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The constraints of unitarity on a multichannel partial-wave amplitude dominated by two nearby or
coincident resonances are derived. The factorization conditions are discussed and used in the solution of
these equations. The solutions permit variation in the relative heights of the two peaks in the cross section
and variation in the depth of the dip. Single peaks appear in some cross sections, while doubled peaks
appear in others. The single peak may be centered at the energy of the dip or displaced to either side, and
the amplitude may be imaginary or real at the top of the single peak. The doubled-resonance amplitude is
Reggeized and the narrow-width limit is investigated. The amplitude becomes a simple pole with an un-
factorizable residue in this limit. Numerical examples of the solutions are also presented.

I. INTRODUCTION

HE recent discovery of the split-peak structure of
the A2 meson' ' has focused attention on the

possible existence of double poles in the scattering
amplitude. ' " Many physicists have argued that the
narrow dip results from a coherent interference of two
resonances having the same quantum numbers. " It is
then an obvious question to ask for the nature of the
constraints which unitarity imposes on an amplitude
when the two poles are very close or even coincide.
Although many papers have dealt with doubled reso-
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nances, we feel that the role of unitarity has not been
completely investigated.

Consider a many-channel partial-wave amplitude
which is dominated by two nearby resonances. If we
assume the dominance of two-body channels, then this
amplitude must satisfy many-channel two-body uni-
tarity. We derive the set of equations which the reso-
nance parameters must satisfy and then we solve the
equations for any separation of the two resonance poles.
The technique of solution makes essential use of the
factorization property of the residues, when these two
poles do not coincide. '4 The purpose of this paper is to
solve the unitarity constraints and to discuss some of the
features of their many-channel solution.

The single-channel solution is well known and has a
number of similarities to the general multichannel
solution. In the limit where the two resonances coincide,
the amplitude is a sum of a simple pole and a dipole.
The dipole is always accompanied by a single pole. "
Moreover, the cross section varies smoothly as the
separation of the two poles increases from zero to a
finite value. However, many of the specific features of
the single-channel partial-wave cross section no longer
apply to the many-channel case.

In the single-channel case, the amplitude is restricted
to lie on the "unitarity circle, "so that the amplitude 2
is pure imaginary at the top of the peaks and A =0 at
the bottom of the dip. This implies that the cross sec-
tion must have two peaks of equal height, separated
by a dip to zero. ' But in the many-channel case, where
the elastic amplitudes are only constrained to lie
within the unitarity circle, the peaks may have any
relative height, and the dip may be varied and may
even vanish. In general, it is possible for peaks to be
doubled in some cross sections and single in others. The
single peak may appear at the energy of the dip or it
may appear shifted, and the amplitude may be real or
imaginary at the top of the single peak. Moreover,
variation of the energy of the incident particle in
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amplitude must depend on Z on account ot unitarity Lsee Eq. (2)j.
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production experiments can change the peak structure
in a given decay mode. Many of these features appear
to be present experimentally for the A ~, and all are con-
sistent with unitarity and the hypothesis that both 3 2 s
are 2+ mesons. A detailed examination of these features
is given in this paper.

The doubled-resonance amplitude may be studied in
the "narrow-width" resonance limit. In almost all re-
spects, the doubled resonances appear like simple reso-
nance poles in this limit. Particularly interesting is the
case in which the two resonances coincide. Then one
finds in the narrow-width limit that:

(i) The dipole vanishes, leaving only a single pole.
The coefficient of the dipole is an order of magnitude of
the width smaller than the coeKcient of the single
pole.

(ii) The Regge behavior is P(f)s "&, just as an
ordinary Regge pole. The terms behaving like s (') lns,
introduced in the Regge formula by the dipole, again
have coeS.cients that vanish in the limit.

(iii) The coeKcient of the single pole does not factor.
Thus, a doubled resonance becomes a single pole with
an unfactorizable residue in the narrow-width limit.

In Sec. II we review in detail the single-channel
solution. The algebra is simple and displays many of
the features of the more complicated many-channel
case.

The unitarity constraints on the doubled-resonance
amplitude in the many-channel case are derived in
Sec. III. The factorization properties of the amplitude
are also discussed.

