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The structure of the symmetry group of the relativistic hydrogen atom (no spina) is determined, in order
to study how a symmetry group which places particles of diferent spin in the same supermultiplet can be
incorporated into a relativistic theory. The difhculties associated with the extension of the symmetry group
of the bound states to bound-state scattering are discussed.

I. INTRODUCTION

S INCE the first days of quantum mechanics, it has
been known that the energy levels of the hydrogen

atom possess an extra degeneracy beyond that given

by rotational invariance; states of diferent angular
momentum but with the same principal quantum
number have the same energy. This phenomenon has
long been understood in terms of symmetries: The
Coulomb problem admits, in addition to the angular
momentum, a second conserved vector, the I enz
vector. (In the classical problem, the Lenz vector
points to the perihelion of the orbit; its constancy in

time is simply the statement that Keplerian orbits do
not precess. ) The angular momentum, together with
the Lenz vector (divided by the square root of the
absolute value of the Hamiltonian), form a set of
generators for the group O(4); the states of a given

energy form a basis for a single irreducible representa-
tion of this group.

In 1954, Cutkosky' analyzed a relativistic generaliza-
tion of this problem; he solved the ladder approxima-
tion to the Bethe-Salpeter equation' for two massive
spinless particles exchanging a massless spinless meson.
He found that the bound states of this system possess
the same O(4) symmetry as in the nonrelativistic

problem.
This result stirred no furor. However, in the after-

math of the attempts to construct a relativistic version
of the SU(6) theory, ' there were left a number of
theorems4 which denied the possibility that in a physi-

cally sensible theory relativistic invariance and an
internal symmetry could be combined in any but the
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most trivial way. A basic characteristic of theories like
relativistic SV(6), and one which is specifically ex-
cluded by some of the "impossibility theorems, "' is that
the symmetry places degenerate particles of different
spin in the same multiplet.

How can we reconcile these theorems with the
Cutkosky problem? Which hypotheses does the Cut-
kosky problem not satisfy? What has the Cutkosky
problem to tell us about the role of symmetries like
SU(6) in relativistic physics?

In Sec. II we initiate this investigation by recapitulat-
ing some of Cutkosky's results. We rotate the Bethe-
Salpeter equation into Euclidean space, carry out
Cutkosky's stereographic projection of Euclidean mo-
mentum space onto the surface of a four-sphere, and
explicitly display the generators of the O(4) invariance
gl oup.

In Sec. III we attempt to find a group of sym-
metries which contains the Cutkosky and (Euclidean)
space-time invariances. To be precise, we attempt
to find a group of transformations with the following
characteristics:

(&) It turns solutions of the Euclidean space Bethe
Salpeter equation into other solutions of the equation
with the same mass.

(2) It contains the four-dimensional Euclidean group.
(3) It is a finite-parameter Lie group.
(4) It has the property that, in the subspace of

states of any given four-momentum, there are trans-
formations in the group which, when restricted to that
subspace, reproduce the effect of the O(4) symmetry
group of Cutkosky.

(5) It is simply expressible in terms of the total and
relative (Euclidean) four-momenta. By this we mean
that its generators are expressible as differential op-
erators in these variables. To avoid infinite-order dif-
ferential generators, and to maintain condition (3), we
restrict ourselves from the beginning to first-order
diA'erential operators.

It is clear that condition (3) is the heart of the
problem; without it we could solve the problem
trivially. A solution would be the group whose gen-
erators are the generators of the Euclidean group plus
generators which, acting on states of one fixed four-

~ First three entries, Ref. 4.
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momentum, generate transformations identical to the
0(4) Cutkosky transformations, and which when acting
on states of a different four-momentum, generate the
identity transformation.

We classify transformations satisfying (1) and (5)
according to the transformation properties of their gen-
erators under the homogeneous Euclidean group. We
find two groups which satisfy all our conditions. In one
case the generators transform according to the (1,0)
Q+(1,0) representation of the homogeneous Euclidean

group, in the other case according to (0,1)Q+(0,1).
Both groups commute with the generators of space
translations, and they are turned into each other by
space reAection. The union of the two groups produces
an infinite-parameter group.

In Sec. IV we construct the generators of the
Cutkosky transformations as first-order diff erential
operators and calculate their commutation relations.
We find that the two groups are isomorphic and that
they each have the structure of the semidirect product
of the four-dimensional Euclidean group with 0(4).
We then show that the little group for fixed four-
momentum has the structure 0(3)80(4), with the
0(3) factor being represented trivially on states of the
given four-momentum, precisely as in the case of the
nonrelativistic hydrogen atom.

In Sec. V, we perform the inverse Wick rotation in
the equation and group generators back to Minkowski

space. We explicitly demonstrate that the analytic con-
tinuations of our group generators generate invariances
of the Minkowski-space Bethe-Salpeter equation. The
complications induced by the noncompactness of the
Lorentz group show up in this analytic continuation.
The (1,0)Q+(1,0) representation of 0(4) is real, but
the (1,0)Q+(1,0) representation of the homogeneous
Lorentz group is complex, and so to make the sym-

metry group Lorentz-complete we must add six new

generators; the new ones are just i times the original
generators. The symmetry group in Minkowski space
is a semidirect product of the Poincare group with

0(4,C). The commutators of the generators of ac-
celerations with the generators of 0(4,C) ensure that
the 0(4,C) group is composed of nonunitary operators.

When we examine the little group for a fixed four-
momentum, we find that it contains operators which

appear unitary when restricted to the invariant sub-

space of bound states of the given four-momentum.

(The field. -theory Hilbert-space normalization for the
bound states gives rise to a well-defined norm for the
Minkowski-space Bethe-Salpeter wave functions. In
the Appendix the form of such a norm, valid for
degenerate solutions of the equation, is derived, and
the "apparently unitary" transformations are shown

to be unitary with respect to it.) This unitary sub-

group of the little group has exactly the same structure
as the Euclidean-space little group, and so we recover the
0(4) nonrelativistic hydrogen-atom symmetry group
from the Minkowski-space Bethe-Salpeter equation.

