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tude for the trajectory a= —0.7+0.95se as determined
by A particle mass spectra. '

(iii) The A and 8 FESR results for Ar-As exchanges
fail to change sign at cr= —

s (vs 0—8). A. zero in the

amplitudes at this point is expected in conventional
Regge theory. We are inclined not to take this dis-
agreement at this large negative I value too seriously at
the moment, since the e=0 FESR integrals may involve
appreciable background contributions that are not ac-
counted for (particularly in the Z* region) in our
resonance-saturation approximation. In fact, the A
amplitude does change sign at a larger Ivalue (sc~—1.3).

(iv) The signs of the A7 and A contributions to A
and 8 amplitudes are consistent with exchange de-
generacy for the Regge residues" (such that the im-
aginary Regge exchange amplitude due to A and A.~
vanishes).

The E+p backward elastic scattering data in the
momentum range 2-7 GeV/c have been successfully

described by A and A„Regge poles with exchange-
degenerate trajectories and residues. ' We have evalu-
ated the corresponding Regge contribution to the
FESR for comparison with the I= 0, m =0, j. low-energy
integrals. The results from the Regge fit are shown by
the dashed curves in Fig. 5. Except for the A -Ap FESR
results on the 8 amplitude, the low-energy integrals are
not in good agreement with the Regge integrals obtained
from its to high-energy data, which indicates that the
resonance evaluations of the low-energy integrals are at
present too crude to serve as a quantitative tool.

In conclusion, we should emphasize that even at the
present stage the I-channel FESR have provided useful
information on the properties of the X, A, and Z ex-

changes. As further experimental information becomes
available and as more sophisticated models for un-

physical regions are developed, the FKSR will become a
quantitative probe of I-channel baryon exchanges.
Alternatively, these FESR relations can supplement
studies of unphysical regions.
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The nucleon isovector form factor Frv(t) is described by two isovector resonances, the p and the p'. The
eR'ect of the p' resonance on current-algebra sum rules and on the normalization of the pion form factor
J {t) is investigated. The widths F(p 2 ) and F(p 2)) are determined within fairly narrow limits to be in
excellent agreement with a recent analysis of the colliding-beam data. The pion form factor in the spacelike
region is found to behave lik.e t at large t. Using the y-p' coupling determined by this analysis, a possible
explanation is given for the apparent discrepancies reported recently in photoproduction experiments.
A discussion of the u=o, ~$ superconvergence relations is given. A detailed account of the nucleon form
factors Gav(t) and G@"(t) is presented.

I. INTRODUCTION AND BASIC EQUATIONS

~ NE of the major theoretical problems in electro-
magnetic interactions in recent years has been the

explanation of the so-called dipole Qt for the nucleon
form factors. Recent experiments' have con6rmed that
the form factor Gss"(t)/ts„behaves according to the
empirical relation

for 0& t&25 (G—eV/c)'. While, experimentally, it is
difficult to obtain Gsv(t) for large t, it has been observed
that for 0& —t~3 (GeV/c)' the scaling laws

Gss (t) =Ger (t)/tsv, (1 2)

GM" (t)/ts p= Gvr" (t)/ts„, (1.3)

*Supported in part by the National Research Council of
Canada.

' D. H. Coward et at. , Phys. Rev. Letters 20, 292 (1968).

are consistent with the data, except for a small region of
t near zero, where it is known that G~"(t) has a small
but nonzero slope. '

The strong f dependence of the form factor is difficult
to understand on the basis of the usual pole dominance
by vector particles of the dispersion relations for Gz(t)
and Gsr(t). It is clear, for example, that the p meson is
not sufTicient to explain the t ' behavior of Gp "(t), since
in dispersion theory a single resonance leads to a t '
behavior far from the resonance, unless some ad hoc
structure is assumed for the pSE vertex function. ' An
obvious explanation for this I dependence would be the

R. Wilson, in Lectures ctt ZW6 Scottish diversities Summer
School ie Physics, edited by T. W. Priest and L. L. J. Vick {Oliver
and Boyd, London, 1967).