With the aid of the factorization properties, we solve
the unitarity relations in Sec. IV, and examine the limit
where the two resonances coincide. The interpretation
of the arbitrary parameters is given. Possible experi-
mental implications of the solution, especially related to
the A2 meson, are also discussed.

We "Reggeize" the dipole formula in Sec. V and then
discuss the narrow-width limit.

In Sec. VI we present some numerical examples of
the solutions for the two-channel case, which exhibit
the features of the many-channel solution. Both transi-
tion probabilities and Argand diagrams are plotted.

II. SINGLE-CHANNEL CASE

In this section we outline the primary features of
doubled resonances using as an example the algebrai-
cally simple single-channel situation. A unitary partial-
wave 5 matrix representing a doubled resonance is'

(E—M1—iF,) (E—M2 —ir2)S=
(E M,+iI'1)—(E—M,+iF2)

3 L= (5—I)/2i] is

(F1+F2)E Mlr2 M2rl

(E—M1+ir1) (E—M2+iI', )
(2)

E—M 1+iF1M1—M2 —i (I'1—I'2)

M2 Ml i(F1+F2)

M2+2F2 Ml M2 i(rl F2)
~ (3)

The residue of each pole is modified by the presence of
the other pole, and the couplings become complex in a
well-defined way. Moreover, in the limit M~ —+ M~ and
I'~~I'2, the pole residues themselves develop poles.
The singular part of the residues is easily isolated by
rewriting Eq. (2) in the form

E—M1+ir1 E—M2+iI'2

(M, —M,) (r,—r,) —i(r, +r, )
(4)

(E—M,+ir,) (E—M2+iF, )

The limit Mt —+ M2 and rt-+ F2 is smooth in Eq. (4)
and gives an amplitude that is a pole plus a dipole:

2r +-
E—M+2r (E—M+2r)

It is important to note that the amplitude is not given
by an isolated dipole. " Unitarity requires that the
dipole is necessarily accompanied by a simple pole. In
an electrostatic analog, one would say that an isolated
dipole charge distribution is impossible —that whenever
a dipole occurs, it must be accompanied by a charge. '

We list here a number of features of the single-
channel solution: (i) The two peaks in the cross section
(or, more precisely, in ~A ~2) have the same height,
regardless of the separation or relative orientation of the
two poles; (ii) the amplitude goes around the unitarity
circle twice, i.e., the phase shift goes from below —,'m to
above —,'m as E goes over the doubled-resonance region;
(iii) the amplitude has a zero between the two peaks;
and (iv) the cross section always has a double peak.
None of these features need be true of the many-channel
amplitude.

Unitarity requires the zero in the numerator which gives
the split peak. At the top of the peaks in the cross sec-
tion, 2 =i; 3=0 at the bottom of the dip.

Suppose for the moment that M~=3f2 and I'~=I'2
are not simultaneously true. Then Eq. (2) may be
written as a sum of two poles:

M1 —M2 —i (F1+F2)

Where We haVe negleCted the baCkgrOund. (The I'; are 16 @le»e p}e~s~g to th&„g p,0fessor H p DQrr for a disc»ssfon
half the usual I"s for the widths. ) The amplitude of th12pof61t.
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F2/2 F,/2
A/2 ~—

E—JET E—M2

H we also take the limit Mi —+ M2, then Eq. (2) reduces
to a single pole, not a dipole. The residue of the single
pole (Mi=M2) is the sum of the residues of the simple
resonance poles.

(ii) When Eq. (2) is unitarized in the complex J
plane and the asymptotic formulas for large coso are
derived by performing the Watson-Sommerfeld trans-
formation, then we find "Regge" behavior of the form

A (s,~) = f (t) (s/s, )- '+5(t) (s/s, )- ' ln(s/s, ), (7)

where b(t)=O(Imn) and b(t) =OL(Imn)2j. The dipole
contribution is of order (Imn)2 and should be dropped
in the narrow-width limit. For phenomenology, Imn is
small, so that b(t) is expected to be an order of magni-
tude sma, lier than b(t).

III. UNITARITY CONSTRAINTS ON MULTI-
CHANNEL AMPLITUDES

The constraints that unitarity and factorization im-

pose on the doubled-resonance amplitude in the multi-
channel case are discussed in this section.

