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Asymptotic Symmetry, Lagrangian Gauge Model, and the PVV Vertex*
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We study a model in which SU(3) breaking in the PUU vertex is determined by the requirement of
asymptotic nonet symmetry. A vector-meson gauge model is constructed which satishes this asymptotic
symmetry condition. The model also incorporates the usual asymptotic symmetry result for the UPP
vertex, the field-current identities, and the algebra of fields. Nevertheless, we obtain a second Weinberg
sum rule of the Das-Mathur-Okubo form, and consequently, a quadratic mass formula as in a mass-mixing
model. The predictions of the model are compared with available experimental data on meson decays
involving the PV U vertex. The predicted rates for radiative decays of vector mesons are also given.

' 'T has been intimated" that any gauge-Geld theory
~ - that incorporates the field-current identities and the
algebra of currents must lead to an inverse square mass
formula. Furthermore, in such a model, the required
renormalization leads to a symmetry breaking in the
PVV vertex proportional to the vector-meson masses. '
In the present article we give a simple argument based
on asymptotic symmetry leading to a breaking in the
PUU couplings proportional to the inverse masses. By
construction we demonstrate the existence of a La-
grangian model that contains the usual Geld-current
identities and the algebra of currents as well as this
latter form of splitting in the PV U vertex. The model
leads to the two Weinberg sum rules, '' providing,
therefore, a general agreement with asymptotic sym-
metry considerations.

In Sec. I, we introduce our notation by recasting the
Weinberg sum rules in a convenient form. An asymp-
totic symmetry condition for the PVV vertex is formu-
lated in Sec. II, and in Sec. III we present our
Lagrangian gauge-Geld model. The important distinc-
tion of this model relative to Refs. 1—3 is that 6„„is
treated as an independent field under the variation of
the Lagrangian and no derivatives occur except in the
kinetic term. In Secs. IV and V, we compare with
experiment and discuss our results.
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where p(m') is now a 9&&9 matrix.
The Weinberg sum rules can be written in the form
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where we ignore scalar contributions to the propagator
of the currents and the usual SU(3) commutation rela-
tions are assumed to hold. We may write the above
equation in matrix notation as

I. INTRODUCTION
where mo and go are arbitrary constants and 8 is a

We begin by defining the vector-current spectral symmetry-breaking matrix whose most general form
function p, b(m') according to the equation consistent with isospin invariance is

*This work (Yale Report No. 2726-550) is supported in part by
the U. S. Atomic Energy Commission under Contract No.
ATAT (30-1)-2726 at Yale and under Contract No. AT (11-1)-
1545 at Ohio State.' R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266
(i967).' L Kitnel, Phys. Rev. Letters 21, 177 (1968).' L. M. Brown, H. Munczek, and P. Singer, Phys. Rev. Letters
21, 707 (j.968).' S. Weinberg, Phys. Rev. Letters 18, 507 (1967).'T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
761 (I967).
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The indices a, b run from 0 to 8 with doss=+8. These
sum rules may be regarded as a consequence of an
asymptotic symmetry in Eq. (1). 1'n the presence of
symmetry breaking, p can have o8-diagonal elements.
However, it can be put into diagonal form:

p =Sp'S,
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where p' is of the form' p '8
p and in the single-particle

saturation picture

p
' = (m p'/gp') 8(m' —m ') .

TAsr.E I. Mass and mixing-angle predictions for various simple
symmetry-breaking models. The errors on the last three entries
correspond to the assumption mp 770&10 MeV. B~f,=bol~f,

(7)
+&bASab+b2ba&&as+ba&epb~p+b4(&as& to+&ap&ss).