3 See, e.g. , the fit by T. Massam and A. Zichichi, Nuovo Cimento
44, 309 (1966).
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existence of another isovector resonance, the p', with
the same quantum numbers as the p, especially since
such a resonance could also explain the nonzero polariza-
tion in high-energy m--E charge-exchange scattering. 4

Assuming that the Sach's isovector form factors G~~
and G~ are dominated by these two resonances leads'
to m, (1 GeV. This is unsatisfactory, since no such
particle has been observed in this region. However, it is
well known that there are alternatives to the Sachs
choice of form factors, including the original Dirac and
Pauli form factors, F& and F2. Indeed, the hypotheses
of p dominance of the isovector current and universality
were originally applied to the isovector Dirac form
factor Ft~(t) and seem to be valid for small t It w. ould
seem natural, therefore, to attempt to extend this ap-
proach to higher

I
tI by including the second isovector

resonance in a dispersion relation for F&~(t). Since

G~ Fr+ 7——Fs,

Gsr F1+F2| (1.5)

(1.6)

where v=f/4M' for both the isovector and isoscalar
form factors, it follows that Fs~ ~t ' from Eq. (1.1),
provided the scaling laws (1.2)—(1.4) hold. If the scaling
laws are assumed to be valid, however, G~"/Ii~ can be
expressed entirely' ' in terms of F&~..

G~"(&) (1—r)Fi'(&)

1—(I .—p.)r
(1.7)

Assuming that F~~ satisfies an unsubtracted dis-
persion relation, and dominating the absorptive part by
the p and p', leads to, in the zero-width approximation,

PpNNFp Pp'NNFp'
Fi'(&) = +

mp' —t mp' —t
(1 8)

4 T. J. Gajdicar, R. K. Logan, and J. W. Moffat, Phys. Rev.
170, 1599 (1968).

~ We emphasize that the form (1.7) is an empirical re1ationship
valid in the spacelike region t &0 to the extent that the scaling
laws (1.2)—(1.4) hold.

J. G. Cordes and P. J. O'Donnell, Phys. Rev. Letters 20, 1462
(1968).

where Fp is defined by

(o I
I'."l(0)

I p'(V)) =F.e.(q) (19)
and ypNN is the coupling constant for the vector part of
the pSN interaction;

(&'(p')
I ~.'(0)

I &(p))=~(p') (7.»~.
+ v, "' "V) (p), (1»)

where q= p' —p. F„. and y, » are defined similarly.
The normalization condition Fi (0)= 1, and the require-
ment that Ft~(]) t ' for large I, gives two relations
between the coupling constants appearing in Eq. (1.8),
which results in

Fi (t) = m 'm '/(m ' —I) (m ' t) . —

This leads to a good representation of the data for
0( t &—25 (GeV/c)', using Eq. (1.7) when m, ~2.0 GeV
&5'P~. Although no new form-factor data have appeared
since our previous analysis, ' the results of a series of
colliding-beam experiments and of photoproduction of

p mesons from complex nuclei have been reported for
which our p+ p' model makes some interesting
statements.

The requirement that the p and p' completely describe
the nucleon form factor Fi"(I) implies that the couplings
of p and p' to the photon and to the SX system should
be comparable in magnitude. This might lead one to
expect some difficulty in maintaining the first Weinberg
sum rules for' SU(2) &(SU(2) and' SU(3) and even the
vector dominance of the ~-Ã scattering lengths. ' As we
shall show, apart from the radiative decay of the pion,
which depends on the SU(2)&(SU(2) f&rst Weinberg
sum rule, the p' couplings actually serve to bring the
vector-dominance model into agreement with the collid-
ing-beam experiments" "on the decays of the p, co, and
g. Thus, if we consider the conventional first Weinberg
sum rule for SU(3)

F23(Fs F2)
+

mp' 4 ~m„' m, '3' (1.12)

Ppz. qrgpNN

mp 2
(1.13)

obtained by equating the values obtained from p ex-
change and from current algebra for the x-E s-wave
scattering-length difference. Since the normalization

' S. Weinberg, Phys. Rev. Letters 18, 307 (1967).
SR. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266

(1967);T. Das, V. S. Mathur, and S. Okubo, shed 19, 470 (1967).;
J. G. Cordes and P. J. O'Donnell, Nuovo Cimento Letters 1, 107
(i969).

9 J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966).' J. E. Augustin et al. , Phys. Letters 28B, 503 (1969). We
define F„by (0 V„&s&(0) ~co(q)) = (gs)F„e„(q), and F~ by
(0

~
V„ts&(0) ~P(q)) = g—,')F~c„(q). The width formulas are

I'(ca —&e+e )=sn'F '/3m„', I'(4 —+ e+e )=sn'F '/3m'", and
F(p —+ e+e ) =47fa'I' p'/3mp', in the approximation m ~0.