In Sec. VI we extend Cutkosky's analysis to the
unbound states of the Bethe-Salpeter equation. The
analytic continuation from below to above threshold
leaves the structure of the full symmetry group un-
changed, but the unitary little group is modified to
0(3)C30(3,1), with the 0(3) represented trivially. This
is just the same as the symmetry group of the scatter-
ing states in the nonrelativistic Coulomb problem.

At this point we have learned how Cutkosky's
problem escapes the strictures of some of the "impos-
sibility theorems. " The theorems which showed that
infinite numbers of degenerate particles occur in
theories like relativistic SU'(6) relied on the facts that
in such theories the little group is noncompact and is
represented unitarily. Yet we can avoid this in a
physically sensible theory: The little group in Cut-
kosky's problem is still noncompact, but only a compact
subgroup is represented unitarily. Hence there are no
infinite-particle-number troubles.

It might seem that we need only abstract the group
structure from the Cutkosky problem and then go
ahead and build a relativistic SU(6) theory, but this is
a false idyll. In Sec. VII we show that if we were to
extend the Cutkosky symmetry group to the scattering
of bound states, then there would be no scattering.
The argument is not restricted to the Cutkosky prob-
lem, and depends only on those very unitarity prop-
erties of the group elements which were crucial in
obtaining a spectrum with a finite number of particles.

Although in the Cutkosky problem the particle spec-
trum displays 0(4) symmetry, the scattering of bound
states does not have this symmetry. Nonetheless, the
Cutkosky problem illustrates one way that a symmetry
like SU(6) can be relevant to relativistic physics, yet
consistent with the fact that the only possible sym-
metry groups of a nontrivial 5 matrix are direct
products of the Poincare group with an internal
symmetry.

4(p) =G."'(p.)G "'(p )-—
7r2

where
p-=m n+p
pb mba) p ~

iy(k)
(1)—(P —k)'+i&

and g is defined in terms of the total four-momentum
of the bound state I' by

P = (m. +mb) g.

II. PRELIMINARIES —THE
CUTKOSKY EQUATION

We will begin our investigation of the symmetries of
Cutkosky's Bethe-Salpeter equation by reviewing his
solution. The equation is the ladder approximation to
the Bethe-Salpeter equation for the bound states of
two massive spinless bosons produced by the exchange
of a massless spinless boson:
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From its definition, tion element by

Wick's' analytic continuation of the energy variable,
k»~ ik4, P4 ~ iP4, »1»~ i»14, transforms the equation
into

y(k)
L(p+~)'+ &7L(p —~)'+ ~7&(p) =— d'k (5)

2r2 (P —k)2

The squares of four-vectors are taken with a Euclidean
metric. This is the equation which Cutkosky solved.

We will pursue Cutkosky's solution up to the display
of the symmetries of the equation. We begin by pa-
rametrizing the Euclidean momentum space in spherical
polar coordinates

I p I, &o, 0, P, and then stereographically
map the full momentum space onto the surface of a
sphere of radius spo in five dimensions by defining the
angle f by

Po tanlt = IP I. (6)

The four angles l, »o, tl, P parametrize the surface of
the four-sphere onto which the momentum space has
been mapped. It is convenient to introduce rectangular
coordinates $4 in the five-dimensional space. The co-
ordinates of points on the sphere are then

$5 2PO cosf )

$4=-,'Po sing cos»o, etc.

The rectangular coordinates of the point onto which
the momentum p has been mapped are

& —(P'/Po')
$4=2Po

&+(P'/P')
(7)

We now choose

4=
&+ (P'/Po')

p (1+~2)1/2

and rewrite the Wick-rotated Bethe-Salpeter equation
in terms of the variables $;. From Eqs. (6) and (7),
and the definition of a five-dimensional angular-integra-

' G. C. Wick, Phys. Rev. 96, 1124 (19541.

In Eq. (1), G;&'& is the lowest-order propagator of a
scalar boson of mass m;, and X is the coupling constant.
Ke will henceforth take m =no~ = 1. This restriction is
not significant; Cutkosky solved the equation for
m, Wmq and found that the spectrum had the same
degeneracy structure. With this restriction, the Bethe-
Salpeter equation becomes

L(P+~)'+&7L(p —~)'+&74 (P)

y(k)= —i— d'k . (4)
(p k)—' 24—

(8)

Eq. (5) becomes

8x'

Po'did(oi '4 (0')

1—( $'
(9)

Here A=Lsec'(20)74', &»d (' are unit five-vectors
directed along $ and (', the center dot indicates a
Ave-dimensional Euclidean inner product, and g has
been extended to a five-vector by the definition q5—=0.

It is in this form that we will discuss the symmetries
of Cutkosky's equation, but we should first note two
restrictions. The entire momentum space has been
mapped onto the surface of the sphere $ $ = (-,'po)', and
g5 has been taken to be zero. Thus any transformation
which mixes vectors f lying on this sphere with others
not lying on it, or any transformation which causes q5
to become nonzero, is not interpretable as a transforma-
tion on the original equation (5). We may not consider
such transformations as possible symmetries.

Equation (9) is invariant under Lorentz transforma-
tions, which take the form of simultaneous rotations
of $ and»1, leaving their fifth components unaffected.
Additionally, it is invariant under all rotations of (
alone which do not alter the»1 component of (, i.e.,
which leave»1 ( fixed. We will call these latter rotations
Cutkosky transformations. This does not completely
describe the symmetry group of the equation, however,
since it is clear that a product of two transformations,
one a Lorentz transformation and the other a Cutkosky
transformation, is neither a pure Lorentz transforma-
tion nor a pure $-space rotation. We may put the
problem we wish to solve as follows: Describe the
structure of the full symmetry group of Cutkosky's
equation.

By the full symmetry group we do not mean the
group of all transformations which leave Eqs. (8) or
(9) invariant, for this will surely be an uninteresting
infinite-parameter group. The group we will seek is
rather the smallest finite-parameter subgroup of the
large group which still contains all the Lorentz and
Cutkosky transformations. This group will ensure that
the bound states have the O(4) degeneracy found by
Cutkosky, but will contain the minimum of extraneous
content beyond this. It is thus the most suitable object
for investigating how this degeneracy squares with the
"no-go" theorems.

