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with even smaller values for the p-nucleon coupling
constant, but we have not been able to find a solution
which violates the inequality given by Eq. (11). In
Fig. 4, we show the behavior of the total cross section
in the neighborhood of threshold. The data are from
Refs. 11 and 14 and were not used in minimizing X2.

It is interesting that Botke! predicts a wide bump
in the total cross section centered at T>=1.75 GeV.
Our model does not predict this bump.?® We predict
Ctotat (T p— qm)=0.56 mb at T,=1.75 GeV, and
Botke! obtains a value approximately twice as large.
The data at 7,=1300 MeV were hard to fit in Botke’s
model,’¥ and we have no trouble in that energy region
[see Figs. 2(g) and 3].

VI. CONCLUSIONS

We have been able to fit the data for the process
7~p— nn below 2 GeV c.m. energy by using a model
which consists of direct-channel resonances and nucleon

28 Note that Botke includes resonances above 2 GeV c.m.
energy, and we do not attempt to fit data at the higher energies.
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and 4 pole terms for the nonresonant background. In
order to develop this model, we had to calculate the
rather complicated spin-2 contribution to the spin-flip
and non-spin-flip amplitudes. It has, therefore, been
possible to give a quantitative assessment of the relative
importance of A4, exchange in this process. The mini-
mum X? dropped from 98 to 82 (with 83 data) when the
A, was added.

It was found that a realistic upper limit of 0.5 could
be placed on the n-nucleon coupling constant, with a
value in the neighborhood of 0.0025 favored. In un-
broken SU(3) symmetry, this corresponds to a D/F
ratio between 2/1 and 3/1, with the favored value
close to 3/1.
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By comparing the {-channel Regge-pole amplitude with the s-channel Regge amplitude, we apply self-
consistency for near-forward scattering. Under certain plausible assumptions, this enables us to evaluate
the high-energy behavior of the Regge-trajectory function as a(s) — (slns)!/2 and that of the residue
function as B(s) — sx©®~1/2(Ins)"1/2. We also determine that two trajectories will have the same shape if
their derivatives at s=0 are the same, since this derivative alone determines the trajectory shape com-
pletely. The resonance content of these trajectories at high s is also examined and found to be empty in

the usual sense.

I. INTRODUCTION

ECENTLY, there has been a good deal of interest
among Regge enthusiasts in examining the partial-
wave projections of the leading crossed-channel Regge
pole. Beginning with Schmid,! a number of theorists
have ‘demonstrated that such a projection produces
partial-wave amplitudes which trace out arcs of circles
in the Argand plane as the energy increases. Schmid
originally conjectured this to be evidence for the
existence of resonances in the direct channel. He worked
in the region of 1-3 GeV for I between 2 and 6 and found
a reasonable correspondence between generated reso-
nances and experimentally known ones.
Combined with the work of Dolen, Horn, and Schmid?
on finite-energy sum rules, this information was in-
1 Christoph Schmid, Phys. Rev. Letters 20, 689 (1968).

2 R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968) ; Phys. Rev. Letters 19, 402 (1967).

terpreted to give evidence of severe double counting in
the intermediate-energy interference model of Barger
and Cline.® Shortly thereafter, doubt began to arise
about the resonance interpretation of the Argand
circles.

Kugler! demonstrated that Argand circles also occur
for high mass and high spin when /~+/s. If these are
really resonances, then he conjectured that for large s
Regge trajectories must behave like /s (omitting
logarithmic factors). Collins, Johnson, and Squires® also’
demonstrated the existence of high-/ Argand circles but
doubted their interpretation as resonances partly be-
cause all such circles would have to be so interpreted.

#V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966) ;
Phys. Rev. 155, 1792 (1967).

¢ M. Kugler, Phys. Rev. Letters 21, 570 (1968).