"V.L. Auslander et a/. , Phys. Letters 25B, 433 (1967).
"M. Roos and J. Pisut, CERN Report, 1969 (unpublished).

the Orsay" result for the right-hand side of (1.12) is
0.0324&0.0038 GeV', whereas the left-hand side is
found both from the Orsay experiment alone and from
the fit by Roos and Pisut'2 to the combined Orsay-
Novosibirsk data to be 0.0254&0.0024 GeV', leaving a
discrepancy of 0.0070&0.0045 GeV'. This discrepancy
is increased to about 2 standard deviations by cor-
rections for the finite width of the p. It is evident that
a p' contribution to the left-hand side of (1.12) is
welcome, and in our analysis we shall, in fact, require
F,'/m, '+F,.'/m, ') 0.0286 GeV' (to be within 1
standard deviation of the right-hand side).

A similar situation exists with regard to the relation
proposed by Sakurai, '
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conditions for Fiv(t) and for the pion electromagnetic
form factor F (t) in a p-dominant model lead one to
expect ypzpr= yp, the sum rule (1.13) may be tested
by using the colliding-beam values for the p width.
Using the value for I'p found in the Orsay experi-
ment, " 11j.&6 MeV, leaves a discrepancy which is
(20.4+4.2)%%uo of the right-hand side of (1.13), while the
result of the fit of the combined data, ' I"p = 122&6
MeV, leaves a discrepancy of (12.5+4.3)%. In the
subsequent analysis, we shall require that the general-
ization of (1.13),

where we define f&„and gz„by
L(m ' —V')/m-'F-3(p V) I

~"Ap'IAi'(P))
Z6~g6 kg SSP gI P7r6

+ g&&p~( 'P)( ' )3

and f, &, and g, &, are similarly defined. F& is
defined by

(0~ A„'
~

A i (P))= ib„sF—~ep"'&i'&.

One then finds

m2
P 8$pp .

2

7P 7r7rVPNÃ PP'7r 7r+P'A lv

2F.'' (1.14)

F,
(2.3a)

be satisfied. It should be noted, however, that with the
inclusion of the p, the form-factor normalization condi-
tions no longer imply universality of the vector-meson
couplings. Separate universality for the p and p' cou-
plings would follow if, in addition, it was required that
the pion form factor superconverge, that is, F (t) t '
for large

~
t ~; however, we shall see in Sec. II that this is

probably inconsistent with various experimental limits.

0.89&TO "sec
~V =68.4—

~

~

0.89X10 "sec)'"
~ 144 3 —

I
x+102.3x'. (2.1)

In the pole-dominance approximation, X may be re-
lated'4 to the matrix elements (7r~ Vp(A&), (or~ Ap~ p),
a,nd (ir~Ap~ p'). Application of the hypothesis of par-
tially conserved axial-vector current, together with the
conservation condition on the vector current, leads to
the following three equations:

and

mg'F, 2F 'y,
,„.—gg„.=— —1 — i, (2.2a)

mp'FgI' Fp

nsg'Fp 2F 'yp

mp'I, il& I

mp'F p mp'F~
f&&p +g&&p + (fp'A& +gp'A&z) =, (2.2c)

8$pp Fp mg'F pF~

"P. De Pommier et a/. , Phys. Letters 7, 285 (1963).' S. G. Brown and G. B. West, Phys. Rev. 168, 1605 (1967}.
We use J =0.094 GeV, m =0.138 GeV, mp=0. 770 GeV, and
m&=&2m, . Our p differs from that of Brown and West by a factor
(1.058 GeV/meal '=1,059.

II. THE Agg~ PROBLEM AND
RADIATIVE PION DECAY

In the ra,diative decay of the pion, m+ ~ e+sy, there
exists one measurement of the number E of structure-
dependent events, "which may be expressed in teiTns
of a quantity'4 X by

(2.3b)

FpYp&vN+F p'Vp'PrN 01

the normalization conditions for Fiv(t) and F (t)

(2.4)

F,ypgpr/m, '+F;y, ivpr/m, '=1, (2.5)