The most general form for an amplitude dominated
by a doubled resonance and in which the background
is neglected is"

A=-
(E—M 1+iI'1)(8—M2+iF2)

where A, n, and P are EXP matrices in channel space.
An E2 term in the numerator of Eq. (8) would corre-
spond to a background. We require that Eq. (8) satisfy
partial-wave unitarity for many two-body channels:

A —At=2iApAt=2iAtpA . (9)

The doubled-resonance amplitude may be studied in
the narrow-width resonance limit. The idea of the
narrow-width limit is old, " and today a beautiful
example of a narrow-width amplitude possessing many
nice features is given by the Veneziano formula. "It is
interesting to study the implications that doubled
resonances have for this limit. There has been some
concern on how to accommodate the split A q in such a
scheme. However, several important features of Eq. (4)
suggest that the doubled resonances can be incorporated
into the narrow-width models without difficulty.

The limit consists of dividing the amplitude by the
scale of the width, then letting the two poles approach
the real axis.

(i) The limit does not contain the dipole:

The phase-space factor p is a diagonal matrix with zero
elements for the channels whose thresholds are greater
than E. The second form of unitarity in Eq. (9) gives
one additional constraint on Eq. (8) LEq. (10e) below)
and should not be ignored. After substituting Eq. (8)
into Eq. (9) and equa, ting coeKcients of E, we find this
set of equations:

Q=Qt
q

o'=npn (F1+I 2)n,

(10a)

(10b)

p=X io—, pt= X+io. (10f)

We have separated P into Hermitian and anti-Hermitian
parts, so that n, ~, and 0- are all Hermitian matrices. A
more convenient form of Eqs. (10) is obtained by taking
various linear combinations:

where

Qpr+ Tpo2= 2p"r(x+2FT
q

(—I' —p +y2)o = rpr+opo 2pyr, —

0pT= Tp{j~

CZt = Q q T t = T q
0' t =0'

q

r =X+Mu,

M = —,
' (Mi+M2),

I'=-,'(I'1+I' ),
P = —,

' (Mi —M2),
~=-', (F,—F,).

(11a)

(11b)

(11c)

(11d)

(11e)

Time-reversal invariance gives the further condition
that e, r, and r are real symmetric matrices.

It seems that it should be very difficult to solve
Eqs. (11), since they are a set of coupled nonlinear
matrix equations. However, we can greatly simplify the
calculation by imposing causality, which requires that
the residues of simple poles factor, This factorization
theorem, which is a consequence of unitarity and ana-
lyticity, remains valid as long as the pole positions do
not coincide. "We first discuss the case where 3f3 =M~
and Fy=F~ are not both true. Then we prove a new
factorization theorem for the case when the two poles
coincide.

When the two poles do not coincide, the amplitude
may be written as

(Ml+M2)& (M1F2+M2F1)&
—(I'1+F2)X+npX+Apn, (10c)

(M,M', —I",I,) = (M,F,+M,F,)X+XpX+ p (10d)

(10e)
where

"R. F. Dashen and M. Gell-Mann, Phys. Letters 17, 142
(1965); S. Mandelstam, Phys. Rev. 166, 1539 (1968).

» G. Veneziano, Nuovo Cirnento 57A, 190 (1968).
"Again, we de6ne 1 to be half the usual F for convenience.

gC~A"=—ij
&—Mi+2F, Z —M, +iF,

(12)
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n, , (ji—iT',)+r,, —i~,;
2( —iv)

&ij(jj+iI'2) —ri j+kiri j
CC~=

2(ji—2'Y)

(14a)

Equations (14) show that, in general, the g; and g are
complex, and in the limit p, ~ 0, y ~ 0, these couplings
may develop poles. (In general, n and P are nonsingular
and nonzero in this limit. ) Just as in the single-channel
case, it is possible to rewrite the amplitude so that the
singular term (as ji,y ~ 0) becomes a nonsingular
coe%cient of a dipole:

The couplings g; and g are related to n, j and P,j by

(13a)

p;j= —g;,g;(M2 —iI'2) —g, 'g, '(Mi —il'i) . (13b)

The inverse relations are

X;y,+yiS j+QiVj+ViQj 0. (19)

A careful analysis reveals that all the solutions of
Eq. (19) are included in the following two solutions:

&;= —c&;) (20a)

ization and the reality properties of the amplitude.
These forms are then substituted into Eq. (11) and the
final constraints of unitarity are derived. Having
satisfied unitarity, we then cast the result into a form
in which &~~%2 and I'~~F2 is a smooth limit. The
dipole factorization theorem follows directly. Finally,
we discuss the parameterization of the solution.