In general, S is not unitary.
We must also define the (diagonal) physical vector-

meson mass matrix

3f~p= m08~p

In terms of the matrices M and S, the spectral-function
sum rules can be written

Okubo~

Schwingerb
27 model'

Rosenfeldd

b2= b4 ——0
b3 ——sbz)
b4 = ——,'v2b2
by= b3=0
be= b4=0
bg ——0
b3=0
b4 ——0

e=39.3

e =32.8'
e=35.8
e =31.5
e=39.9'%1.1'
e =31.3'+0.6'
e =32.5'a4.0'

b2 ——b3 ——b4 ——0 e=e& ——35.26 mp mQ) p
2= 2

2m~k —m~ +m$
mp=760 MeV

mp ——778 MeV
2m~*'=m ~+my'

mp=771 MeV

mo'SM 'S=1,
o'SS=B.

Finally, we define the matrix U:

(9)

(10)
a See Ref. 7.
b See Ref. 8.
e See Ref. 9.
d See the mixing angle quoted in Ref. 10,

U=SM 'mo. ( 1) =b4 ——0 leads to the relations

From Eq. (9), U is unitary:

(12)

From Eq. (10) we see that U is the unitary matrix that
dia, gonalizes 8:

M'= UBU. (13)

U is, therefore, the unit matrix in the subspace of the p
and the E* and is the 2&(2 orthogonal matrix in the
space of co and g:

tan8 = 1/K2,

mp2+m '=2mx*2

mp m~

(2o)

(21)

(22)

Other symmetry-breaking models " can also be
formulated in terms of assumptions about the b's in
Eq. (5). The predictions of some of these models are
summarized in Table I. We note that the mixing angle
is to be regarded as an experimental parameter on a par
with, and in general independent of, the empirical
masses.

%e may now define the Geld-current coupling Inatrix:

cos 8 sin 8

—sin 8 cos 8

(23)

In terms of pole dominance, the spectral function of
Eq. (1) can be written

p p(m2) —Q(g
—1~2) $(m2 m 2) (~2g—1) 2 (24)

bp+bi =mp2,

bo —-', b~ ——m~*,

(15) g-'M = (mp/g p) U.

(16) Using Eqs. (14) and (26), we see that

Through Fq. (13) ail the b's of Fq. (5) can be solved in Comparing this with Eqs. (6) and (7), we have

terms of the physical ma, sses of p, ~, E*, and @ and
the angle 8:

(25)

(26)

b, —bi —bp ——(mp2 m„') co—s28, (17)

2bp —bi+b2+bp =mp2+m„2,

v2bi+b4 —2(m&2 —m '——) sin28. (19)

Any a priori relations assumed among the b's lead to
relations between the physical masses and 8. For
example, the nonet symmetry assumption that b2=bs

mo mp m+ = (g
—') p„m„(cos8)—' = (g

—')p„m„(sin8) —'
R'0 gp g&*

=(g ')pram&(cos8) '= —
(g ')ppmp(sin8) '. (27)

Equation (27) is the usual asyniptotic symmetry or
current-mixing result for the Vt'I' vertex assuming
vector dominance. Equations (23)—(25) are equivalent

' Here and in the following the early italic letters (a, b, c, etc.)
are used for SU(3) indices running from 0 to 8; early Greek letters
(~, J8, y, etc.) denote the physical vector mesons p, op, X*, qb, and
the late Greek letters (p, v, etc.) are reserved for space-time
indices.

' S. Okubo, Phys. Letters 5, 165 (1963).' J. Schwinger, Phys. Rev. 1358, 816 (1964).
L. Clavelli and R. Torgerson, Nuovo Cimento (to be published).

' Particle Data Group, Rev. Mod. Phys. 41, 109 (1969).
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to writing a matrix 6eld-current identity"

J~= (mp'/gp) S@~, (28)

where we have defined the I'V U coupling matrix

(h ).e=—h~~y v&.

where 4 is the 9-vector containing the renormalized assuming that h~ is a momentum-independent couplin O
p, E, @, and a& fields. constant, we have from Eqs. (31), (33), and (34) the

asymptotic symmetry condition
II. ASYMPTOTIC SYMMETRY

We may now require asymptotic symmetry in the
matrix elements of the current-current product between
vacuum and the one-pseudoscalar state. We assume a
unitary transformation between the physical pseudo-
scalar mesons and the SU(3) eigenstates. This is equiva-
lent to a mass-mixing model for the pseudoscalars:

(h»..=h. Z(U.)"(S-D S-).'
Using Eq. (11), this may be written

(Mh~Ef)ae=mp'hp Q(Uy)"(U 'D'U)ap.

