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contradictions were found by GriKths and Palmer'5
in their sum rules for 1=0 pion-nucleon scattering. Our
results, although based on SU(3)-breaking model-de-
pendent calculations, do not show any obvious incon-
sistency. Therefore, we feel that calculations based on

5 David GrifBths and William Palmer, Phys. Rev. 161, 1606
(1967).

the superconvergent model with these assumptions de-

serve further study.
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It is shown that the assumption that the electromagnetic current behaves at infinity like a free vector-
meson Geld implies that elastic form factors should vanish at infinity faster than would have been expected
from vector-meson dominance (VMD). In fact, it is'shown that VMD for forin factors at infinite momentum
transfer is violated with increasing strength as the spin of the particle concerned increases. Under some
further speculative assumptions, correlations between the mass spectrum of very heavy particles and the
asymptotic behavior of their form factors are found.

L INTRODUCTION
' 'T is widely known that the electromagnetic form
- - factors accessible to present day experiments (e.g. ,
pion and nucleon form factors) cannot be explained by
vector-meson dominance (VMD) in the region of
medium and large momentum transfers. Specifically,
VMD can explain the nucleon form factors' only for
squared momentum transfers smaller than about 1.2
(BeV/c)', and only under the assumption that strange,
totally not understood, cancellations are taking place
among the p, ~, and y contributions. For squared
momentum transfers larger than about 1.2 (BeV/c)'
in the spacelike region, VMD cannot explain the
nucleon form factor. With respect to the pion form
factor, VMD can very well explain it for small timelike
momentum transfers' but it seems to fail more or less
quickly in the spacelike region.

On the other hand, there have recently been some
speculations that the electromagnetic current behaves
like a free vector-meson field at infinity. ' To explain

*Work supported in part by the U. S. Atomic Energy Com-
mission.

$ Submitted to the Department of Physics, The University of
Chicago, in partial fulfillment of the requirement for the Ph.D.
degree.

f Present address: Department of Physics, Brookhaven
National Laboratory, Upton, N. Y. 11973.' L. H. Chan, K. W. Chen, J. R. Dunning, Jr., N. F. Ramsey,
J. K. Walker, and R. Wilson, Phys. Rev. 141, 1298 {1966).

J.E. Augustin, J. C. Bizot, J. Buon, J. Haissinski, D. Lalanne,
P. Marin, H. Xguyen Ngoc, J. Perez-Y-Jorba, F. Rumpf, E. Silva,
and S. Tavernier, Phys. Letters 28B, 508 (1968).

J. J. Sakurai (to be published). Speculations along this line
seem to have been made Grst by S. Weinberg, Phys. Rev. Letters
18, 507 (1967).

this more specifically, let us define the "current
propagator" by4

D„„(q)=i d'x e ' '(0—
l
T*(J„™(a)J„™(0)) l 0&

where

p(~ ) qoqv)
ld~s, (1.1)

q'ynt' —t'e tn')

p( J') —= s (2sr)' 2—ft(J'- I)—
n

&&«l J ' (0) ln&&tali. ' (o) Io& (1 2)

The assumption that the electromagnetic current
behaves like a free field at infinity now means that

q„q„p(trt')
h„,(q):— p(ttt')dttt'+ — dttt', (1.3)

Q2~oO q2 q m
where

and

p(m')
dm2 =finite

m2
(1.4)

p(ttt')drtt'= finite. (1.5'l

Evidently, since p(tn) is positive definite, Eq. (1.4)
should be satisfied if (1.5) is satisfied. Notice that
relations (1.3)—(1.5) are expected, if it is possible to
approximate the spectral function by a finite sum of
&unction terms (e.g. , at p, co, and y).