The factorized amplitude, Eq. (12), provides a simple
starting point. Let

gi=&i+iyi I

g =Q;+iV;.

Although the couplings may be complex, 0. is always a
real symmetric matrix. It follows from Eq. (13a) that

x;=cl;, v;= —cy;, (20b)
A"=—u E—M,yiF, E—M,+iF,

Fin, jr;j+—iir; j
(E—M i+iF i) (E—M2+iI'2)

(15)

The limit M~=%2=M and I'~=I'2 ——I' is a smooth
limit in Eq. (15), but the factoriza, tion conditions,
Eqs. (14), are still singular. However, it is easy to
prove a new factorization theorem using the same
techniques by which one proves the factorization of a
simple-pole residue. "Since the most singular part of the
amplitude is (E—M+iI') ', it turns out that the
coefficients of this dipole must factor. The amplitude
may be written as

where c is a proportionality constant independent of
channel. Thus, Eqs. (20a) and (20b) represent a com-
plete solution to the factorization and reality con-
straints on the amplitude. Since unitarity at a point in
the 8 plane is used to derive the factorization theorem,
we may expect the remaining restrictions of unitarity
to be simple in nature. These restrictions are obtained
by substituting Eqs. (20a) or (20b) into the definitions
of n, r, and o. LEq. (13)j and then substituting these
matrices into Eq. (11). Applying this procedure to
Eq. (20b), one finds that either Fi or I'2 must be
negative, which is unphysical. Thus, we con6ne our
attention to Eq. (20a).

Equations (11) are satisfied if

P]—c 12
A"=—

E—M+i F (E—M+iF)'

From Eq. (15), it is apparent that

f,fj=r,; i(Fn, j+~;;)—

(16)

(17)

X'X=
(1.—c2)2

F2—c I]
ll'll=

(1—C2) 2
(21b)

2pc

x u=p x, p;Qg,

Again we emphasize that the residue of the simple pole
need not factor in this limit, but the coefficient of the
dipole must factor. Actually, the factorization of the
dipole coeKcient follows from the factorization of the The scalar product x u is defined by
two separated poles if the limiting procedure is done
carefully.

(21c)

(22)

IV. MANY-CHANNEL SOLUTION

The complete solution of the unitarity condition in
the many-channel case is given in this section. At first,
we assume that the two poles of the amplitude do not
coincide. The simplicity of the solution depends cruci-
ally on the fact that both residues must factor. We find
that only two possible forms are consistent with factor-

where the phase-space factor p; is zero for closed
channels and positive for open channels. The squares of
the vectors x and I must be non-negative, and must
satisfy the inequality (x u)2& x'u'. Equations (20a) and
(21) completely solve the unitarity constraints as long
as the two poles do not coincide. It is an important
feature of this solution that c'&1, unless the poles
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where p, and y are defined in Eqs. (11).
We now examine the limit p=y=0. We saw in

Eqs. (14) that g~g; could develop a pole in this limit,
which would imply that c'=1, since x x would also be
singular. Thus, it is convenient to rescale x; and I; so
that the limit of small separation is smooth. We define
some new quantities:

where

1—c2= 2s/(K,

g;= ($»I'/2s)'/2X;,

u, = ((»1'/2s) '/'U.

K = (1+s' cos'8)'/'+s,

p, =sl cos0,

y =sr' sin8.

(24)

(2S)

The separation s between the poles is given in units of
I', and the angle 0 gives the direction of the dipole; it is
the angle between the real axis and the direction from
thepole at&~, I'~ to thepole at M~, I'~. We have defined
K so that K(s= 0)= 1. Then, by Eq. (23), & is restricted
to the range

(26a)
where

&min= 2s/K ~ (26b)

With these definitions, the general solution to the
unitarity constraints is

~;;=I'(X;X,+U, U;), (27a)

=I'2L($» —s) cos8 (X;X,—U, U, )
+&Kgsin8 (X,U/+U, X;)$) (27b)

0.;,=I'2L($» —s) sin8 (X;X;—U, U;)
$»i cos8 (X;U,+V,X,)j—I/2;;, (27c)

where
X X=1+(tK—s) sin8, (27d)

U U=1—(&»—s) sin8, (27e)

(X U) = —$»i cos8, (27f)

K,= K (1 2s/(K)'/2— (27g)

Although the phase of A;I is arbitrary, the expressions
for o., 7-, and 0- do not depend on this phase.