F,y.../m, '+F, yp ./m, '= 1, (2.6)

and Eq. (1.14). The fust Weinberg sum rule for SU'(2)
XSU(2), in the form

F~s/m~2+ F 2 —F 2/m 2+F 2/m 2

has also been used to eliminate Fz from Eq (2.3a)..
Including the uncertainty in the m~ lifetime, one finds
from (2.1) that the observed number of events (110&15)
implies X~0.25 ()

gg+'-"

III. RESULTS

The restrictions on the p-coupling constants imposed
by the requirements of Eqs. (1.14) and (2.4)—(2.6), and
by the experimental limits on V—:F,'/m, '+F /m, '
and X, are best described graphically. In Fig. 1, we have
plotted in the Fp I'p plane contours of Axed V, X,
I'. . . and ~F,(m, ') ~' for several values of these quan-
tities. Also shown is the line corresponding to the
additional requirement that the pion form factor F (t)
be superconvergent, i.e., the solution of the equation
F,y, +F;yp =0. As an illustration of the way in
which this graph may be used, the region in which the
three conditions V&0.0286 GeV', X(0.40, and 1'p

~& 200 MeV are simultaneously satisfied has been shaded.
It will be seen that this allowed region of the p coupling
constants is extremely small and can be approximately
described by Fp „~118&2MeV, Fp„,+,— 7.34&0.I2
keV, and branching ratio=—I', ,+,-/I', (6.22&0.15)

'5 D. A, Gene», Phys. Rev, Letters 19, 770 (1967).

where the notation of GeA'en" has been used in Eqs.
(2.2) and (2.3) for the A&p&r and A&p'&r coupling con-
stants. In obtaining (2.3b), use has also been made of
the superconvergence condition for Fir(t)



FORM FACTORS AND PHOTOPRODU CTION
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FIG. 1.Solid lines show curves of constant g=0.4 and U=0.0286
GeV' obtained as outlined in the text, for mp =2.0 GeV. The
dashed line represents I'p „=200 MeV, and the dot-dash curve
is the locus of points for which F (t)~I . The allowed region is
shaded and represents x&0.4, U&0.0286 GeV', and I', &200
MeV. Ke have also plotted the points Fp=0.1227 GeV, I'p =112
MeV (Ref. 10) and Fi, =o 1225 GeV. s, I'~ =122 MeV (I&ef. 12).

O. l I 0

In I'ig. 2 we have plotted similar contours, but with
m p

= 1.75 GeV as input. This illustrates the dependence
of the allowed region on the p' mass. It will be seen that
the allowed region is much larger than in the esp 2 0
GeV case, which allows a lower partial width I'p than
was previously required. This opens the tempting possi-
bility of identifying the p' with one of the narrow-width
meson resonances seen in the so-called E region, e.g.,
Rs(1720) or Rs(1740). A p' with a mass in this region
will not give such a good fit to the nucleon form factors
using Eq. (1.7). We shall discuss this problem below.

As an indication of a possible solution in the

sip 1 75 GeV case, we list the following qualities ob-
tained at a value of F,=0.1227 and F, =0.111 GeV
(corresponding to the Orsay point"):

F, =43.2 MeV, X=0.31 (and E= 123),

Fp'/m, '= 0.00385 GeV',

y, iviv'/47r = 2.86, and y, iv~'/4ir =3.65.

It has been pointed out in Ref. 10 that the vector-dominance
prediction for the combination I'(cu -+ 2l)I'(ie ~ mey)/P(7r ~ 2v)
is in disagreement with the measured values by a factor of almost
2.5. However, a least-squares 6t of the most recent data on the
6ve decays co ~ ~'y, co —+ 2l, m' —+ 2y, p —+ EE, and p~ 2l using
the width formulas in terms of g „, V, and I9 as given in Cordes
and O'Donnell (Ref. 8) gives I'(co~ m'p) ~1.05 MeV, V—0.03
GeV, and 8~28', with a x of ~4.5 from two degrees of freedom
(corresponding to a confidence level of live). These values then
imply the following widths: I'(~ —+2l) 0.63 keV (0.94&0.18
keV), I'(~ —+ 2y) 8.78 eV (7.46&1.51 eV), I'(@—& EE) 3.37
MeV (3.33&0.53 MeV), and I'(P-+ 2l) 1.71 keV (1.64%0.26

)&10 '. We also find that in this region we have"
F„170&30 MeV, X~0.37+0.03 (and h ence
E 136 ss+"), Fp'/m '~0.0038&0.0007 GeV' y a iv'/
4ir 2.60&0.10, y„sr''/4s. 2.57&0.51, and"

t/' 0.0291&0.0005 GeV'