We may express the group-theoretic problem some-
what differently. Ke know the symmetry group of
Cutkosky's equation in any given rest frame, but not
the effect of transformations defined in one frame on
solutions of the equation in a different frame. There
are clearly an inhnite number of ways of extending the
definitions of symmetry transformations within the
constraints set by the symmetry of the equation. For
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example, we could say that a transformation defined
in one frame leaves solutions in all other frames un-
changed. This, of course, is an infinite-parameter sym-
metry group (the parameters in each rest frame are
independent). Our problem is to extend the definition
of the symmetry transformations so that the full 0(4)
invariance of the Cutkosky equation in every frame is
included in the symmetry group, but we will want to
find the extension which yields the minimal symmetry
group.

III. GENERATORS OF THE SYMMETRY GROUP

In order to investigate the structure of the group of
symmetry transformations on Cutkosky's equation, we
will write the generators of such transformations ex-
plicitly, and by direct commutation discover the struc-
ture of the group. From the outset we will limit our
consideration to generators which can be written in
the form of Eq. (10), i.e., those containing one deriva-
tive only. The reason for this is that generators which
are linear neither in the coordinate nor the derivative
will tend, upon commutation, to yield generators with
progressively larger numbers of derivatives and powers.
Furthermore, requiring the generators to be linear in
the coordinate will yield exactly the same structures
as will requiring linearity in the derivative, and so
the latter possibility is general enough.

The analysis then proceeds by exploiting Lorentz
invariance. We classify generators by their transforma-
tion properties under the Euclidean 0(4) group corre-
sponding to Lorentz transformations, and use the
explicit form of generators transforming according to
given irreducible representations to calculate the com-
mutator of two such generators. This allows us to
read o6 the structure constants of the group. We find
that a finite-parameter group exists, and it is likely
that it is the only one. It is certainly the smallest
possible structure.

We consider generators of coordinate transformations
in the $ and q spaces which are of the form

G =$A 8/8(+EBB/Bg, (10)

where A is a 5&&5 matrix and 8 is a 4X4 matrix. We
will consider transformations which leave Cutkosky's
equation invariant, generate transformations on the
physical momentum space, and turn solutions with
mass ns into others with the same mass, The generators
of such transformations must, then, commute with

( P and vP. The presence of the $.$' in Eq. (9) implies
that A must be an antisymmetric matrix with no
functional dependence on P.

The generators of the Euclidean 0(4) transformations
which correspond to Lorentz transformations, G„, are
characterized by constant matrices A and 8, with
A„S=O and A„„=S„„=co„„;cv is an antisymmetric
imaginary matrix, so that G„ is Hermitian. We may
classify all generators of the symmetry group according

to their transformation properties under the Euclidean
0(4) group. It is sufhcient to consider generators which
belong to irreducible representations at 0(4), since the
linear independence of inequivalent representations of
0(4) and the linearity of the generator algebra assure
that if a generator which is the sum of terms trans-
forming according to different irreducible representa-
tions occurs in the algebra, then each term must occur
separately. The statement that G™transforms accord-
ing to the j representation of 0(4) takes the form

Since A has no $ dependence, if we are to retain a
finite number of generators, g„(A„, 8„,) must be—pro-
portional to (,. This, the antisyrnmetry of A, and the
fact that G commutes with g' implies that

q„A„„=g„B„„. (13)

Hence the matrix 8 may be replaced by the first four
rows and columns of A. The generator G is then
entirely characterized by the matrix A. This has the
effect of transforming Eq. (12) into a transversality
condition on A„5.

g„A„S——O. (14)

Because the only functional dependence in A is on
q, we can construct the tensor spherical harmonics A„5
and A„„by summing products of 0(4) spherical har-
monics of j with fixed numerical tensors transforming
according to the (-', , -', ) and (1,0)Q+(0,1) representations,
respectively, weighted by the appropriate Clebsch-
Gordan coefficient. 0 (4) spherical harmonics can belong
only to representations of the type (L,L), and so tensor
harmonics transforming according to the j=(j+, j )
representation can be constructed only for

~ j+—j ~

(1.
%hen the generators G are constructed in this way,
their commutators can be evaluated from a knowledge
of the effects of generators of 0(4) on the spherical
harmonics and the decomposition of products of
spherical harmonics.

The result is that in general, a set of generators, or
even a single one with its 0(4) partners, will produce,
upon commutation, an unending set of further gen-
erators transforming according to higher and higher
representations of 0(4). For example, a generator with
A„&('~ '~ ~ nonvanishing and satisfying the transver-

(1/j)/G pi~) —$ Gj~—p, ij) (id)Gim'

The implications of this equation for the matrices A&'

and 8™characterizing G™are that A„5™is a vector
four-dimensional spherical harmonic transforming ac-
cording to the j representation of 0(4), while A„„'
and 8„„&' are tensor spherical harmonics transforming
according to the same representation.

In order to generate invariances of Eq. (9), G must
commute with the $ q term in that equation. For the
matrices A and 0, this implies that
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sality condition produces generators with nonvanishing
0 )0) g (0 t~) g 5

(3/2 t~/2) g 5
0/2 l3/2) g 5

(3/2 l3/2)
pV ) pV y p p p p p

This set will not include all possible generators, but
will include an infinite subset of them. Other infinite
subsets can also be found. Thus, in general, we will

have to deal with infinite-parameter groups. But since,
as was remarked earlier, we are primarily interested in
finite-parameter groups, we would like the set of gen-
erators produced by repeated commutation to close
with a finite number of elements.

We can achieve this by taking advantage of the
fact that the representation (j~, j ) according to
which a generator transforms must satisfy

~ j~—j j
& 1.

Thus if we demand j =0, then the commutator will

only produce elements with j =0, and the fact that
j+ is bounded by 1 ensures that the generators close
to form a finite set. Furthermore, generators trans-
forming according to the (0,0) representation do not
exist, because an 3„„"') cannot be constructed, while
an A»" ) must violate the transversality condition
(14). Thus the 0(4) Euclidean transformations, along
with generators transforming to the (1,0) representa-
tion of 0(4), generate a finite-parameter group which
will include the Cutkosky transformations. There is
complete symmetry between j+ and j, and so the
(1,0) transformations can be replaced by (0,1) trans-
formations to yield an equivalent group. We vill now
investigate in detail the structure of these finite-
parameter groups.