8P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys.
Letters 27B, 23 (1968). S
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Further doubts were expressed by Alessandrini and
Squires® because of certain problems with unitarity.
Alessandrini, Freund, Oehme, and Squires’ cast more
doubt by revealing some unpleasant consequences of the
resonance interpretation. In particular, they found the
existence of many high-spin low-mass resonances, which
they found unattractive. Kreps and Logan® have done
a more careful study of Schmid’s original N* resonance
identification and disagree with his conclusions. Chiu
and Kotanski® have recently demonstrated that the
Argand circles are not just a consequence of the specific
Regge form but are a more general property of asymp-
totic amplitudes.

In all the papers just mentioned, certain assumptions
were necessary about the behavior of the residue func-
tion B(f). The detailed nature of the circles, in other
words, the positions and widths of the ‘“resonances,”
depends sensitively on the choice of 8(£). This, of course,
is also a weak part of the theory if one tries phenomeno-
logically to investigate whether the generated reso-
nances actually match experimentally known ones.

Besides the uncertainty in 8(¢), the question as to the
meaning of the Argand circles indicates that projecting
the i-channel pole in the s-channel partial waves is
unsatisfactory in a number of respects. We propose,
instead, to investigate the correspondence between the
t-channel Regge pole and the s-channel Regge poles. We
shall do this for asymptotically high energy in the s
channel and make the assumption that a single s pole
dominates the reaction as well as a single ¢ pole. We will
discuss this assumption in some detail and indicate why
we feel that it is plausible. Among other things, we are
then able to derive the asymptotic form of the Regge
trajectories assuming only that they are infinitely
rising. We also are able to derive the value of the scale
factor so which determines where Regge asymptotics
begins. We also find the asymptotic s behavior of the
residue function. Our results enable us to see a possible
reason why Regge trajectories in the resonance region
are all similar in shape.

Recently, Khuri® has also related the {-channel pole
to a sum of s-channel poles in order to apply crossing
self-consistency and investigate a number of questions
with which we are concerned. His approach and ours are
complementary, in some sense, in that his is a many-s-
pole program and ours is a single-s-pole approach.
However, he starts with the assumption of linearly
rising trajectories, and we do not.

Both approaches share the advantage that the dis-
cussion of whether certain ‘“resonances” exist is by-
passed since by using the s-channel Regge poles, and not
the s-channel partial waves, the question does not arise.

( 6 V. A. Alessandrini and E. J. Squires, Phys. Letters 27B, 300
1968).

7V. A. Alessandrini, P. G. O. Freund, R. Oehme, and E. J.
Squires, Phys. Letters 27B, 456 (1968).

8 R. E. Kreps and R. K. Logan, Phys. Rev. 177, 2328 (1969).

9 C. B. Chiu and A. Kotanski, Nucl. Phys. B7, 615 (1968).

1 N. N. Khuri, Phys. Rev. 176, 2026 (1968).
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(See, however, Ref. 11.) However, we will discuss the
relationship of these Regge s poles to physical reso-
nances. For high s there appears to be no relation since
the widths become very broad and the usual Breit-
Wigner form loses its resonating structure.

II. ASSUMPTIONS AND DERIVATION

In the following, we shall treat the spinless case. In
Sec. ITI, we shall discuss what additional considerations
would be necessary for the inclusion of spin. In the s
channel, the scattering amplitude for spinless particles
may be written in its well-known form

—iteod I+1
A(s)) =1i / A [P y(—2) P () Tt (1)

3¢  Sinml
T N Zaii(s)-l—l
—= 22 BE(s)—
2 =1 sinma = (s)

XLPaits) (=2)£Pai (=1 @

Ifor high energy in the s channel, with the usual as-
sumption that a single #-channel pole dominates, we
have (suppressing the signature indices)

A(sd) s o 2OF BOTLaO+]
530 2a() TLe@®)] sinma(£)

1t ira(t

X

(=g

where 8(¢) in Eq. (2) is the same function that appears
in Eq. (1). Normally the factor (—¢?)~=(® is absorbed
into B(#) to define a reduced residue, but we wish to
display it explicitly. The ¢ appearing in Eq. (2) is the
t-channel momentum analytically continued to the s
channel. For equal masses, for example, we have

g(O)=%(t—4m), 1<0.