(35)

(36)

with

pa (U )aapa Equation (36) is the PVV analog of the asymptotic
symmetry condition, Eq. (26) for the VPP vertex. We
have more explicitly

cos y sin y

(29)

homo'
«p'~ v'= 2 (U )"(U)-d- p(U)" (37)

p abc

The fa,ctor mp'/m me gives the SU(3) symmetry break-
ing. In general, Eq. (37) implies

—sin y cosy hr ~v y~=hp"v v&'~'(mpP/mneme), (38)

We now consider

lim k'q'H'=h (mp'/gp')D'
Q2 q2 ~oo

(31)

where D' is a ma, trix whose elements are the Gell-
Mann d's:

(D').p=d. .p, (32)

and hp is a new constant. From Eqs. (28) and (30),
we have

U~'& d'x d'y e 'p *+'~ "(P&I'T(4„~(x)c„e'(y))IO)

but
= (gp'/mp') (S—'H'S —') ep„„.,q.k„(33)

d'x d'y e "*++'&(P&
I T(C (x)4 e(y)) IO)

=(h')-e — —,(34)
(q'+m ') (k'+me')

"N. Kro11, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376
(1967).

d'*d'y e " '+*" "(P"
I T(~:(x)J.'(y)) Io)

= (H').pp„„.,q.k„(30)
where H is a form factor depending on k', q', and k q.
Since H has poles in both k' and q', we will take asymp-
totic symmetry in the present context to mean

where h('~ ) is the nonet symmetric value. The usual
current-mixing model' leads to a breaking, directly
(instead of inversely) proportional to the vector-meson
masses.

III. LAGRANGIAN MODEL

We now wish to point out the existence of a Lagran-
gian model that incorporates all the previous results of
asymptotic symmetry":

'G p""Pa„@„' a—„y—„'+2'go(y„'—F@„)j
+ Gp'"(B/mp')G„„pm—p Qp4$„—

+g,y;E„+g, (XP)+z, (xP,G„„P). (39)

Wherever possible, the notation is that of Schwinger. "
The unrenormalized quantities are denoted by a sub-
script or superscript zero. When necessary to avoid
confusion, the space-time index 0 will be put in paren-
theses. 8 is the symmetry-breaking matrix which in the
most general case is given by Eq. (5). In the limit of
exact symmetry, B/mp' becomes 1. G„„' and @„P are
canonical nine-vectors describing the vector mesons.
For purposes of varying the Lagrangian, G„„ is treated
as an independent variable. X stands for any matter
field, i.e. , any field other than that of the vector mesons.
E„is the matter current. It is sufficient for our present

~2 A similar Lagrangian theory of symmetry breaking has been
treated in a difFerent context by H. T. Nieh, Phys. Rev. 146, 1012
(&966).

13 J. Schwinger, Phys. Rev. 125, 7043 (1962).
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purposes to restrict X to the pseudoscalar nonet P. Then

Zi(P) = P—o"B„Pplp(Po"P„o ',P—pA-P(), (40)

relations.

(1/i) t Po.(")(x),Pob(y)] =- b.bb'-(x- y), (57)

Zp(P, G„„)= oih po„„„Pp(Gp""DGp") . (41) (1/)LGo.""()Ao '(y)]=b. b' b'( —».
is the mass-squared matrix of the pseudoscalar

mesons and hp is the unrenormalized PVV coupling
constant. The matrix D is defined in Kq. (32).