,'(rx'8/8&+~x'8/-8~). (15)

These matrices have the same algebra as the 0- matrices,

x'x&= 8;,+is;;I,x~
1

and commute with the matrices y„' which appear in the
(0,1) generators of the Euclidean group J;—.The (1,0)
generators D; are

D;= f,jx'8/8$ fix'$8/8Pg— (17)

where P, 8/8$, and g are to be understood as four-
dimensional row or column vectors according to their
position with respect to x'. We know that the commu-
tator of two D's must be a C, and because of the anti-

IV. FINITE-PARAMETER SYMMETRY GROUP

The easiest way to find the structure of the group
generated by the (1,0) operators is to construct the
generators and evaluate their commutators. It will also
be easy to see how the symmetry group changes when
the Bethe-Salpeter equation is analytically continued
back to Minkowski space.

We will denote the q-dependent transformations con-
necting $„with $, by C;, and those connecting P„with
$, by D;. The latter may be constructed from the
matrices X; which appear in the (1,0) generators of the
0(4) Euclidean group

symmetry of the commutator we may write

(1/i) LD;,D;j= e,;iCi, (18)

which defines the generators C;. Note that C; is quad-
ratic in j, and that because of the antisymmetry of
X', the tensor spherical harmonic associated with C; is
transverse to q. Using the explicit forms for C; and D;
and the algebra of the X's fEq. (16)), we find the
remaining commutators:

(1/i) K',C~j= ~* ~C~

(1/i) [C;,D;$= e,;~i.
These commutation relations show that the C; and

D; generators form an 0(4) algebra whose commuting
0(3) factors are

K;~= —', (C;+D;) . (20)

We may verify by using Eq. (15) that each set of
generators C;, D;, and E,+ transform among themselves
under the Euclidean group according to the (1,0)
representation, i.e.,

(1/i) t J",C~l= ~*~~C~,

(1/i)PJ;—,C~]=0, etc.
(21)

Thus the structure of the full symmetry group,
excepting the translations, is that of a semidirect
product of 0(4) with itself, 0(4)XO(4). The first
factor is the Euclidean group. The structure of the
group can also be regarded as a direct product, 0(4)
(4), but the 0(4) group corresponding to Lorentz
transformations is not a direct factor. The four com-
muting 0(3) factors are generated by {J;+—C,), {J, ),
{E,+), and {E'; ).

In order to examine the Euclidean space equivalent
of the little group for fixed momentum, we use the
usual generators of the Euclidean 0(4) group, L; and

S;, rather than the commuting combinations of them,

J;+=-'(Ld-S;) . (22)

The little group for states at rest is generated by {L,;},
{C,}, and {D;), each evaluated at j=(0,0,0,1). C;
and D; transform under I; the same as they do under
J;+, and since the L; form an 0(3) algebra, the little
group appears to be another semidirect product,
0(3)&&0(4). As before, a direct-product structure can
be exhibited. {L; C;) and {C;,D;} gen—erate com-
muting 0(3) and 0(4) factors of the little group for
j4=1. Since the X"s and x"s are known matrices, we
can explicitly evaluate the generators. They are func-
tions of q, and at j4——1, I.;—C; vanishes. So although
the little group is 0(3)30(4), only the 0(4) factor,
the group generated by {C;}and {D;),is represented
nontrivially. On states at rest, all elements of the
0(3) factor are represented by unity. Of course, L; C;—
is not identically zero, but neither is it part of the little
group for other momenta. For other momenta, the
I; are replaced by linear combinations of themselves
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and the Ã;, which are cancelled by C; evaluated at the
relevant momentum.

That the faithfully represented little group is 0(4)
is precisely Cutkosky s original observation, which is
the same as the nonrelativistic result. The significance
of the extra 0(3) group which drops out of the little
group as if by magic is also clear. It is the relativistic
analog of the group of rotations of the center of mass
in the nonrelativistic problem. There, in the rest frame,
the wave function of the center of mass is a zero three-
momentum eigenstate, and so is rotationally invariant,
corresponding to the vanishing of the rotation gen-
erators. Of course, when the entire system is moving,
the center-of-mass rotations are not trivial, which
corresponds to the fact that I;—C; is not identically
zero, but only vanishes for one j. Nonrelativistically,
where the separation of relative and total angular
momentum is invariant, the groups of transformations
on the relative and center-of-mass coordinates are
independent. Here they are mixed up with one another,
for the generator I.;—C; generates transformations on
both $ and g. But the differences are just the ones to
be expected when one goes to a relativistically invariant
description; all. the general features of the nonrelativistic
symmetry emerge, in fact, at least in the analytically
continued Bethe-Salpeter equation.

and the Lorentz metric (+++—) is restored. The
replacement on ( implied by the analytic continuation
of pis

G —+ $gO'A SB/4)(+ggSB04)/Bg. (26)

(All appearances of the metric in the generators will be
explicit. ) If we define the matrices

X'= Q&'0',

X'= 0',y'0',
(27)

then the generators of Lorentz transformations may be
written

where 0', has been extended to a 5)&5 diagonal matrix
with 6,55——1. Five-vector inner products are taken with
the metric (+++ +).We will denote both the 4)&4
and 5&(5 matrices by 6, and the four- and five-dimen-
sional metrics by g; the proper dimensionality will be
indicated by the dimensionality of the vectors multi-
plied by the matrix.

The generators of the transformations on the ana-
lytically continued variables are obtained from the
generators of Sec. IV when expressed in the form Eq.
(10), by the replacement

V. SYMMETRY GROUP IN MINKOWSKI SPACE

J~+= ts($gX'8/Bg+t)gX'4)/4)4i),

I = '(&—gX-'8/4)(+t)gX'8/4)t))
(28)

All of our analysis of the symmetry group of Cut-
kosky's equation has been concerned with the analyti-
cally continued form, Eq. (8), in which the Lorentz
metric (+++—) is replaced by a Euclidean one.
We represented the generators of the symmetry group
as differential operators acting on a Hilbert space of
functions of two Euclidean four-vectors &„and t)„and
a scalar (s. We must now examine how the symmetry
group is modified when the equation is analytically
continued back to its initial form, since it is the
Minkowski-space equation with which we are actually
concerned. We shall write down the generators of
analytically continued transformations on the Min-
kowski-space variables and investigate the structure of
the group they generate. Then we will show directly
that these synUnetry transformations do, in fact, leave
the Minkowski-space Bethe-Salpeter equation invariant.

