particular case when the function F is inde-
pendent of all #, and #,, we have

1 n—29 s+ ds,
o=t 1 [ =]
M? r=1 sr—1 Sr

n—1

>< H { [}\ (s",mr2:mr+12):|(1_er) 2
r=1

XA(Sr—2,8r—1,5, 12} F(s,).  (70)

We conclude this section with the following remarks:

(a) The range of integration over the variables s,
#r, and ¢, becomes narrower with increasing 7. It is par-
ticularly so for the variables %, and .. It is because the
transformed phase-space integrals @, and D, are either
of the form TI[ /"ds [I[ /S du, JTI[ S dt.] or of the form
ILs ds, ML S dt. MIL S du.]. It is therefore obvious

that in the former case, for example, the range of inte-
gration of variable #, for fixed values of variables s;,
u;, and ¢; (7<r) (on which depend the limits of integra-
tion of ) will be very much restricted. Hence, in any
practical calculation, the values of the variables #,
or ¢, or both (for > 1, say) may be restricted to such a
narrow range that the function F(s,; u,; {,) remains
practically constant within the'range of integration, in
which case the integration becomes trivial.

(b) It has been stated that all of 1N(V—1) scalar
products of the type P;- Py (j#k) can be expressed in
terms of (3V—10) such independent scalar products.
For N <5, all such scalar products can be expressed as
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a linear combination of (3V —10) independent variables
(x:):
])j’])k, =Z a;x;,

where the coefficients a; are independent of x;. In such
a case the coefficients a; can be obtained simply by using
energy-momentum conservation. However, for N> 6
some of the scalar products P;- P; (whose number goes
on increasing with increasing ) will always be such
that the coefficients «; themselves depend on variables
x:. It is not possible, in such a case, to obtain a; simply
by using energy-momentum conservation. The coeffi-
cients a; may, however, be calculated by making use of
symmetry arguments which do not depend on geom-
etry. This is illustrated in the Appendix.

Some of the results of this work were applied to study
some production processes.!?~** After the manuscript
was submitted for publication, we learnt that a scheme
similar to ours had been used for the construction of a
Monte Carlo program for generating n-particle produc-
tion amplitudes at CERN.15
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APPENDIX

Some illustrations of the use of the results stated in
the text are given below.

A. Three-Body Decays

We consider the decay process

A(Q) = ax(pr)+aax(ps)+as(ps),
which is described by the 7-matrix element defined by

3

f1Sliy=i@n)54Q—3 £,

X V& IT QVE)¥f|T]i. (AD

Now, |{f|T]4)|? summed up over the final spin states
and averaged over the initial spin states is a Lorentz-

128, C. Bhargava, Phys. Rev. 174, 1969 (1968).

13 S, C. Bhargava, Nuovo Cimento 584, 815 (1968).

14 R, Dutt and P. Nanda, Nuovo Cimento 60A, 706 (1969).

16 Program FowL, CERN Library W-505 (unpublished). We
also received a report (unpublished) by E. Byckling and K.
Kajantie, in which a Monte Carlo method for phase-space inte-
gration is given.
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invariant quantity which we denote by F(Q,p:), and
can be expressed in terms of two independent Mandel-
stam-like variables which may be taken to be

s1=—(Q—p1)% w=—(Q—p2)?.

The transition probability per second is then given by

(A2)

1 1 (M—my)?2 ui+
R=-=— / d.n/ duy F(syu1), (A3)
T 256m3M3 (mg+m3)? uy—
where the limits of integration of variable %, are
(s1Fmo®—ms?) (M2+51—m12)
w1y =M*+m,?
251
[)\(Sl,m22am32))\(szslymlz)jl/2
o4 (A4)

281

If F(s1,u1) is simple enough, the integration over #; may
be done analytically; in particular, if F(Q; p:)=F(s1),
we have

u1+
/ duy F(S1)
UL~

=[F(s1)/s1]LN(s1,mo%ms)N(M2,51,m:%) ]2, (AS)

The energy and momentum spectra of particle a;, for
example, in the rest frame of particle 4 are given by the
parametric equations

- / duy F(sy,uy),
dE; 128w3M*? up— (A6)
E.= (M2+m12_51)/2M}

and

R
= (12873 M 2~ (M 2+m 2 —s;)~1
d|p

ul+

><D\(M2,m12,31)]”2/ duy F(s1,u1),
ur (A7)

[pll =[>‘(M2)m12}sl)]1/2/2M:
where the parameter s; takes values in the range

(ma+ms)? to (M —my)? The invariant mass spectrum
of particles a.a; is given by

d.R 1 ul+
e — / duy F(syu),
dsy 256m3M3 J,,_

31=M232.