Ke wish to consider the behavior of 2 under the
infinitesimal local SU(3) transformation,

It can be shown that the charge

Qbb = d'x J(o) (x)b)&(x) (59)

b(t)„o =i 'F bV(t)„o+(1/go)b„bX,

~G„,P=i F Q.'G„„P,

8P'p=i 'F O'Pp

B'„P=i 'F O'P„P.

(42)

(43)

(44)

(45)

indeed generates the correct transformation of the fields.
In particular,

by, o=(1/i)LQ», &t,o]=i'F b)'@, P+(1/g)b. b), (60)

and therefore

(F') b.=ifb-

8X is a function of space-time behaving as a nine-vector
under the internal symmetry.
Ke also define

'F Q.'=—P, F Q (47)

F is the antisymmetric octet representation of SU(3):

(46)

LJ(o)',J(o) ]=ifob~J(o) b (x—y) ~

LJ' J)']=0.
(62)

(63)

$J(p) ~,Jbb] =if.b,Jb'b'(x —y)

+i (moo/g p') b, bbbb'(x y) (6—1)

together with the other algebra-of-fields commutators

Under the transformation of Kqs. (42)—(45),

bx, =o,
bZi= iPp"'F () —Q.'Pp ——,'iPp&(A 'F Q.']Pp.

According to the action principle,

b2, = —B„(X~Q.)
and, therefore,

E„=iP„PFPp,

(48)

(49)

(50)

(51)

In spite of the symmetry breaking in Eq. (39), the
Schwinger term in Eq. (61) is SU(3)-symmetric, which

guarantees the first Weinberg sum rule LEq. (3)] for

the spectral function of the J's. The second sum rule

a,iso follows in the form of Eq. (4). We now wish to
dia, gona, lize Eq. (39) in terms of the physical fields by
means of the following canonical transformations. The
matrix S will later be identified with the S of the
previous sections:

a„K:=,'iPp[A F']Po-.

Fioin Eq. (51) it can be seen that

5E„=i'F 8A.'E„. (53)

y„p =54„,
G„„p=S '6„„

Pp ——VIP,

(64)

(65)

(66)

bZ = —8„(J~bX), (55)

where J„is the current for the total system. Comparing
Kqs. (54) and (55), we have the field-current identity

J)' = (mo'/go) Qo". (56)

The essential distinction of the present model is that
explicit derivatives occur neither in symmetry-breaking
terms nor in the interaction terms. This guarantees the
form of Eq. (56) and the canonical commutation

The space integral of the fourth component of E„is the
generator of SU(3) transforrnations on Zi and therefore
satisfies the usual commutation relations.

The variation of the total Lagrangian is

bZ = —( m'/g, )y Bp„N,+ ', G LpB/ m'p'F -Q.']G '
——iPipt pAF Q.']P&). (54)

But from the action principle,

P P U —1P (67)

Z.= ,'I)po„„„PU„(GI'"S 'D-S 'G") . — — (70)

For the correct normalization and physical masses, we

must take
5 '(8/mp')5 '=1,

mp'SS=M',

(71)

(72)

where ~ p =m 5 p, the physical mass matrix. If we

The I.agrangian of Eq. (39) takes the form

,'G""$8„4', B,C—'„+-igpS '(4—SFSC )]
+ 'G""5 '(8/mp')-5-'G„„—,'mpo4 "554„—
+igoC "S(P„U„'I'U P)+Xi(U„P,U„'P„)

+2p(U„P,S 'G„,), (68)

where

Z, = P~a„P+,'P~U, '—U„'P„',-PU„A—U,P-, (6—9)-
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define a matrix U such that

5=U3fmp ',
we see from Eq. (72) that U is unitary:

UU= UU=1,

P3)

(74)

and from Eq. (71) that U diagonalizes the symmetry-
breaking matrix 8:

M2= UBU. (75)

IV. EXPERIMENTAL CONSEQUENCES

To begin the comparison of the present model with
experiment, we list for convenience the physical cou-
pling constants. In the case of dissimilar vector mesons,
the physical g's of the followipg equations are twice the
corresponding h's of Eq. (85), as can be seen by grouping
the terms in Eq. (84) that differ only by interchange of
P andy:

Any simple form for 8 leads to a quadratic mass
formula.