The original analytic continuation of the Bethe-
Salpeter equation was effected by the replacement of
the fourth component of Minkowski-space four-vectors
p4 by ip4 If we defin. e the matrix

0

(23)

where in the above and henceforth, P without an index
denotes the erst four components only. The real gen-
erators of Lorentz transformations are defined by

J,+= -', (L;+ilV;) . (29)

The operators L, and E;, and not J,+, are supposed to
be Hermitian. That they are can be seen by their
explicit construction from the X' and X' matrices. ~

The algebra of the X' matrices, which follows from
that of the X"s, is

X'gX& =g8,,+is;,s'X",

x*gx&= gb', ;+is;;4X,
X'gX&—X&gX'= 0.

(30)

These relations allow us to calculate the commutators
of Minkowski-space generators. We can verify at once
that J;+ are two commuting triplets of operators, each
of which generates an 0(3) group, and that L, and E;
have their proper 0(3,1) commutation relations.

Using the general prescription (26), we can write
the D,'s, the generators of the (1,0) transformations
connecting (s to („, as operators acting on functions of
the Minkowski-space variables:

.0 D;= )st)gX'4)/8g+ AX't) 4)/4) (s. (31)
then the reverse continuation on q is

g —+6, 'g,

7 Hermiticity is defined here with respect to the metric (g,@)—=1'd4p P*(p)p(p). We show in the Appendix that this is equiva-
lent to Hermiticity in the field-theory Hilbert space.
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(1/i) I C;,C;)= e;;AC(„

(1/i)LC, ,D;$= e;;gD, ,

(1/') LD, ,D;j= —...'C~,

(32)

which are the commutation relations of 0(3,1). Each
of the triplets has the same commutation relations with
J.k ~

(1/i) LJ,+,C;$= e;,kCg,

(1/i) P,—,C;$=0. (33)

These show that C; and D; are each (1,0) triplets
under the Lorentz group. The (1,0) representation of
the Lorentz group is complex, though of course that
of 0(4) is not, and the above commutation relations
show that C; and D; cannot be Hermitian operators.
Their commutation relations with the Hermitian gen-
erators of the Lorentz group are

(1/i)LI-~, C~P= ~"C~,
(1/i)(Ã;, C;g = —ic,,i Cg,

(34)

with D; satisfying the same relations. The extra factor
of i in the second commutator, besides verifying that
C; and D; are not Hermitian, means that in addition
to C; and D;, the generators iC; and iD; occur in the
algebra of the Minkowski-space symmetry group. The
four triplets of operators C;, D;, iC;, iD; generate the
four-dimensional complex rotation group 0(4,C), and
since the Lorentz-group generators turn these into
themselves, the structure of the full symmetry group,
excepting the translations, is a semidirect product of
the Lorentz group with 0(4,C), i.e., 0(3,1)XO(4,C).
As in the Euclidean case, we could replace J;+ by
J,+—C, to display the structure formally as 0(3,1)
0(4, C), but in this case, the 0(3,1) factor is generated
by non-Hermitian operators. In the semidirect-product
form, the 0(3,1) group has Hermitian generators. The
0(4,C) group, of course, does not.

The little group for fixed momentum of this sym-
rnetry group clearly includes the full 0(4,C) group,
and we know that the little group of the Lorentz
group is 0(3), so that the little group has the structure
0(3)XO (4,C), since any subgroup of the Lorentz group
is also a group of linear transformations on the elements
of the 0(4,C) algebra. However, as we have noted
several times, the elements of the 0(4,C) algebra are

Since p is timelike for physical values of the momenta,

g is normalized to $2= jgj=—1. Similarly the C,'s, the
generators of (1,0) transformations not involving q or
$~, are obtained from their Euclidean-space forms. In
order that they retain their usual 0(3) commutation
relations, we multiply them by —1. The operators
I.;, E;, C;, D; are generators of the Minkowski-space
symmetry group. Their algebra, which we now calcu-
late, determines the symmetry-group structure.

The commutators of the C; and D; generators follow
from Eq. (30), and are

non-Hermitian operators, and so generate nonunitary
transformations on the Bethe-Salpeter wave functions.
These transformations are symmetries of the equation—
they turn. solutions of the (homogeneous) equation into
other solutions —but they do not preserve the normali-
zation of the solutions. Since these transformations
will change probabilities, we cannot interpret them as
symmetries of a quantum-mechanical system in the
usual way. If, however, we fix our attention to bound
states of a given definite four-momentum, we can find
a, subalgebra of the 0(4,C) algebra, which is composed
of operators which, when restricted to that subspace
of states, are Hermitian.

To see this, and to discover the structure of the
corresponding group of unitary transformations, we

fix our attention on states at rest, j= (0,0,0,1). Using

Eqs. (31) and (32), we can explicitly construct C; and

D; for this momentum, and when this is done we see
that C; andiD; are Hermitian operators. The commuta-
tion relations, Eq. (32), show that these operators form
an 0(4) algebra. The existence of this algebra of
Hermitian operators on states at rest depends on the
enlargement of the 0(3,1) algebra to 0(4,C), which
was required by the commutation relations involving
the Hermitian generators of the Lorentz group, Eq.
(34). Since the little group of the Lorentz group for
states at rest is the rotation group 0(3), also generated

by Hermitian operators, the unitary little group for
states at rest has the structure 0(3)XO(4). The struc-
tures of the unitary little groups are the same in all
frames because they are related by unitary similarity
transformations.