Itisimportant to note that, while 8 is the same function
in Egs. (1) and (2), it refers to different particles, in
general. In Eq. (1), we have the residues of s-channel
poles while in Eq. (2) B8 refers to the residue of a ¢-
channel pole. The same situation is obviously true for
the trajectory function a.

Since for large s Egs. (1) and (2) must be the same, a
self-consistency restriction arises from crossing. If it
turned out that a simgle s-channel pole in Eq. (1)
dominated at high s, then important consequences would
result in a more or less tractable way. However, the
situation cannot be quite that simple. It is well known
that although A(s,t) has a ¢-plane cut running from
£6>0 to + =, the background integral in Eq. (1) and the

1t We have no doubt that the assumption about the relative
smallness of the background integral is in some way connected to
the assumption that the Argand circles are resonances. By trading

one assumption for the other, however, new features of Regge
theory are accessible which were not so before.

0, @)
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poles both have cuts beginning at =0. These are easily
shown' to be mutually cancelling for 0<¢< 4.

For small f, an expansion may be made of the
Legendre functions in Eq. (1) and the singular parts
(near z=—1) may be explicitly cancelled. We shall do
this below. What of the finite remainder which now has
the correct analytic structure? We shall show that,
providing Rea(s) —« as s—c (infinitely rising tra-
jectory) and Ima(s) does not approach too near zero as
s—o, a single pole will dominate all the others in the s
channel. Such single-pole dominance depends on the
behavior of B(s) for large s, too, but the behavior de-
termined by crossing for 8(s) does give self-consistent
single-pole dominance.

Finally, there is the question of the contribution of
the finite part of the background integral. In the s
channel for high energy, little is known about this
integral. However, there are a number of arguments
that would indicate that it may well be small relative to
the poles. If the arguments of Dolen et al.? are correct,
this integral contributes the local fluctuations to the
amplitude in the intermediate energy region as they
claim. The bulk of the amplitude comes from the direct-
channel resonances which are represented (once) by the
t-channel pole. As the energy increases these “remaining
wiggles” die away and the amplitude is smooth.
Presumably it is the background integral that dies away
for large s.

Another way of looking at the situation is this: At
intermediate energies the resonances are nearly every-
thing. Now s-channel resonances are s-channel Regge
poles when Ime(s) is small. Hence it is poles which lie
near the real / axis in the s channel that make up nearly
all the amplitude. As s increases these poles may move
away from the real axis and lose their identification as
physical resonances, but they will still dominate the
amplitude and the background-integral contribution
stays small.

In light of these considerations, we shall make the
necessary assumption that the background integral in
Eq. (1) may be neglected at high s. It turns out to be a
most fruitful assumption in that much information
about a(s) and 8(s) can now be obtained.!

To proceed, we must make use of a standard repre-
sentation of the Legendre function near its singular
point which is where its argument is —1. We have®

Pa(z)=F[_a7 a+1) 17 %(1—Z)]
B 1 w I'(—a+n)T(a+1+n)
I2(—a)2(a+1) »=o (n!)?

142\
X(=) Pt D4 —)
—¢(a+1+n)—In;(1+2)]. ()
2 R. G. Newton, The Complex j-Plane (W. A. Benjamin, Inc.,

New York, 1964), p. 7.
18 Handbook of Mathematical Functions, edited by M. Abramo-
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In this expression, F is the hypergeometric function and
¢ is the logarithmic derivative of the v function. For
near-forward scattering, £~0 or z=1, we have

P, (—z)=~71sinra[Inj (1—3)

+2v4+2¢(a+ 1)+ cotma ], (4)

where v is the Euler constant, ¢ (1)= —~, and we have
used ¢(—a)=y(a+1)+7 cotma as well as T'()T'(1—a)
=7 /sinma.