The field-current identity from Eq. (56) becomes

J« = (mp'/gp) 54» = (m p/go) UMC». (76)

g,„=(hpmp'/m, m„)2 cos(8, —0),

g„,~ = (hpmp'/m, mp) 2 sin(e, —0),

g»o«o = (hpmp'/m, ') sin(e, —y),

g& «0 = (hpmp /m ) cos(e —'y)

(86a)

(86b)

(86c)

(86d)
If we define the field-current matrix through the
equation

J~=g-'3524~, (77)

p'= UQ U„, (79)

and the correct normalization of the kinetic term in Eq.
(69) requires that U«be unitary. We can now write the
Lagrangian in terms of the physical particles.

,'G«"EB«—4„—8„4„+i—M 'U(4 gF-UMC )j
+,'G« "G„„'4'"-M'4'—

+i4«g(P«U„F U,P)+Zi+Z p, (80)
with

z, = P«a«P+ ,'P«—P« —,'PI 'P-, — (81)

Zp -mp'hpp„„. ,PU„(G——«"M 'UDUM 'G"). -(82)

The UI'I' coupling constant can be immediately ex-
tracted from Eq. (80) and, using Eq. (78), one sees that

g /m =gK "K /mK* —gp/mp (83)

in agreement with the asymptotic symmetry condition
PEq. (27)j and vector dominance. The UUP coupling
matrix h is defined through

aC p ———, peg«,P(C"" hG)

the comparison of Eqs. (76) and (77) yields

g =gp(M'/mp) U= gp5. (78)

U„must be chosen to diagonalize the pseudoscalar
masses

g„„„=(hpmp'/m„') )sin(e, —y)
—V3 cosy sin'(8 —0)$, (86e)

g„„„=(hpmp'/m„') Leos(e, —y)
—V3 sing sin'(8 —e)j, (86f)

g„pp
——(h pmp'/mq') P v2 co—s(8,—7)

+43 cosy sin'(8 —0)j, (86g)

g„~p = (hpmp'/m~') )A sin(e, —y)
+v3 sing sin'(8, —e)$, (86h)

g„„&= (h pmp'/m„mp)L2&3 cosy sin(0, —0)

&& cos(8, —8)j, (86i)

g; &
——(hpmp'/m„m@) $2@3 sing sin(8, —8)

Xc»(0.—~)3, (86j)

gK+ K*+= —gK0 K*0=hpmp /m mK (86k)

gKldK (hpmp /™NmK )
&&$2(gpP) cose —(gp) sinej, (861)

gKpK ——(hpmp'/m pmK*)

&&L
—2(g-,') sintt —(gp') cosef, (86m)

where 8, is the canonical angle 35.26 . 8 and y are the
vector and pseudoscalar mixing angles, respectively.

From the field-current identity LEq. (76)j, one has
the electromagnetic current

Jp+p~~p«= e(mp/gp) (m, C,"+m„C„«sine/K3

+mpC ~«cosa/V3), (87)

By comparison with Eq. (82), we see that

(h )e, hp viip~ mp'hp(U——&) '(M 'U——D'UM ')p~ (85) gi i,' (mv' mi')'—
r(U~P~) =

4m
(88a)

24mv3Equation (85) is identical to the asymptotic-symmetry
prediction, Eq. (35).