Equation (27) is the most general solution to the
unitarity constraints. For N channels, there are 21V+2
arbitrary parameters, including 3II, F, s, and 0. It is
straightforward to check this solution by inserting it
into Eqs. (11).

We now examine the limit in which the poles coincide
and recover the factorization of the dipole, Eq. (16).

coincide. Indeed, from the properties of the scalar
product, one finds that c' is bounded by

2 ( 2+~2)l/2
g2) P (r2 y/22) 2/2 (/22+/2)1/2j (23)

P2 ~R

In the limit s=0, ~ and rc~ become a=~~=1 for all
allowed values of P. If we substitute Eq. (27) into the
expression for the amplitude, then we recover Eq. (16)
in the explicit form'"

r(X,X,yU, U, )

E—M+iI'
(X;+iV;)(X,+iV,)

(f2~ i// —
(2g)

(E—M'+ii') 2

Thus, the factorization of the dipole follows from the
factorization of the two separated poles.

The shapes of the cross sections are very insensitive
to the separation s of the poles. The matrices may
change linearly as a function of s, but the coefficients
of the linear term are small by suitably scaling $. An
example comparing a double peak for s= 0 with one for
s= 0.5 is given in Sec. VI, where we see that the shapes
are indistinguishable. Thus, the question "Do the
poles coincide&" cannot be easily resolved from an
analysis of the experimental data.

The parameter ( measures the strength of the dipole.
When )=0, the dipole in Eq. (28) vanishes. In general,

corresponds to a simple resonance solution in
which the two resonances are coupled to orthogonal sets
of channels. This is a possible solution since the reso-
nances might have different internal quantum numbers.
All cross sections have single peaks for &= $; .

The maximum value of $, j=1, corresponds to the
single-channel solution of Sec. II. The vectors X and U
are parallel, and 0-;;=0. This means that doubled peaks
of equal height appear in all cross sections and that the
amplitude is factorizable. This solution is obtained by
multiplying the single-channel solution by a factorizable
matrix to obtain a many-channel solution.

The cross sections exhibit interesting new features
when ( is between $;„and 1. The residue of the single
pole (p, =y= 0) is never factorizable when $ is not at an
extreme value. Variation of g controls the depth of the
dip, and it is no longer necessary that the two peaks in
the cross section be of equal height. The direction of the
dipole 8 controls the relative height of the peaks, even
when s=0.

In the general case, it is also possible to have doubled
peaks in some cross sections and single peaks in others.
For example, it is very easy to arrange f and 8 in the
two-channel problem so that a pronounced double peak
appears in one elastic cross section and single peaks
appear in the production cross section and the other
elastic cross section at the energy of the elastic dip.
In a similar manner, it is possible to obtain both doubled
and single peaks in a given channel by changing the
production mechanism of the doubled resonance. An
example of this has apparently been observed experi-
mentally. The EK decay mode of the A& produced in

0 To some extent, one may think of Eq. {28)as a generalization
of the Breit-%igner formula to doubled resonances.
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FIG. 1. Transition probabilities. The solid line is 1A» 1', the
dashed line is 1A~&1', and the dotted line is 1A221', plotted as
functions of energy. The parameters of Eqs. (35) are g =0.8, 8= ~~,
s=P, and /=0. The energy scale, which is determined by the
choice M=1.30 GeV and 7 =25 MeV, is chosen merely to guide
the eye and is not intended to fit the split A2 data. This choice of
M and I' is unchanged in the following figures.

7r p reactions has a single peak, ' but the EE decay mode
of the As produced in pp annihilations has a doubled
peak. 4 The single peak need not appear at the energy
of the dip, as is shown in Sec. VI. Ke emphasize that
the occurrence of a double peak or the location of a
single peak in a given decay mode depends not only on
the decay amplitude, but also on the production ampli-
tude. The data of Refs. 2—4 are consistent with the
hypothesis that both 3& are 2+ mesons.

Some numerical examples of these features are given
in Sec. VI.