We now make the observation that if the P;(—2) in
Eq. (1) is expanded according to Eq. (4), then the first
three terms in the brackets in Eq. (4) exactly cancel the
corresponding Regge-pole contributions in Eq. (1). This
is easily seen by closing the background integral by a
semicircle in the right half / plane and evaluating the
residues, which come only from the poles of a(l,s).
However, it is the = cotma term (which has poles for
Rea> —3%) which constitutes that part of the back-
ground integral which does not identically cancel the
pole contributions. It is this integral that we assume to
be small, as discussed above.

Assuming only that Ima(s) remains large enough so
that cotma — —ias Rea(s) =, we may equate Eq. (4)
and the constant (in ¢) term in Eq. (2). We obtain

T3 (5)04 (5) = —7!2B— (_“—)
! 2a(0)
I‘l a(O)—{—% I 1 ime® l

Ifa(0)] sinma (0)m2=© 5@, (8)

where we have put 8(0)=_,. This yields
B(s) — Qes*®/a(s), (6)
with

1:*: e irac(0)

i 72a,(0)+1\ Ilac(0)+4]
o) e
V1 \ 2a,(0) / T[a(0)] sinma,(0)mz®

where the subscript ¢ indicates the crossed-channel
quantity.

We have neglected the P,(+2) term for the reason
that in the approximation that cotwa= —1, which re-
quires ¢727 ImeO® 1 the constant term in P.(+43z) is
down by just this exponential factor from the constant
term in P,(—z). Similar considerations hold when we
consider higher terms in ¢ below.

Going now to the largest linear term in £, we may again
equate Eq. (1) and Eq. (2). By the largest linear term,
we mean that part of the coefficient of ¢ that dominates

witz and I. A. Stegun (National Bureau of Standards, Washington,
D. C., 1966), 5th ed., p. 559.

14 The requirement on Ima(s) is very minimal. As stated below
Eq. (7) in the text it is that 727 Ima(<<1. Hence for Ima(s) >1,
our approximation should be good. Evidence of the value of
Ima(s) can be found in Ref. 17, where the indications are that such
a condition is satisfied even at low energies.
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for large s. In Eq. (2), this will come {from the expansion

of s*®, We cannot consider anything but the leading s.

part of each ¢ term, because lower-s parts could come
from parts of a(s) and B(s) in Eq. (1) which are not the
leading parts of these functions at high s. We have,
using the n=1 term in Eq. (3) for large s,
LimB(s)a? (s)/s Jt=imQes*@a,’ (0) (Ins)t, (8)
B(s)a(s)/s=Q5%Dq,’(0) Ins,
where z=1-414/2¢? so that (1 —3z)=1/s since 4¢* — s for
large s. Using Eq. (6), we may write Eq. (8). as

(s)/s=a,'(0) Ins,

v 9)
a(s) — /[l O]/ (s 1n9)
and Eq. (6) becomes
20, 5@/
B(s) (10)

e /L (0)] It

We need not stop at the linear ¢ term, but may con-
tinue to equate the largest part of each ¢ term from Egs.
(1) and (2). In Eq. (2), it will always come from the ex-
pansion of s which introduces Ins factors along with
higher and higher derivatives of a(s) at the origin. For
example, a little calculation reveals that the # term
gives an equation corresponding to Eq. (9) which is,
using =2 in Eq. (3),

at(s)/4s*=%{a." (0)+ [a.'(0) P} In%. (11)
Using Eq. (9), we have
a.”'(0)=—3[«./(0)]. (12)

The £ term has three terms on the right-hand side and
gives a,”’(0)= — (7/3)[a.'(0) ]}, and so on. We note the
interesting fact that the shape of the trajectory is com-
pletely determined by its slope at s=0. Hence, any
trajectories that have the same slope there (as they all
seem to have) will be the same except possibly for a
vertical displacement relative to each other. This is
precisely what is observed physically. In Eq. (9), we see
even at high s that this same shape stipulationholds
under the same requirement : that the slope be the same
at s=0.