In short, one sees by the comparison of the matrix
definitions here with those of Secs. I and D that the
proposed Lagrangian contains all the properties of those
sections including the two spectral-function sum rules
(3) and (4).

gvi 7' (mi ' mv')'—
r(P~ U~)=

4x
(88b)

Smp3

g~» m~2 3

r(P~ 2~) = (88c)

h .p,p G„„G-, (84) wheremp/gp ——m, /g, .
aPy From this equation and Eq. (86), we can write the

VI'p and I'pp coupling constants defined by the rates
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They are

2e' (
g vs=

&3g,'x
mp

sin8+g»
mp

cos8 i,
m~

2e'/
Avv= I gnne+gn~~

m, ' sin'8
+A~~

m„2 cos'0

2e'/
gn'vv =,I gn'~u+gn'

gl

m, ' sin'0
+g» ~~

mp' 3

m, ' cos'0

m2 3

m, ' cos8 sin8)
+g.-~ ~, (89b)

mm, 3 i'

From Eqs. (86) and (90), one finds the alternative
determinations in our model

m„r(y ~ ~~)
tan'(8, —8) =

mpI'(cu -+ m.y)
(92)

mq' I'g —+ 37r) 1
tan'(8, —8)=-

m„' I'((u —& 3x.) (36.6&5.0)
(93)

0=32.2 +0.6 (94a)

From Eq. (92) and the Bonn-Pisa" upper limit on

P ~ ~y, we have 8=35.3'&5.1'. From Eq. (93) and the
latest data" on @—+ 3n., we calcula, te either

mp~ coso sine
g„.,— —,(89c)

mg)mQ 3

ol

0=38.4 &0.6 . (94b)

(90a)

(90b)

g-.=(e/g, )g.,-,
g -.=(e/g. )g-. ,

g...= (em, /v3g, )

Xbg.,„(si n8/m„) +g„~(c os 8/m~)5,

g„„,= (em'/v3gp)

X$2g„„.(sin8/m„) +g„„~(cos8/m~) 7,

g „=(em,/v3g, )

XL2g„„(cos8/m, )+g„„,(sin8/m„) j,
g-.= (2e/g. )g-. ,

A„„=(em„/v3g p)
(95)

(96)

I'=g p„'(m„'/4x),

X=gp'/4m,
XL2g„~~(cos8/m~)+g„„~(sin8/m„) j, (90g)

we have

In the following computations we adopt the angle of
Eq. (94a) because it provides agreement among pro-
cesses (91)—(93). We note, however, that our remaining
calculations are very insensitive to fluctuations in the
angle within the larger limits of the Orsay experiment.
The angle of Eq. (94a) is also in reasonable agreement
with several of the theoretical models listed in Table I.

Although we could take g, from outside information,
(90d) we prefer to treat it as a free parameter. We have of

course assumed throughout that g, =g„. Therefore,
using the above mixing angles, we can write the Ave

(90e) known decay rates in terms of g, and g„„and a numeri-
cal factor. De6ning for convenience

(90f)

grr'rr~ (em, /g, )Pgrr——,x'/m, + ger„lr*(sin8/&3m„)

+grrpx (c so8/3vms) j. (90h)

All the above equations depend on four independent
parameters which we may choose to be the two mixing
angles 0 and y and the two coupling constants g,„and
g, (=g, ,). For the pseudoscalar mixing angle y, we
adopt the conventional —10.4, which can be derived
by putting b2=0 in the pseudoscalar equivalent of Eqs.
(5) and (13).'4

From Eq. (87), one can see that

m„i'(co~ e+e )
tan'0=

mal'(P~ e+e )

F(a& ~ 3~) =Xl"(0.247&0.039) MeV, (97)

F(&v ~ my) = (F/X)(0.218) MeV, (98)

P(ir —& 2y) = (Y/X') (5 40+0.22) eV
& (99)

F(rI ~ 2y) = (I'/X') (0.486&0.02) keV, (100)

I'(q ~ ~m y) = V(11.5+1.1) eV. (101)

The errors in the numerical factors come from the
uncertainty in the mixing s,ngle LEq. (94a)j and in the
intermediate p-meson mass. The phase-space calcula-
tions in processes (97) and (101) are somewhat sensitive
to the p-meson mass, which we have taken to be
770&10 MeV. The best fit to the above processes and
their branching ratios'~ yields

The recent Orsay" measurement of this ratio yields
8=33.5'&3.2 .