7. REGGEIZATION AND NARROW-
WIDTH LIMIT

All of the considerations of the preceding sections may
be repeated, almost unaltered, in the complex angular
momentum plane. The Froissart-Gribov continuation
allows one to define a unique amplitude for complex J.
If we assume that the partial-wave amplitudes are
dominated by two nearby or coincident Regge poles,
then the amplitude may be written

(29)

where the background has again been neglected, and
c(t) and b(t) are XXX matrices in channel space.

Two-body unitarity may be continued to complex J.
The multichannel generalization is

A;; (J,t) —A;;*(J*,t) = 2i g A g, (J,t)pl,A I,;*(J*,t)

Fro. 2. 1Aqq1' (solid line) and 1A 1/1' (dashed line) as functions of
energy; )=0.5, 8= &m., s=p, and /=0.

f'(t)f (t)
A;, (J,t) =-

J' —o, (t) LJ—n(t)1'
(31)

Once again, unitarity requires the dipole to be accom™
panied by a single pole in the complex J plane.

The implication of Eq. (31) for high-energy phe-
nomenology is that one should never expect a "pure"
dipole high-energy Regge behavior at presently avail-
able energies, but one should expect the "mixed"
behavior:

ImA(s&t) ~ a;;(t)+f;(t)f;(t) (s/ss)"&o.
dn(t)

(32)

Moreover, at least for I, above the first threshold,

f, (t)f, (t) is expected to be of one order of magnitude
of Imn smaller than a;;(t), according to Kq. (28). In the
region where most resonances are observed, Imn appears
to be about 0.1. This value should give an estimate of

I.O

0.8
l~l'

0.6

clear that the solution obtained in Sec. IV may be
immediately extended to the quantities a;;(t) and b;;(t)
of Eq. (29).

There is little point in discussing the features of the
solution in the J plane, since they are similar to those
found in Sec. IV. However, we should call attention to
two interesting points: The first concerns phenomeno-
logical applications of the Reggeized doubled reso-
nance; the second deals with the narrow-width limit.

For simplicity, let nr(t) =ns(t) =n(t). As in Sec. IV,
we find

=2i Q A,s*(J*,t)pI.As, (J,t), (30) 0.4

where I, is above threshold.
Inserting Eq. (29) into the unitarity equation (30),

we obtain a set of constraints that are formally identical
to Kqs. (11), provided that the J-plane quantities are
identified with the appropriate E-plane quantities. It is

0.2

1.24 1.27 1.30
E

1.33
I

l.36

Fro. 3. 1A»1' (solid line) and 1A~s1' (dashed line) for
)=0.8, g=~m-, s=p, and /=0.
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Fzo. 4. IAii ' (solid line) and IAzs I' (dashed line) for
)=0.5, 0=47I., s=0, and /=0.

Fzo. 6. IAiil' (solid line), IAi21' (dashed line), and IA»1'
(dotted line) for t'=0.5, 8=0, s=0, and II =0.

freedom and arbitrariness of the arbitrary case, so we
give explicit examples of the features described in
Sec. IV. It is apparent that the "anomalies" observed
in the A2 meson are consistent with the doubled-
resonance hypothesis and unitarity. ' 5

There are six arbitrary parameters in the two-
channel problem: M, I', s, P, (I, and a new "angle" It.
3f and I" merely locate the doubled resonance and set
the energy scale. We recall that s is the separation of
the two poles, 8 is the angle between the real axis and
the line connecting the two poles, and P measures the
strength of the dipole term. We let M=1.3 BeV and
F= 25 MeV. This choice is merely to guide the eye and
does not represent a 6t to the doubled A2 data. Equa-
tion (27) is used to construct u, r, and o. The X, and U;
are defined by

XX; UU,
12 8—3fg E—Mg

(33)

The proof of Eq. (33) follows immediately from Eq.
(23), where one finds that c=O for e=O. In the case
where %~=&2, the narrow-width amplitude contains
a single pole with an unfactorizable residue.