In a paper by Mandula and Slansky % it was shown
that Regge asymptotics (finite-energy sum rules) are
inconsistent with the assumption of a finite number of

s-channel trajectories if all ¢ values are considered. This

might imply that the series in powers of ¢ that we have
generated [discussed below Eq. (10) ] may not hold for
all ¢ It may be asymptotic, not convergent, in which
case only a certain number of the derivatives of a(?) at
t=0 may be accurate. On the other hand, since we do
not require the narrow-resonance approximation—in
fact, Ref. 14 seems to exclude it—and this s required

15 J, E. Mandula and R. C. Slansky, Phys. Rev. Letters 20, 1402
(1968).
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by Mandula and Slansky, the two papers may be fully
consistent.

Since for nearly all trajectories, except possibly the
Pomeranchon,'® . (0)=1, it is clear frem Eq. (12) that
the trajectories cannot be exactly straight lines in the
physical resonances region of 1< s< 10. Since the Taylor
series for a(s) arising from its derivatives [as determined
by Eq. (12) and like equations] converges extremely
slowly, it is not possible to determine its shape without
calculating a prohibitive number of . derivatives (the
equations for the higher derivatives; develop excessive
numbers of terms). We note'” that the physical curve
may not be a straight line exactly, but can be matched
by a nonlinear function which is nearly linear in the
physical region only. For a trajectory for which a,’(0)
~0 (the Pomeranchon) then the shape will be very
close to linear in the physical region.

It appears from Eq. (9) that the scale parameter for
Regge asymptotics is given by

So= [a,;' 0)I.

This is consistent with Eq. (12) and would indicate a
value of so=~1 GeV, a very reasonable value. We note
that the scale parameter is determined by the derivative
at s=0 of the crossed-channel pole, not the derivative
of the pole itself. For example, if the Pomeranchon has
ao’(0)=0, it implies a very large s, for some other
direct- channel pole.

III. ANALYSIS

Knowing the asymptotic a(s) and 8(s) forms, the first
question to be answered is whether a single Regge pole
does indeed dominate. For large s, the ratio of the
contribution of two poles is

Ba($)as(s) Inas(s)

If a;(0) is the Regge pole with the largest real part, then
clearly one s-channel pole dominates all the others: The
next order in / is also dominated by the single pole that
dominates in the leading order: Our assumption.is self-
consistent, but it should be borne in mind that in a real
two-s-trajectory problem, it would not be true that
Eq. (13) must hold.

Since a.(0)<1, B(s) can never grow as fast as /s and
will decrease if @, (0) <. It is important to determine the
structure of the partial waves in the s channel to see if
reasonable behavior is obtained and also to see if any
high-energy resonances are dlstlngulshable We begin
with the standard expression

—B(s)[2a(s)+1]
a(s )¢
= [—a(®)I+als )-H] ==Ud

16 For a study of whether the Pomeranchon is really like the
other particles see H. Harari, Stanford Linear Accelerator Report
No. SLAC-PUB 463 (unpubhshed)

17 R. M. Spector, Phys. Rev. 173, 1761.(1968).

o g1(0)—az(0)

(13)

(14)



185 DIRECT-

For I<a(s), we have

ssz(O)—-l

a(s)m—= , (15)
Ins

which goes to zero as s — since a.(0)<1. In the region
>>a, Eq. (14) yields

a;(s)=

.ot

5112 76 (5)
- l1n1/25< ! )
Sac(ﬂ)—l ()[(S) 2
" lns ( l ) )
This too goes to zero for large s. Hence, the main
contribution to the partial waves comes in the region
I=~a(s)~+/(s Ins) as we might expect (see Kugler?®).

In the region I=a(s), it is convenient to use the reso-
nance form of Eq. (14), which ist*!7

B(s)
o' (s) [s—so+As+%i1‘] ’

(16)

al(s) o
with
I'=2 Ima Red'/|a’ |2
and
As=Tma Ima’/|a’|?

and where o’=da/ds|s=s, and Rea(so)=1,. Under our
usual assumption that Rea’(s)>>Ime’(s) and, addi-
tionally, Ima’(s) — const, at worst, we have

I s1/2/Int/2%s

As s Ima’/Ins.