A separation of the unitary little group for states at
rest into direct factors is quite meaningful, since all
the generators are Hermitian (on these states). The
commutation relations, Eqs. (33) and (34), show that
the triplet L, C; generates —an 0 (3) group which
commutes with the 0(4) generated by C; and iD, , so
that the group has the structure 0(3)I30(4), where
both factors, restricted to states at rest, are unitary.
As in the Euclidean case, the 0(3) factor vanishes
when restricted to states at rest. And so we are led,
finally, to the structure of the unitary little group of
the full symmetry group for states at rest; it is 0(3)
0(4), where the 0(3) factor is represented by unity.
The faithfully represented little group is precisely
0(4). This group fulfills all the requirements of a
quantum-mechanical symmetry group of the bound
states for fixed momentuln. Besides not changing the
four-momentum, it is a symmetry group of the Bethe-
Salpeter equation, and is unitary on the given states.
This group is the relativistic analog of the 0(4) sym-

metry group of the nonrelativistic hydrogen atom, and
the physical explanation of the 0(3) factor which is
represented trivially as the group of rotations of the
center of mass, which was given in Sec. IV, applies
more properly here.
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C; and D; have derivatives in $ only, and so commute
with the translations, which are represented as just
the multiplicative operators 2 g„. The full symmetry
group, including the Poincare group, is then

space which leave the component of ] lying along ))
unchanged. The generators of such transformations may
be written

G = $gTB/8 f, - (40)

g =o(3,1)xt o(4,c)g r,j.
the transversality condition pgT=O. The quantities
C; and D;, as defined earlier, satisfy these restrictions,
and so generate symmetries of the equation. The Bethe-
Salpeter equation is also invariant under Lorentz trans-

The Abelian group T4 contains the translations.
The foregoing discussion of the structure of the

Minkowski-space symmetry group —the enlargement
of the semidirect factor from O(4) to O(4,C), the
identification of the nonunitary and unitary little
groups, and the nonunitarity of the elements of the
full group —all follow from the explicit forms of the
generators C; and D;. These generators are, however,
the analytic continuations of the generators of the
symmetry group of the analytically continued equa-
tion, and so we will show directly that they generate
symmetries of the original Bethe-Salpeter equation,
Eq. (4). This will show that the structure of the
symmetry group is independent of the analytic con-
tinuation, as well as validating the double-analytic-
continuation technique we have used to discover it.

The technique will be to map the Minkowski-space
Bethe-Salpeter equation onto a surface in a five-dimen-
sional space in such a way as to make the higher
symmetry of the equation manifest. To this end,
keeping m =mq=1, we define

formations, and so we could carry through the complete
discussion of the symmetry groups without ever making
an analytic continuation to Euclidean space variables.
Note that no reality condition is imposed on T; the
invariance of the equation follows from the antisym-
metry alone. The Hermiticity of the resulting operators,
and the possibility of their interpretation as generators
of symmetries of a quantum-mechanical system, is
what is affected by the reality properties of T. The
same is true in the Euclidean-space case, where the
O(4) symmetry group could have been enlarged to
O(4,C) by allowing iC, and iD, to be part of the gen-
erator algebra. The only effect would be to include
extra, nonunitary elements in the symmetry group.
The unitary part of the symmetry group, the only part
allowing a quantum-mechanical interpretation, would
have been unchanged.

(35) where the 5X5 matrix T is antisymmetric and satisfies

)) = (total four-momentum)/(2)2, +2)2p),

p 2 —1+~2

1+p2/p 2

(36)

In contrast to the Euclidean case where q' was positive
and pp' greater than 1, here rp is negative, but since it
is always greater than —1, pp remains real. The four-
vector p can take both spacelike and timelike values,
so that the sign of A. is not fixed. By analogy to the
construction of ( from p LEq. (7)g, we define

4=p./~
]2=-,'pp( —A+2)/A.

VI. CONTINUUM STATES

In this section we will examine the symmetry group
of the continuum states, and show that the Bethe-
Salpeter equation has the same spectral degeneracy as
nonrelativistic Coulomb scattering. Following the dis-
cussion of the Minkowski-space bound states, we will
construct from the Minkowski-space generators neer
ones which are appropriate to the unbound states, and
then show that these do generate symmetries of the
scattering-state Bcthe-Salpeter equation.

Since pp, as defined in Eq. (36), is imaginary for the
unbound states, the mapping (37) is not real. We can
correct this by the replacement

This defines the mapping of the Bethe-Salpeter equa-
tion into the $ space. The physical subspace satisfies
$ $ = (2Pp)2. LFive-dimensional inner products are taken
with the metric (+++ +).] This is a spacelike, or
one-sheeted, hyperboloid in the five-dimensional space.
We define the invariant "angular" integration element
dQ(5) by

with

,0

0

(41)

d'&=lal'dl&ld~l ),
and P =&V&. The Bethe-Salpeter equation becomes

(38) The new mapping p~ f is real for unbound states.
Defining

pp'dQ( )'Q($')
Lpp' —4(g. i))'jy(p) = i-

8vr2 1—
$ $'

In this form the Bethe-Salpeter equation is mani-
festly invariant under O(4, 1) transformations in the $

we may transcribe the generators to the new variables

G —+ tvgSGA QSB/8(+ggO'13QB/Bg. (42)

S and y affect only the fifth component $, so that there
is no need to reexamine the construction of the gen-



JEFFREY E. MANDULA

erators from four-vectors. Also, those generators which
do not involve $z are unchanged, so that only D; is
changed. According to Eqs. (31) and (42), it becomes

D, = i—(&gqgX'8/8] &—gX*q8/B]5) .

Therefore all the commutation relations, Eqs. (32)—(34),
still hold, and the full symmetry group, excepting the
translations, generated by {I.;, 1V;, C;, D;, iC;, iD;},
is 0(3,1))&0(4,C), and the little group for fixed rno-
menta is 0(3)XO(4,C). The possibility of replacing
the semidirect product by a direct product, at the cost
of the unitarity of the 0(3,1) factor, exists here also.
Each of the elements of the 0(4,C) group are non-
unitary operators. Since the translations commute with
the 0(4,C) factor, the structure of the full symmetry
group is 0(3,1)&&$0(4,C) T4j.

The difference between the bound and continuum
states appears when we examine the unitary part of
the little group. The Hermiticity of I.; and C;, when
restricted to states at rest, is of course not altered.
But D; acquired an extra factor of —i, and thus is
Hermitian when restricted to states at rest. Therefore,
the commutation relations, Eqs. (32) and (33), show
that the little group of states at rest, generated by
{I.;, C;, D;} is 0(3)&&0(3,1). Neither I; nor C, is
changed; therefore, when the little group is factored
into the direct product 0(3)80(3,1), the 0(3) factor
is still represented by unity. For the unbound states,
the nontrivially represented unitary little group for
states at. rest is 0(3,1), exactly the nonrelativistic
result. The significance of the extra O(3) factor is as
before.