4 By T*we mean the covariant part of the time-ordered product
of the two currents.
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The main purpose of the present work is to investigate
possible consequences on the asymptotic behavior of
the electromagnetic form factors of the various particles
which stem from the requirement (1.5). From (1.2) we
see that any set of intermediate states I n) gives a
semipositive definite contribution to p(eP), and there-
fore the corresponding contribution to the integral

particle and its antiparticle, respectively, of spin J.
We define

P= Pt-+Ps and s==== J"=—. . ('2.2)

Following Terazawa, ' who has translated the treatments
of Yennie et al.~ and Durand et a/. ' from the spacelike
region to the timelike region of the momentum trans-
fer, we work. in the c.m. frame of particles 1 and 2,
and take

p(tw') &Em' (1.6) pi ——p= along the z axis.

Of course, p2
———p. Current conservation implies that'

should be finite if Eq. (1.5) is to hold. In the following,
we shall investigate the consequences of the assumption
that any two-body (particle-antiparticle) contribution
to the integral (1.6), as well as the total two-body
contribution to the same integral, is finite. For conven-
ience we treat the boson and the fermion intermediate
states separately. Our most important result is that
requirement (1.5) implies that VMD cattnot be valid
for form factors at infinity. To express it in more
dramatic terms, we demonstrate that VMD for the
electromagnetic current propagator at infinity excludes
VMD for the electromagnetic form factors at infinity.
We further show that the larger the spin of a particle,
the stronger the violation of VMD for its form factor at
infinity. We hasten to say that the arguments leading
to our result have nothing to do with the usual plausibil-
ity arguments that VMD is a low-momentum-transfer
theory and should not be expected to be valid a,t high
energies. In order to derive our result, the only assump-
tions made is that the electromagnetic current behaves
like a free field at infinity.

An outline of the paper is as follows. In Sec. II elastic
form factors for particles of any spin are reviewed and,
assuming Eq. (1.5), a condition on their asymptotic
behavior is found. This condition excludes the poss-
ibility of VMD for the form factors at infinity. In Sec.
III a stronger condition on the asymptotic behavior of
the form factors is derived, using assumptions and
techniques similar to those of Terazawa. ' This latter
condition imposes a certain correlation between the
mass spectrum of very heavy particles and the asymp-
totic behavior of their form factors. Finally, in Sec. IV
we summarize our results.

II. ASYMPTOTIC BEHAVIOR OF FORM FACTORS;
ASSUMPTION THAT ELECTROMAGNETIC

CURRENT BEHAVES LIKE A FREE
FIELD AT INFINITY

We are interested in the transition matrix elements
of the form'

-~btPi, ~sPsl js' (0) I0) ~ (21)
where Xipt and Xsp2 are the helicities and momenta of a
' H, Terazawa, Phys. Rev. 177, 2159 (1969).
'We use covariant normalization common to both fermions

and bosons. For single-particle states it is given by (p'X'~pal
= (27rl's (P —ii'lb~ (Po/~)

Now we define

(2 3)

joe ~'= ~ (1/~2) (jie .~jjte™) . (2 4)

Using the commutation relations between current and
total angular momentum along the z axis, we define

(X p'"' pl js' 'l0)=~' '(~s)~&'. & (25)

Pp' X' pl ja' 'lo)—=B &s&(X,s)8), ,)+i, (2.6)

where J is the spin of the particle. The number of
independent form factors can be further reduced by
using the transformation properties of the electro-
magnetic current under parity and charge conjugation.
In this way we obtain"' ""

A &~& (X,s) =A &s& (—X, s),
B~&~&(h,s) =Bp&s~(—X, s),
B~&~&P&,s)=Bp&s&(X&1, s).

(2.7)

(2 g)

(2.9)

In terms of these amplitudes, we can express the
contribution to p(s) due to a particle-antiparticle pair
of spin J as

pz (s) —=Ps (s)/12s'(ms' (1—4m'' js)U'

&& e(s—4m''), (2.10)
where

Fj'(s) —=2 I
~ '"(~ s) I

'+2 2 I B+"&(~ s) I
'. (2»)

From (2.10), (2.11), and requirement (1.5), we see
immediately tha. t"

as s~ ~.
s5's(s) ~ 0 (2.12)

7 D. R. Vennie, M. M. Levy, and D. G. Ravenhall, Rev. Mod.
Phys. 29, 144 (1957).

'L. Durand, III, P. C. DeCelles, and R. B. Marr, Phys. Rev.
126, 1882 (1962).