(18)

Equation (18) indicates that while possibly As— 0, we
always have T' increasingly large. This indicates that
though we may have large partial waves for /=a(s)
(which grow like g(s) since I'x [a/(s) ] and s=so),
these do not appear as resonances. They are too broad
and become increasingly so for larger and larger s. Even
if a;(s) decreases due to decreasing S(s), it will always
dominate those waves for which [<a(s) and >>a(s).
This is apparent from inspection of Egs. (15), (16),
and (18).

In the analysis leading to Eq. (18) and the con--

clusions following it, we have really examined the single-
trajectory problem because we used our earlier results
which come from the assumption of a single dominant
s pole. In an infinite-trajectory model with daughters
(such as the Veneziano model) our conclusions could be
altered. In this case, lower trajectories could dominate
due to small residues of the leading trajectories.

AND CROSSED-CHANNEL
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Until now wehave considered only a two-pole problem
(one ¢ and one s pole) and neglected spin. In the ¢
channel, no problems arise from spin since one need
consider only the single leading pole which contributes
to the helicity amplitude in question. Hence, the
identification of a.(0) and B.(0) is clear. The correct
asymptotic form equivalent to Eq. (2) will be modified
in both the exponent of s and the exact ¢ factors multi-
plying it. However, in principle the ¢ channel presents no
difficulty.

In the s channel, the problem is more difficult since
the dominant pole in the j plane will in general con-
tribute to a number of amplitudes (for example, to both
a spin-flip and a non-spin-flip). Indeed, the dominant s
pole for one amplitude may not be the same as that for
another. Clearly, though, the leading term of the most
dominant s pole will contribute only to the largest
amplitude in the reaction. The next largest amplitude
could come from two sources. It could come from (a)
the next leading term in that most deminant pole, or (b)
it could come from the leading term in a second (less
dominant) pole.

Generally the situation is complicated, but in case (b)
above, Eq. (10) would still hold for the residue of the
second pole; but the a.(0)—% exponent of s would be
replaced by a lesser exponent. For example, in a spin-
flip amplitude it might be «.(0)—% with a different
a:(0). In case (a) if we have B(s)=p8o(s)+B:1(s) with
lim,,o[81(s)/Bo(s)]— 0, then Eq. (10) would hold for
B1(s) with the same remarks applying to the exponent
of 5. This is‘true for case (a), however, only if this next
leading term in the most dominant pole comes from the
leading term in a(s) and the B1(s) term in 8(s). It could
happen that a lower term in a(s) along with 8o(s) would
contribute the next leading term; then we can say
nothing.

Finally, we observe that while the behavior for 8(s) in
Eq. (10) is different from other suggested behaviors,1-18
it is perfectly-acceptable. The high-s behavior of a(s) as
given in Eq. (9) it is precisely that as determined by
Childers" from dispersion theory, by Chu and Tan?
from a bootstrap model, and Brower and Harte? from
certain dynamical assumptions.

After this paper was submitted for publication the
author became aware of a paper by Mohapatra.22 With
similar single-channel assumptions, but with extremely
different techniques, he reaches the identical results that
we do. Compare his Eq. (9) and our Eq. (9).

18V, Teplitz and C. E. Jones, Phys. Rev. Letters 19, 135 (1967).

-1 R. W.. Childers, Phys. Rev. Letters 21, 868 (1968); 21,
1669 (E) (1968). The fact that we do not have lim,.,,, arga(s) ==
as suggested by Childers presumably is due to a violation of his
proposed condition (3).

2 S, Chu and C. Tan, University of California Radiation
Laboratory Report No. UCRL-17511, 1967 (unpublished).

2 R. C. Brower and ]J. Harte, Phys. Rev. 164, 1841 (1967).
2 R. N. Mohapatra, Phys. Rev. Letters 22, 735 (1969).