O.IOO OK,
-

O.IOO O.IIO

rP QGeV)

I

O.I20
I

O.I30

FIG. 2. Shows the same curves as in Fig. 1, calculated for
m, .=1.75 GeV. Two contours corresponding to I', =200 MeV
and I'p 50 MeV are shown as dashed lines.

g
s 4y s gLs gTs 1(~~2 yg s)s

+ — — g~, ' (31)
1S(J 8 16 8m2

P

Using the values for yp, g~, and g~ found here, and
the experimental A~pm coupling, gives, for mp. =2.0
(1.75) GeV, g„, = 10.95 (10.58). Neglecting the p'iroi

coupling, which we expect to be small due to the large
amount of phase space available for the decay, then

iteV), where the experimental widths (Refs. 10 and 18) used are
shown in brackets."J.Ballam et al. I Phys. Rev. Letters 21, 934 (1968)j give
gr/gal'=0. 16&0.08. S. G. Brown and G. B. West I Phys. Rev.

180, 1613 (1969)g quote a private communication from this group
revising this value to 0.64&0.25.

We now consider Eqs. (2.2) for the Zips and p'Ar7r

coupling constants. Since there are four coupling con-
stants to determine only three equations involving
them, it will not be possible to determine them all
solely from the values previously found for Fp pp
etc. It turns out, however, because of the large amount
of phase space available, that the partial width I',
is very sensitive to the ratio f„.z, /g;z, , and hence
any reasonable choice of upper limit for this partial
width, say, 100 or 150 MeV, is sufhcient to determine
all the coupling constants accurately. This procedure
leads to the following range of partial widths over the
region of interest:

(i) For m, =2.0 GeV, FA, „120&2 MeV, 1',. g,
&75&15 MeV, and the ratio of transverse to longi-
tudinal couplings in the A& —+ px decay is determined"
to be gz/gr~ —1.22&0.02.

(ii) For ne, = 1.75 GeV, F~„=137 MeV, 1", ~, ——22

MeV, and the ratio of transverse to longitudinal cou-
plings gr/gr, = —1.23 (for the solution corresponding to
the Orsay measurement).

The superconvergence relation for m-p scattering pro-
posed by de Alfaro et al. becomes, on saturation with
the x, co, Ai, and A~ mesons,
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gives g„, F,g„, /ttt, '=2.26 (2.19) and I'„a,~1.10
(1.04)&0.06 MeV over the bounded region, in excellent
agreement with the experimental value" 1,17&0.14
MeV. A similar calculation, assuming m-p dominance
of the co~3m decay, gives the prediction F„3 6.2
(5.4)&0.3 MeV, in poor agreement" "with the experi-
mental value'8 11.0~1.1 MeV.

y„'/4' (0.85)'(1.1&0.2)

0,80+0.15, (4.3)

to be compared with the colliding-beam value' '

Pp p Fp p If we do this, the Cornell" and SLAC"
results then imply

IV. APPLICATION TO loo PHOTOPRODUCTION (7p /4x )colliding beam —0 46~0 05 ~ (4 4)

The value of Fp found by the graphical method
described above using Fig. 1, namely, Ii P~0.1225
&0.001 GeV', which is in excellent agreement with the
Orsay determination" )see Eq. (4.4)j, corresponds to
a value of y, '/4s~0. 466&0.008, where we have intro-
duced y, by F,=m, '/2». Two recent experiments""
on p' photoproduction on complex nuclei have obtained
values for y, '/4z. around 1.1&0.2. We shall now indicate
how inclusion of the p' as well as the p in the expression
for the forward vector-meson production amplitude
affects this determination. Extending the usual ex-
expression'4 in an obvious way gives

do'

(yA —+ p'2)
d~ ~=o

s —i
~P P P

o~'(p'~) 1+ — (4.1)
jV

where F,&;» is the forward (t=p) amplitude for the
process p(p')A ~ pA, with A representing a nucleus of
mass number 3, and y„=ttt, '/2F, Note that the
process p A —+ pA is quasielastic in the sense that it can
proceed diffractively with no quantum number ex-
change, just as for pA —+ pA. The usual assumption that
the real part of the amplitude Iipp is negligible has
already been assumed in writing Eq. (4.1) and, if we
make the same assumption for Fp p we see that, rather
than measuring y, '/4~, the photoproduction experi-
ments are actually determining the combination