The dipole term of Eq. (31) is one order higher in
e than the single-pole term, so that the high-energy
Regge behavior in the narrow-width limit is

(35a)

(35b)

Xz=x cosg, Xs=x sintt,

Uz ——u cosg, Us= u sing,

x=L1+ (ts —s) sinejz~',

u= L1—($K—s) szn()gris

where
34IrzL4, ;(s,f) —+ zi;;(t) (s/ss) "', (35c)

(35d)where a;, (f) is not factorizable, but is a matrix of rank 2.
Thus, in the narrow-width limit, double resonances

appear like normal Regge poles in all respects, except
that the residue functions do not factorize.

and P is computed from Eq. (27f):

(plrz cos0
&=if+ zr —cos zj

xu
(35e)

VI. NUMERICAL EXAMPLES
I.O

the relative magnitude of f„(t)f, (t) compared to g;, (I).
If the same ratio persists below the threshold to t&0,
then the dipole contribution to Eq. (32) will not domi-
nate until extremely high energies are reached.

The discussion of the narrow-width limit closely
parallels the discussion of Sec. II, except for some new
multichannel features. If we scale the widths F~ and I'2

and the amplitude by e, and then let e —+ 0, we find that

In this section we present examples of the two-
channel solution. The two-channel problem has all the

1,0
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Fzo. 5. I Azfj' (solid line) and
I Ar212 (dashed line) for

(=0.8, 61=0, s=0, and /=0.

Fzo. 7. Variation with s. IAzzjs (solid line) and IAzsj (dashed
line) as functions of E for s=0.5, )=0.93, 8=27I-, and Ibt =0
(( has been rescaled with respect to f; ). This 6gure should be
compared with Fig. 1.
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Fro. 10. Argand diagrams for A&i (solid line) and Ai2 (dashed
line) for )=0.8, 8=-',x, s=0, and /=4~ as in Fig. 9. The single
peak in

I A» I' occurs when A n is pure imaginary. The little loop
in AII is the remains of the other peak. The amplitude 312 goes
twice around a "small" unitarity circle.
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Fio. 8. {a) Argand diagrams for Au (solid line), Ars (dashed
line), and 322 (dotted line), for )=0.8, 8=~~, s=0, and /=0, as
in 1'ig. 1. The numbers refer to the energy. (b) Argand diagrams
for AII for )=0.5, 8=-,'x, s=0, and f=0 as in Fig. 2.
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Fro. 9. Variation with P. IAxxI' {solid line), IAx~l' (dashed line),
and I A&2I' (dotted line) for f= is-, f =0.8, 8=-,'s-, and s=0.

In the plots we have always chosen the + sign in Eq.
(35e). The expressions for n, r, and o, constructed from
these couplings, are substituted into the formulas
for ~A;, ~', ReA, ;, and ImA;;, and then plotted as
functions of E in Figs. 1—10.

The 6gures are self-explanatory. %e call attention to
the following features:

(i) The depth of the dip in the elastic cross section
is a function of &, for fixed tf, s, and P.

(ii) The relative height of the two peaks in the elastic
cross section is a function of {l for fixed (, s, and f.

(iii) The shapes of the cross section do not depend
on s, provided P is appropriately scaled. In Fig. 7,
/=0 93 for .s=0.5 is equivalent to (=0.8 for s=0
(Fig. 1).

(iv) A single peak in the production cross section
may occur when His is real [see Fig. 8(a)g.

(v) The phase of the elastic amplitude need not go
around the unitarity twice in order to obtain a doubled
peak, as can be seen in Fig. 8(b).

(vi) Doubled peaks in some elastic cross sections are
consistent with single peaks in other elastic cross sec-
tions (see Fig. 1).

(vii) The variable f "reshufHes" the peaks among
the amplitudes. In Fig. 9, single peaks appear in the
elastic cross sections

I
A it I

s and
l
A ss Is, but a double

peak appears in IAis~'. Here the single peaks are
shifted away from the dip and the amplitudes are
imaginary at the tops of the peaks (see Fig. 10).

(viii) The shape of the peak in a given decay mode
is not only a property of the decay amplitude. The
shape also depends on the production mechanism.

(ix) A calculation with an arbitrary number of
channels would show similar features, except there
would be more variables like f that permit reshufHing
the peaks among the different cross sections.

We close with a comment on the solution )=P;„,
where two resonances coupled to orthogonal sets of
channels. If there exists a background which connects
the two sets of channels, then unitarity destroys the
orthogonality of X and U. This is the same as increasing

$ above $; . The two resonances must then interfere
with each other.
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