To demonstrate that the above operators do gen-
erate symmetries of the Bethe-Salpeter equation, we
will follow the same procedure as for the bound states.
We map the equation onto a hyperboloid in a five-
dimensional P space, the mapping being given by
Eqs. (37) and (41). If dot products of five-vectors are
taken with metric (+++ ), t'h e continuum state
Bcthe-Salpeter equation becomes

This equation is manifestly invariant under all
transformations on $ which leave their dot products
invariant, and which leave j g unchanged. Such trans-
formations are generated by operators of the form

G= k(gv) 2'~/~& (45)

with T an antisymmetric 5X5 matrix satisfying

(46)

According to Eq. (42), C, and D; are of this form, with

T=$QA QQ.

I' is antisylniiieiric because 2 is, and satisfies the

transversality condition because the X' matrices are
antisymmetric. Thus our description of the symmetry
group of the continuum-state Bethe-Salpeter equation
is correct.

g =I'XI, (47)

where the elements of E commute with the transla-
tions and are nonunitary operators, i.e., they transform
physical states into other physical states with the same
four-momentum, but do not preserve the norms of
states. We further assume that for any given Lorentz
frame there is a subgroup of E which, when restricted
to one-particle states at rest in that frame, is repre-
sented unitarily, and, in addition, that the specification
of the subgroup determines the frame. The intersection
of the subgroups associated with two directions in
space-time is the group of operators which are repre-
sented unitarily on states of a single particle at rest
in either frame. We finally assume that the specifica-
tion of this group uniquely determines the plane in
four-momentum space spanned by the two particle
momenta.

It is easy to see that the symmetry group of Cutkosky's
Bethe-Salpeter equation has all these assumed proper-
ties. That it has the semidirect-product structure
may be seen from Eq. (35). In this case, E is 0(4,C),

VII. SYMMETRIES OF BOVND-STATE
SCATTERING

Having investigated the symmetry group of the
bound states in the Bethe-Salpeter equation, we will
now examine the consequences of trying to extend the
symmetry group to the scattering of two bound states.
We will find an example of the fact that if bound
states scatter, the 5 matrix cannot be invariant under
a symmetry group which nontrivially combines Poincare
invariance with an internal symmetry.

We will extend the group to two-particle scattering
in the usual way, by assuming that two-particle states
transform under the symmetry group according to the
direct product of the representations according to which
the component single-particle states transform, and
that the S matrix is invariant under the transforma-
tions of the symmetry group. With ordinary symmetry
groups, whose elements are all unitary operators, this
procedure yields selection rules and relations between
observable amplitudes. However, because of the un-
usual unitarity properties of the group elements, we
will discover that the above assumptions allow only
forward scattering (and so, by analyticity, no scatter-
ing). The proof of this assertion does not depend on
the detailed dynamics of the relativistic hydrogen atom,
but only on certain general features of the symmetry
group. We will state and prove the assertion without
specific reference to the hydrogen atom.

We assume that the symmetry group of whatever
system we are considering has the structure
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all of whose generators we found were non-Hermitian.
Furthermore, on states describing a single bound state
at rest, the generators C;, iD, have Hermitian repre-
sentations. On states moving with relativistic rapidity
u, ' the generators with Hermitian representations are

&iu NC. &
—tU-m

&iu N&D. &
—iu m

(48)

The Lie algebras spanned by C,' and iD, ' for any two
rapidities are distinct, and so the groups which are
represented unitarily on one-particle states at rest in
two different Lorentz frames are distinct. To find the
intersection of two such groups, we transform to the
center-of-mass system with both particles moving
parallel to the three axis. The two sets fC, iD,') are
as above, but with rapidities of opposite sign. The only
elements in both algebras are those in the algebra
spanned by C& and iD3, and so the intersection of the
symmetry groups will be the Abelian group generated
by this algebra. This group specifies in an obvious way
the 34 plane, which is the plane spanned by the mo-
menta of the two particles in their center-of-mass
frame.

Given our assumptions, it is easy to see that only
forward (or backward) scattering of bound states is

allowed. We consider an incoming state of two par-
ticles, seen in their center-of-mass frame, called a and b:

~ gaby in),

where y is the spatial momentum of a. Under K this
state transforms according to the direct product of the
representations of K on the states ~ay) and ~b —y).
Since the direct product of two unimodular matrices
is unitary only when the component matrices are, the
only elements of E which are represented unitarily on
~aby in) are those which are represented unitarily on
both iay) and ib —y).

We have assumed E to be a symmetry group, so
that its elements commute with the S matrix. So if

k, an element of E, is unitary on a subspace of in
states, it will also be unitary on the space obtained by
applying the 5 operator to that subspace. Since by
assumption k does not change either the number of
particles or the momentum of any particle, it will be
unitary on any space of two particle sta, tes with relative
momentum y' for which

(a'b'y' in~ 5( aby in)WO, (49)

and on the component single-particle states
~

u'y') and
~b' —y') also. By assumption, if we know the group
that is represented unitarily on one-particle states of
two diGerent rapidities, then this knowledge specifies
the plane spanned by their four-momenta. Hence the
yZ plane Lthe plane containing the four-momenta

(E, y) and (E, —y)] and the y'8 plane Lthe plane

'The rapidity is defined as n=—(vj(v() tanh '(v[.

containing (E, y') and (E, —y')] must be the same,
and so y and y' must be parallel. Hence we have
proved that given our general assumptions about &,
only forward (or backward) elastic scattering is pos-
sible. Similarly, only inelastic scattering into states
with any number of particles will be possible when all
the outgoing particles have their spatial momenta
aligned with those of the incoming pair of particles.
However, since the S matrix is an analytic function
of momentum, it cannot permit scattering in a single
direction only, and so it must be the identity matrix.