(4.2)

In our previous analysis we found y, /y, .~—0.15~0.01;
to form an initial crude estimate of the effect of the
first factor in (4.2), it seems reasonable to assume

'8 Particle Da,ta Group, Rev. Mod. Phys. 41, 109 (1969).
"The difIj.culty here may lie in the momentum dependence of

the vertices which has an eGect (Ref. 20) on the calculation of
the phase-space factor in the Gell-Mann-Sharp-Wagner model
(Ref. 21).

se S. G. Brown and G. B. West, Phys. Rev. 174, 1777 (1968).
M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.

Letters 8, 261 (1962).' G. McClellan et al. , Phys. Rev. Letters 22, 374 (1969).
23 F. Bulos et al. , Phys. Rev. Letters 22, 490 (1969).
'4 See the review by S. C. C. Ting, in Proceedings of the Four-

teenth International Conference on High-Fnergy Physics, Vienna,
i%68, edited by J. Prentki and J. Steinberger (CERN, Geneva,
1968), p. 43.

without the p' contribution, one finds this cross section
to be ~182 pb GeV '. Another application of vector
dominance to the photoproduction process is the calcu-
lation of the total y-p cross section'~:

py do
o r(yp) =P 4xn —-—(yp -+ Vp), (4.6)

d«=o

where we have assumed that the real parts of all
relevant scattering amplitudes are negligible. If we
extend the assumption made previously on the equality
of F» and F, , to include F» and F;, , the p+p'
contribution to (4.6) can be written in the form

(Tg' p (4.7)

which only differs from the usual p contribution by the
factor 1—y, '/y„. '. To illustrate the effect of including
the p contribution in this expression, using the values

y„y, , and o.&(pp) used previously to evaluate (4.1), we
find the p+p' contribution to o.r(yp) 116 ttb. The p
contribution alone is 119pb."Under the same assump-
tions, the forward differential cross section for Yp —+ p'p
is predicted to be the same as (4.5).

"For reactions induced by photons of lower incident energy,
the assumption Fp p Fpp may be less reasonable, and the part
played by the p' in the production process would be expected to
decrease. This would be consistent with the result of J. G. Asbury
et a/. , Phys. Rev. Letters 19, 865 (1967); 19, 869 (1967).

"Experimentally do/dti~ o(ip-& pp) seems to be (Ref. 22)
approximately constant and equal to 130pb GeV ' for photon
energies between 4 and 9 GeV. Some of the measured values of
Oz (pp) are 30 4+6 mb (Ref. 23), 38+3 mb (Ref. 22), and 31.3~2.3
mb (Ref. 25)."L.Stodolsky, Phys. Rev. Letters 18, 135 (1967).

s' I. Ballam et al. (Phys. Rev. Letters 21, 1544 (1968)g &nd
oz(i p) = 126&17 tlb for a photon energy of 7.5 GeV.

The discrepancy is thus reduced from 0.64%0.21 to
about 0.34&0.16, a considerable improvement. " For
nt, .= 1.75, we find y, /y, = —0.17, and the Cornell and
SI.AC results imply y, '/4m~0. 75&0.14, reducing the
discrepancy still further to 0.29&0.15. Another way of

expressing this is to evaluate (4.1) using the colliding-
beam value for 7,'/4', y,/y, = —0.15 (—0.17), and

or(pp) =30 mb. Then (4.1) gives"

do/«I t=.hp~ pp)
~132 ttb GeV '

l
125 ttb GeV ']' (45)
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Brodsky and Pumplin" have recently taken the point
of view that the value yp'/4m 1.1 niay be the actual
value of the p-photon coupling on the photon mass
shell. Since this then implies a p contribution to or (yP)
of only ~50 pb, they are led to consider the contribution
of additional states in the photon channel. However,
the possible contribution of these additional states on
the original analysis leading to pp'/47r —1.1. does not
seem to have been taken into account.

V. FORM FACTORS

One of the more interesting conclusions that we can
draw from this analysis is that the pion form factor
F (t) almost certainly does not fall off as fast as Fi (t),
although their respective charge radii are not very
different. For, if we define r and r&z by

F.'(0) =—s,r.'