(A8)

The angular correlation between particles a; and a, in
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the rest frame of particle 4 is obtained as

"dR 1
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dsi [N 2 s)NM 2 ma? 1) 11201 —00) 0 (s — w1 ) F (s1,11)

where n1=p1-p2/|p1] | p2| and u; stands for the following:

(M-—-my)2
dn 256w3M3 /;mﬂ-ma)z {2451 —m?) (M2 mg?—un) M2, 50/ NM 2 ma ) 112}

(A9)

u1=M2+m22——%{ (M2+31—m12) (Sl+m22—m32) —'7’11D\(M2,51,m12)]1/2
X[N(s1,m2%m3?) — (mo?/ MP)NM 2, m12,51) (1= 12) 12} [s1 N 2 ma2,51) (1 —mi2) /AM2TL. (A10)

B. Four-Body Decays

The five independent Mandelstam-like variables describing the kinematics of four body-decay processes may be

defined as [cf. Eq. (41)]
Sl=_(Q_'P1)2)
s2=—(Q—p1—p2)%

The phase-space integral 9y is then transformed into the following:

72 [ (M—m)?

5)4=*‘
4 J (marmarmo?

(V's1—mg)?2 ul+
d51/ dSz
(

m3+ma)?

U= —(Q—P2)2’
ue=—(Q—ps)% = —(Q—pa—ps)?. (A11)
du1
up— [)\(M2,.§‘2,Sg/))\(M2,'WL22,141):II/2(1 - 522)1/2
w2+ duz t2+ dtg
X / F(s1,80; u1,t0; 1) (A12)
wae [N At us) 121 —n2)V2 Sy (1=

Changing the #, integration into integration over {», we obtain

dul

Dy=

where #; is obtained in terms of {» from Egs. (46) and
(47); the variables sy, #;, and %, measure the c.m. en-
ergies Ey, E,, and Es, respectively; s, is the two-particle
(¢3+a4) invariant mass squared; and ¢ is the cosine of
the angle (¢) between the planes defined by the mo-
mentum vectors (py,p:) and by (ps,ps). The matrix
clement squared, F(sy,ss; #iss; £2(¢2)), is proportional
to the differential transition probability multiplied by
the momentum |pi+psl;

F(s1,52; 1,025 12(¢))

1!'2 -1 5 4
=< ) [prtps| —— . (A14)
1603 05105202101450¢
The distribution in angle ¢ is obtained as!®
de4 72 s1+ s2+ ul+ dul
—_—= / ds; / dsy -_—
d¢ 8M? s1— 52— Uy [)\(M2,S2,32/)]1/2
U2+
X/ dug F(s1,52; u1,us; la(6)). (A15)
U

18 A study of such angular correlations has been suggested by
Nelson for the determination of the spin and parity of isosinglet
boson resonances decaying into four pions [T. J. Nelson, Phys.
Rev. 172, 1701 (1968)7].

2 si+ 2 wr
/ (l51/ (ng
8M? J,,_ s2- up— D\(szs?:S?/)]l/Z

w2+ +1 dfz
/ Qs | Py s 652)), (A1)
U2 -1 (1 —§22)1/2

A somewhat different choice of variables is obtained
from (51). We have s;=—(p1+p2)2 and &, so, us, £
are defined in the same way as #i, s, u,, and ¢ in
Eq. (Al1). The transformed phase-space integral in
this case is

2 (M—m3g—my)? (M—+'s1)2 ds2
Dy=— dslf - -
8M? (m14me)? (mg-mq)? [)‘(szslxsz)]lm
t1+ ug+ +1 dg-2
X/ dtlf dus ——————F(s1,82; t1,la; s),
t— ug— -1 (1_§‘22)1/2

where {, has the same geometrical meaning as before
and is given by Egs. (59) and (60). It may be seen that
with the set of independent variables defined in (51),
single-particle energy spectra cannot be obtained. How-
ever, this set of variables may be useful in some par-
ticular cases. For example, if p; and p, denote the elec-
tron and neutrino four-momenta in a four-body leptonic
decay of a hadron, it may be possible to integrate over
uz and t; (or {7) analytically, because of the simplicity
of lepton current and because m,=0, m,~0. In that
case, the invariant mass spectrum of the final-state
hadrons (with four-momenta p; and p,) is easily ob-
tained in terms of a lower-rank integral. This invariant



185

mass spectrum could also be obtained with the choice
of variables defined by (A11) by identifying the electron
and neutrino momenta with p; and p,, but this identi-
fication would make the %, and ¢ (or {») integrations
more difficult.