9Actually, this result is independent of current conservation,
as can be seen in the same manner as in Ref. 7.

M Our results look somewhat diferent from those of Terazawa
(Ref. 5) owing to di6erent de6nitions of j+ and owing to the fact
that we use the helicities in order to describe the various particle
states.

"Notice that in deriving these equations we have followed the
phase conventions associated with particle 2 of Jacob and Wick.
We take as particle 2 the second particle stated in a two-particle
state.

'2Actually, requirement (1.5) demands that sFz(s) should go
to zero faster than 1/ln's as s —+ ~.
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In the remaining part of this section we shall study
the structure of A &s&(&,s), B~& &(X,s), and Ps(s). To
start with we observe' that Eqs. (2.5)—(2.9) give us
all possible constraints on the various helicity ampli-
tudes A &~&P,,s) and B+& &(X,s). Therefore, these rela-
tions can be used to find the number of independent
amplitudes and consequently the number of indepen-
dent form factors, free of kinematical singularities, for
any spin J. We also remark that the amplitudes
2 &s&P.,s) and B+&s&(&&,s) have actually been defined
through (2.5) and (2.6) only for s&4m+'. Of course, they
can be analytically continued in the whole s plane,
and crossing relations, like the ones invented by
Trueman and Wick for four-point functions, can be
formulated to determine (after being analytically
continued) their relation to the various helicity ampli-
tudes for s(0 in, say, the brick-wall frame with the
outgoing particle moving along the s axis. Here we do
not need to examine the intricacies of this crossing. It
suffices to know that A &~&(X,s) and B~& &(X,s) can be
analytically continued in the whole s plane, that they
contain only singularities (both dynamical and kinemat-
ical) along the real axis, and that they are polynomially
bounded as lsl ~ ~.

We now study in detail the kinematical structure of
A & &(P,s), B+& &(X,s), and Pg(s) for the pion, proton,
and p meson, and discuss brieQy the general J case.
This problem has been studied. in complete generality by
Yndurain and by Trueman. " Our treatment is far
more specific and stresses only a few points of relevance
to our present work.

Electromagnetic Form Factors of p and m+

We define as usual'4

(p~p2lg„™(0)IO)= (1/2m )(p& —p2)„F(s), (2.13)

(pd „pP., Ij„'(0) IO)=i+"(pg)Ly„F,(s)—(&&/2m„)

XF„0„„F,(s)fe"&(p2), (2.14)

where a is the anomalous magnetic moment of the
proton.

From these expressions, working in the c.m. system
and taking

p& ——p= along the s axis,

—WB, (-,',.)= —vlB (——;, )
=(v2/ .)LF ()+ F (')3

= (Qs/m„)G~&(s), (2.16b)

s'„(s)=2 IF (s)+I &&s/(2m~)'$F, (s) I'

+ (s/m') IF~(s)+~F2(s) I'
=2[Gs&(s) I'+(s/m„') IG~&(s) I'. (2.16c)

From (2.16c) we have

r, (s)-s (1/s')'-1/s',

as s~ ~, if the usual dipole fit holds at asymptotic
energies. This is consistent with the requirement (2.12).
Notice also that if we use simple pole formulas for the
m and p form factors at high momentum transfer
(without strange concellations among the p, co, and &p

contributions in the proton case), then condition (2.12)
is rot satisfied.