The conclusion we are forced to from this result is
simply that the sort of symmetry group we have been
considering cannot be relevant to physical scattering
processes. Although it may be perfectly sensible to
classify single-particle states according to their trans-
formation properties under this group, we cannot
sensibly expect scattering amplitudes to be invariant
under it, or under the unitary part of it.
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APPENDIX: UNITARITY OF THE
CUTKOSKY OPERATORS

and called the transformations generated by it unitary.
However, we wish to retain the association between
the solutions of the Bethe-Salpeter equation and the
bound states in the Hilbert space of the Geld theory.
By a unitary operator we ought to mean one which
preserves the norms of states in the Hilbert space, and
so we must show that the generator, Eq. (A1), is
Hermitian with respect to the Hilbert-space norm.
That is the aim of this appendix.

We will begin by deriving, from the normalization of
the bound states in Hilbert space, a normalization con-
dition on the Bethe-Salpeter wave functions. ' An op-
erator which is Hermitian in this norm generates
unitary transformations on the Hilbert space, and we
shall show C to be Hermitian in that norm.

The equation for the Green's function is

G=K '+K 'IG

=K '+GIK ',
(A2a)

(A2b)

where K is the inverse of the free Green's function.

9 R. E, Cutkosky and M. Leon, Phys. Rev. 135, 81445 (1964).

In Sec. V, we designated as Hermitian any sym-
metry generator of the form

(A1)
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Near a bound state of mass m, we have

4;4~6=i g — +terms regular at p'=m'. (A3)
@ 2 yP

where ~ is the derivative

p'
e= lllTl

y~mn 1 1/g
(A14)

p. =X 'Ip„
g, =&,IX '.

(A4a)

(A4b)

To obtain this equation, we insert a complete set of
states into the expression T(0~)p)P)P)P

~
0) for the Green's

function, so that Eq. (A3) has implicit in it the Hilbert-
space normalization of the bound states. By inserting
this into Eq. (A2) and looking near p'=m', one gets
the equations for the Bethe-Salpeter wave functions,

lim (p' —m') G =—
smmR c ~() „=1)

(A15)

The same quantity, calculated from Eq. (A3), is

Since, in the form of Eq. (A13), G is independent of
the normalizations of the individual wave functions
)P„, we choose them so that all the )P A)p„ fa.ctors are
equal to the same constant c, so that

We extend these equations oG their mass shells, i.e.,
allow values of P„ for which p'Nm':

lim (p' —m') G = i Q pj,.
pmm2

(A16)

)P„=X X 'Ip„,

Q„=X„Q„IX'.
(A5a,)

(A5b)

From these equations we obtain the orthogonality
condition

Note that the wave functions )P„and )P„[in Eq. (A15),
as well as the wave functions P and P, satisfy Eq.
(A4), so that the wave functions are linear combina-
tions of each other. Equation (A15) was derived from
the assumption that

$~$„=0 if (A6) Q„Xi/ =c8 „, (A17)
We further orthogonalize the degenerate wave func-
tions (X =X„)by requiring that

)P XQ„=O if mme. (A7)

We now wish to expand the Green's function in a
series of solutions of Eq. (A5a), but because I is not
Hermitian, these do not necessarily form a complete
set. Hence we write

G=+ )P„m,„+R. (A8)

Since a subset of the solutions of Eq. (A5a), when
p'=m', are just the solutions of Eq. (A4a), we have

lim (p' —m' )R=0.
y~m2

(A9)

Using the Green's function equation (A2a) and the
orthogonality condition (A7), we may solve for m„,
obtaining

n n

p Xpg c8,), —— (A18)

corresponds to a unitary transformation on the Hilbert
space. We may use Eq. (A18) as the proper norm for
states with the same p„, with respect to which we will

determine the Hermiticity of C, Eq. (A1).
The norm

and so the quadratic form, Eq. (A15), will be preserved
by any symmetry transformation on the P„)waev
functions which preserves that orthonormality con-
dition. Equation (A16) was derived from the Hilbert-
space normalization of the bound states, and so it will
be invariant under unitary symmetry transformations
on the Hilbert space. Thus we have two groups of
transformations which preserve the same invariant
quadratic form, and so these two groups of trans-
formations must be the same. Thus any symmetry
transformation on the wave functions P„which leaves
p„unchanged and preserves

where
(1—1/l). ))P X)P

(A10) Q.4 ) = d'P 4.(p)X(p)4 (P)

„=P„XR—P„IR= (1—1/X„g„XR. (A11) may be written as the P space integral

The Green's function is, then,

We now examine

lim (p' —nz') G = e
y~mn n o n )) )P„X)P„=

(A12)

(A13)

where P'=A'P Lsee Eq. (36)7. Symmetry transforma-
tions must leave $ )) invariant, so we must have
$C, f ))7 =0 for C to generate a symmetry.

In order to show that C is Hermitian in this norm,
we need the relation between g and qk Recall that in



185 S YM ME TRIES OF RELATI V ISTI C H ATOM

coordinate space, on p space. Hence C can be written

x(x) =e—'' ~(OITQ(x)f(x) Ia)

x(*)= *' ( ITS( )4(*.)l0)
(A20)

8
C= (real function of p)„—

p

x(~) =~"x(
I TS(—~ )0(—») I

o)*, (A22)C —+ —C.
Therefore

where cx denotes the TP-reversed state to n. Assuming

equal masses, and translating by xz+»=2X, we get (Cy y) $ p4 dQ Cp y Lp4 4(= II)2)

From TP invariance (our fields are Hermitian), we see gut under TP, P~P, (1(i)gygP~ (1gb)—gygP, so
that" that,

x( ) = -" (0IT~("8(*.) I=) (A21)

by the Hermiticity of the field P. Hence x is the wave
function of the TP-reversed state to that for which X

is the wave function, and so p is obtained from P by
taking the momentum-space wave function of the TP-
reversed state.

To And the eRect of TP on C, note that C generates
a real transformation on $ space, and so, by Eq. (37)
is equivalent to the generator of a real transformation

'0 T is the antitime ordering operator.

= —,',po' dQ(b)(Cy. ')yb'I-po' —4( H)')

=i'6 po' d~&»e. '(Cub')Lpo' —4(=- &)')

= (4.,Cob). (A23)

Hence C is Hermitian in the (, ) norm, and our use
of its Hermiticity in the text is justified.