F tv'(0) = —s'rrv'

then, for m, =2.0 (1.75) GeV, v e obtain r =0.66
(0.65) F and r&v=0. 67 (0.69) F. The difference in f

behavior in the case of esp 1 /5 should begin to show

up at t= —1 (GeV/c)', where we would expect F (t) to
be =20% greater than F&v(f). For m, =2.0 GeV,
however, the deviation of F (f) from Fr(f) would not
show up until higher t values are obtained. Figure 3
shows F (1) for m, =2.0 GeV.

The proton charge radius r~~ can be obtained
immediately from Eq. (1.5) using Fsv(0) =pp —p,„—1,
the experimental" value of G~"'(0) = —0.0193 F' and

ds' 1mB&'"&(s',0)— Ch' 1mB&'"'(1',0) =0.

With p and p' assumed to dominate the t-channel
contributions to the sum rule and the E and 6 taken""
to saturate the s-channel integral, we find, in the narrow-
width approximation, that

our value of Fi '(0) = m, '+m, '. For m, .= 2.0 (1.75)
GeV, this leads to rs„=0.76 (0.77) F, to be compared
with the experimental value" of 0.81&0.01 F. The
alternative method of calculating r E„using Eq. (1.7)
will introduce errors arising from the neglect of GE"(t)
and leads to rs„=0.84 (0.85) F.

The determination of p»~ has usually been obtained
in one of two diff erent ways, either by assuming
"universality pppf~ pp or by fitting I'"& to the
nucleon form-factor data for small values of t, in which
case yp~st/yp =1.6."The value taken for yp~~ has a
large effect on some finite-energy sum rules and, in
particular, the I= 0 x —E superconvergence relations
proposed by some authors. "For the latter relations, it
is generally found necessary' to use p»&/yp =1.6 in
order to obtain agreement. In our model, which fits
F,v(t) well, we find yp~~/yp = 1.07 (1.16) for m, =2.0
(1.75). The p' contribution must be included as well,
however, and almost exactly compensates for the re-
duced pÃE coupling. We illustrate this in the case of
the superconvergence relation for the 8('l'& amplitude
in x-E scattering at fixed I= 0. The superconvergences
relation in this case reads, at u= 0,

I.O

0.8

o AKERLOF (ZAGURY)
/Vpw pyp&N Vp'pp Yp'AN) gpNN 2

—2~vi + l+
2 ~0

3 4' m '

0.4

0.2—

l

0.2
I

0.4 0.6
-1 (GeV)

2

l

0.8

where py= p„—p =4.T, and we have assumed yp~~&~&
= (py —1)ypiviv/2'. This follows with the assumption
of p+ p' dominance of Fry. Using g ~iv'/4m 14.6,
gq~ '/4s. = 0.36, and B*=—0.6673Eq', we find that
the s channel contributes 40.4, whereas the t-channel
contribution is 38.2 (made up with 22.8 from the p part
and 15.4 from the p'). The above numbers refer to the
p' having a mass of 2.0 GeV. For esp I 75 GeV, the p

Z'xo. 3. p (~) calculated for mp. =2.0 GeV. The coupling con-
stants used were y, =5 354, v p= —0.1184 GeV2. The curve corresponding to m, =1.75 is
barely distinguishable in this region from the curve shown. The
data are taken from C. W. Akerlof et a/. , Phys. Rev. 163 1482
(1967), and from C. Mistretta, Phys. Rev. Letters 20, 1523 (1968).
The latter data have been analyzed with both the Zagury and the
Adler theories of electroproduction, giving the two sets of points
shown.

"S.J. Brodsky and J. Pumplin, Phys. Rev. 182, 1794 (1969).
We received their paper after a preliminary version of the present
paper was circulated.

"V.E. Krohn and G. R. Ringo, Phys. Rev. 148, 1303 (1966).
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32 T. D. Spearman, Phys. Rev. 129, 1847 (1963).» D. Seder and J. Finkelstein, Phys. Rev. 160, 1363 (1967);

D. GriAiths and W. Palmer, ibid. 161, 1606 (1967); R. Rama-
chandran, ibid. 166, 1528 (1968); R. F. Amann, Nuovo Cimento
56A, 1125 (1968); see also C. B. Chiu and M. Der Sarkissian,
ibid. SSA, 396 (1968).

'4 The work of Ramachandran (Ref. 33) appears to imply that
universality is sufEcient to satisfy the sum rules. However, there
appears to be an inconsistency of a factor of 2 in the normalization
of his p contribution.