C. Production Processes with Three Particles
in the Final State
In terms of the variables defined by (3), viz.,
s=so=—0% l=—(a—p1)?%
s1=—(Q—p1)% m=—(Q—p2)% ti=—(q1—p2)%

the phase-space integral @; is transformed into the
following:

(A16)

s (Va—m1)? dsy
6)3 == _
2N($, M2, M 5%) J (mamay? [N(5,51,m12) JH/2
dul

to+ dto ul+
X
/:0- (I=&D2 J s [N(smun) J2(1—mi?)H2

i+ dh
)(/ —————F(s,51; to,t1; %1) .
n. (1=5H)Y2

The angular correlation between the initial-state par-
ticle 41(q1) and the final-state particle ai(p1) (in the
c.m. system) is given by

(A17)

do d®; T /*” dsy

— O ———— =
dto  dfe AN, M2 MH T2 ), (1—g2)H2

ut duy t1+ dt1
X
e [N(s,ma%00) JH2(1—ne2) V2 /;1_ (1= 12)1/2
XF(s,51; to($o),1a; 1), (A18)

where {o=pi-qi/|p1||ai|. The distributions in the
angle contained between the production plane of a1(p1)
and the plane defined by the momentum vectors of par-
ticles a2(p2) and as(ps) are obtained as

do d®; o1+ dsy

= e MMM [
b d¢ ’ . DA, sym?) ]2

to+ ul+
X/ dto/ duy F(s,s1; to,1(¢); u1),  (A19)
to— ULw

where #; as a function of cos¢(=¢1) is given by Egs. (9)
and (10).

Production cross section and energy spectra (or
equivalently, two-particle invariant mass spectra) of
final-state particles in the processes double pion photo-
production,’? radiative pion nucleon scattering,’® and
pion production in pion-nucleon collisions, have been
obtained using the results stated in the text.
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D. Production Processes with Four Particles
in the Final State

The eight independent Lorentz-invariant variables
which uniquely specify a point in the phase space may
be defined as [cf. Eq. (3)]

s=s=—02%

s1==(Q—pv)%

lo=—(q1—p1)?,
ur=—(Q—p2)?,

h=—(q1—p2)?
se=—(Q—p1—p2)% u2=—(Q—p3)?,
tr=—(q1—p3)*.

It may be seen that the scalar products pi:ps, p2- ps,
P1-Ps, and po-ps cannot be expressed as a linear com-
bination of these eight variables. The combinations
(prtp2) - ps, (prtp2)-pa, (ps+pa)-p1, and (pstpa)- po
can, however, be expressed as a linear combination of
the variables defined by (A20). If # is defined to be
equal to —(p1+ps)? rather than as given in (A20), the
scalar products g1 ps, q2* p3, ¢1- ps, and ¢a- p4 cannot be
expressed as a linear combination of the eight indepen-
dent variables. In either case, if only one of the four
scalar products is known, others can be expressed as
a linear combination of these nine scalar products. With
the eight independent variables defined by (A20), p1-ps
can be obtained in the following way.
By symmetry considerations, we must have

(A20)

/d4ﬁ3 8(ps*+ms?)d((Q —pr—p2—ps)*+m4?)
X6((Q—p3)*+u)5((q1—p3)*+12)(P3)u

=Ea(Q—PI_PZ)ﬂ+BQﬂ+7(ql)M]I7 (A21)
where
I=/d4ﬁs 8(ps*tms?)8((Q—p1—p2—ps)*+md)
X((Q—pa)2+u)d((g1—ps)*+12).  (A22)

The quantities e, 8, v are obtained, as usual, by contract-
ing with (Q—p1—p2)u, Qu and (g1), and solving the
three simultaneous equations in «, 8, and . Not only
do we have

/44103 8(ps*t+ms?)8((Q—pr—p2—ps)*+m4?)
X8((Q—pa)2+us)8((g1—ps)*+t2) (p1- p3)
=[a(Q—p1—p2) p1+BQ- pr+vq1-p11I,

but pi-ps dtself must be equal to [a(Q—p1—p2)-p1
480 prtvqi-p1l

In this way, all $V(V—1) scalar products of the type
P;-P; (1) can be expressed in terms of (3V—10)-
independent variables algebraically, without the aid
of complicated geometry.