F=—'g 'm '=13.3
X=g '/4~=2. 74.

(102)

(103)

'4 Actually, the sign of p is undetermined by the mass formula.
The minus sign is preferred in the best 6t to the data."J.E. Augustin et cl., Phys. Letters 28B, 503 (1969);28B, 508
(1969); 28B, 513 (1969);28B, 517 (1969).

"C.Qemporad et a/. Phys. Letters 29B, 383 (1969).
'7 We have used the data averages of Ref. 10. Since the branch-

ing ratios of q and co are known more accurately than the individual
rates, they provide additional constraints on X and F'.
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TABLE II. Decay rates depending on the IV V vertex.

Decay mode

9~2Y
7l ~ Wry'7

~~2%
qb ~ 327

Gl ~ 3x'
40~71+
0) ~ 7/P

4~vv
4 ~n'v
P ~ 7l')t'

p~'Qv
I'*+~ I'+~
E*~—+ E'y~ CO+~ p79'~ 27

Present model
(keV)

0.86 +0.04
0.153~0.015
(9.6 &0.4) X10 '

570&30
(9.0 &1.3)X10'
1.05X103
8.6
4.2

33.5
0.19

101
69.8
96.6

123
9.5

142
6.1

Experiment
(keV)

1.00 &0.22
0.145~0.050
(7.3 ~1.7) X10 '

730~210
(11.3 +1.0)X10'
(1.17 ~0.19) &&103

&190
13

&290

&500

The value of X is seen to be in very close agreement
with the Kawarabayashi-Suzuki relation, "which pre-
dicts a value of 2.66 corresponding to a p-meson width
of 144 MeV. We note, however, that the leptonic rates
of the vector mesons as given, for instance, by Ref. 15
seem to require a lower value for X. The value of Y is
in rough agreement with SU(6) predictions. In Table II,
we list all the relevant meson-decay rates predicted in
the present model using Eqs. (f02) and (103).

V. CONCLUSION

It can be seen from Table II that the present model
based on asymptotic symmetry allows a reasonable fit
to all the known meson-decay rates involving the P VV
vertex. This is in contrast to the often-voiced view that
these decay rates can be brought into agreement only

"K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

through extra SU'(3) and nonet symmetry-breaking
parameters. It is well known, for example, that the usual
current-mixing model leads to widespread disagreement
with experiment unless one introduces a number of
extra symmetry-breaking parameters. ' In particular,
we note that either exact U-spin symmetry or the usual
current-mixing model without gg mixing leads to dis.
crepancies with experiment for the (g —& 2y)/(z ~ 2y)
and (q ~ mrs.p)/(q —& 2p) ratios by factors of 6 and 3.5,
respectively. ' Discrepancies by a factor of 3 remain even
if one introduces the conventional gq' mixing angle of
—10.4'. Because of the uncertain status of this angle, we
should mention that varying p by %10 in the present
model can affect certain of the predicted rates by up to
50%, although the over-all quality of the 6t and
especially the best-fit values for g, and g,„do not
change significantly. With regard to the rare decay
modes included in Table II, we note that, because of the
inverse-mass factors in Eqs. (86), processes involving
the P meson are especially sensitive to our model. Most
interesting perhaps is the large suppression of the
P ~ pp rate. Only a slight improvement on the present
experimental upper limit should discriminate between
our model and the exact-symmetry predict;ion. ' The
present upper limit on @—+ pp is already in disagree-
ment with the current-mixing model of Ref. 3 in the
absence of extra symmetry-breaking parameters. Also
of interest is the ratio of the radiative decay rates of
charged to neutral E~'s, where there is a factor of 3
difference between exact symmetry and the present
model. Finally, we remark that the model proposed
here can be extended to predict symmetry breaking in
all the nonminimal (i.e. , through G„„) couplings of the
vector mesons to other particles such as baryons and
tensor mesons.

"See, for example, Anisovich et aE., Phys. Letters 16, 194
(1965), who give P(P ~ ny) =250 keV.