~5 Contributions from higher 2i--X resonances do not appear to
alter the condusions below. See Ref. 33 for details.
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Fro. 4. Solid line is a plot of the predicted Gsr (t)/u„using
mp. =2.0 GeV in Eq. I,

'1.7} and is shown as a ratio to the empirica, l
dipole I 1 t/(0 'i1 GeV—s)j s.. The dashed line is the corresponding
curve in the m, =1.75 GeV case, and the experimental points are
taken from Coward el al. (Ref. 1).

contribution is 23.2 and the p contribution is 10. A
similar situation holds for the 8('"' sum rule.

In the expression we obtained for y,~~&~~, we as-
sumed p+p' dominance for Fsv(l) as well as for Ftv(l).
We note that this form for F~~ does not fall off as rapidly

with increasing
I
l

I
as the data require. This is evident

in calculations of the slope of Fsv(0), where the pre-
dicted value of rsv ——1.29 (1.32) F is to be compared
with the experimental value" r2~~1.60&0.02 F. This
may indicate that both width effects and background
structure in the AX —& m-x amplitude are more impor-
tant for F~ than for F~ . However, we can avoid this
problem in calculating Gsr"(l)/p„by making use of the
scaling laws (1.2)—(1.4) to express Gss&/lc„solely in
terms of Frv as in Eq. (1.7). In Fig. 4, we plot Gsro(l)/ic„
as a function of t for the two values of tn, that we
considered above, relative to the empirical dipole fit
Gzr "(1)/leo= (1—1/0. 71) '. This method of presentation
clearly shows deviations of the data from theory that
would go unnoticed in plots on a logarithmic scale. The
discrepancy for —1&5 (GeV/c)' may be due to using
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Fro. 6. Shows the effect of including a nonzero Gn" (t) in the
calculation of Gsro(l)/uo. The details will, of course, depend on
the particular parametrization of Gz"(1) chosen; here we have
taken rn, =1.88 GeV and used the G@"(l) given in Fig. 5. It will
be seen that the shape of the experimental curve is at least qualita-
tively reproduced by including Gz"(l) (compare with Fig. 4). The
data points are the same as in Fig. 4.

zero-width approximations and neglecting Gss"(t). For
example, we can construct a functional form for Gh" (t)
similar to Eq. (1.7), but with the factor 1 rreplaced-
by Ar, where A is chosen to reproduce the known slope
G~&'(0). This is consistent with the known measure-
ments of GE"(l) for —l)0. With a nonzero Gz"(t), Eq.
(1.7) must be modi6ed to read

III

O. I

I I I
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1.0

I I I I
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-t GeV/c

(1—r)Ft v(l) Gz "(l)
Gsr (t)/is„= +

(1 pvr) (1 pv—r)—(5 1)

It turns out that with a Gz"(1) of the form grFr&([)/
(1—lsvr), the best representation of the data over the
whole region is given by having a p' of mass m, ~1.88
GeV. Figure 5 shows the corresponding Ga"(l), and
Fig. 6 shows Gsr&(l)/iso including the Gss"(t) term.

Fro. 5. Curve shown is ArFq (t)/(1 uvr), where r=t/4—M', ur=»—~„~4.7, and A =0.495 GeV ' is chosen to reproduce the
known slope of GE"(t) at t 0 This f=orm. is suggested in the text
as a possible parametrization of C~"(t) and is plotted for the case
mp =1,88 GeV. The data are basically from D. Drickey and L.
Hand, Phys. Rev. Letters 9, 521 (1962); D. J. Drickey, B.
Grossetete, and P. Lehmann, in Proceedings of the Sienna Inter
notional Conference on Elementary Particles and High Energy-
Physics, f963, edited by G. Bernardini and G. Puppi (Societa
Italiana di Fisica, Bologna, 1963); D. Benaksas, D. Drickey, and
D. Frerejacque, Phys. Rev. 148, 1327 (1966).However, relativistic
corrections to elastic electron-deutron scattering I see B. M.
Casper and F. Gross, Phys. Rev. 155, 1607 (1967)g have been
applied to obtain the actual points shown, which we have taken
from Fig. 4 of the review by W. Panofsky, in I'roceedings of tlze
Fourteenth International Conference on High Energy Physics, -
piennu, f968, edit'ed by J. Prentki and J. Steinberger (CERN,
Geneva, 1968), p. 23.