Electromagnetic Form Factors of the y Meson

The most general p-p-y interaction can be written as

(p l&,p &
I j"- (o) I o)

= (0~*X6*)ae."' (p~)""' (p2) (4.(p2 —p&)~f~(s)

+P„&,(—2p, —pg)„+&&~„(2p&+p,)„]f, (s)
+ (pl p2)x(2p2+pl)p( —2p&.—p~)yf3(s))

X 1/2m„. (2.17)

Above, P& and P2 are the isotopic wave functions of the
p mesons 1 and 2. Expression (2.17) is the most general
one which has the right properties under space, spin,
and isospin exchange of the two p mesons. "Evidently,
f&(s), f2(s), and f3(s) can only have dynamical singular-
ities. We mention in particular that if it is assumed that
the p meson dominates the form factors and if, according
to the Yang-Mills prescription, we write the three p
vertex as

i&„(t,X&,y,),
then

f, (s) =f, (s) = m, '/m, ' s, f, (s) =0—. (2.18)

Taking as usual p~= p= along the s axis, we have

we And after a little algebra" that

2 & &(O,s)= (I2pl/2m )F (s),

B~& & (O,s) =0,

~.()= I(/4 -')-1l IF-() I'
and

(2.15a)

(2.15b)

(2.15c)

A&(O,s) = —(s/4m '—1)'&'(/~*X $2*)3I f&(s)

X(/2, '—1)—(i,')f ()
—(s'/m, '—4s) f3 (s)j, (2.19a)

A&(1,s) =A&(—1, s) = (s/4m, '—1)'&'

X (P&*XP,*)gf&(s), (2.19b)

A &»(-', ,s) =A &»(——',, s) =Fi(s)
+ I 1&s/(2m~)'jF2(s) = G~&(s), (2.16a)

"F. J.Yndurain, CERN Report (unpublished); T.L. Trueman,
Phys. Rev. 182, 1469 (1969).' T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).

B (1, )=B (O,s)=B ( 1., )=B (O,s)—
= (s/4m '—1)'&'(y&*X $2*)g (/s/mp)

Xf,(s), (2.19c)

'~ Actually, the fact that for the p meson we should have three
form factors could be deduced from Eqs. (2.6)-(2.10), according
to what has been stated after Eq. (2.12).
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&.( )= I /4 .'=-1ll(0 "&0 ') I'(if ( )( /2» '—1)
—(s/~. ')f (s)—(s'/~' —4s)fs(s) I'

+2I fr(s) I'+(4lsl/~. ')
I f2(s) I') (2»d)

Xotice the various kinematical factors present. First of
all, there is a factor Is/(4m~') 1l lpl which is
common to all amplitudes A&(X,s) and 8+&(X,s). This
factor comes from the p-wave threshold behavior and
therefore should always be present in boson form
factors. Second, notice the extra kinematical factors
in the expression in the brackets in Eq. (2.19a). For a
pointlike p meson for which fr(s), fs(s), and f3(s)
should be constants, not all zero, this expression is
going to diverge at least linearly as s increases. Finally,
notice from (2.18) and (2.1M) that if the p form factor
is supposed to be dominated for large s by a simple
pole, then F, (s) will behave at least like a constant for
large s, strongly violating condition (2.12). Actually
even a "dipole fit" of the type suggested by the experi-
ment for the proton form factor, will not be adequate
for the p form factor in order to satisfy condition (2.12).
This can be easily seen from (2.19d) assuming that
there are no strange cancellations among the form
factors fr(s) and f2(s) and fs(s) in the first term in
brackets.

General Spin Case

We here discuss briefly the transition amplitudes of
a photon going to two bosons of spin J, T=1. As can
be seen from (2.5)—(2.9), we now have 27+1 form
factors to express these transition amplitudes. In the
following we shall, for simplicity, be interested only in
one of them. This consideration will be enough to enable

us to emphasize the points we want to make. Hut in
ordel to do this we neck) first HB cxpllclt rep1esentatloB
of the wave function in momentum space of a particle
of spin J and helicity P . This problem has been solved
for us by Brudnoy" using the Rarita-Schwinger
formalism; we need only translate his formula for
bosons. The result is

i%= Xr+X2+ +As, (2.20b)

and q». ..»"(y) is the wave function (in momentum

space) of a particle of spin J, helicity X, momentum p,
and mass m~. Correspondingly, e„,"*'(p) is the wave
function of a vector meson of helicity X;, momentum p,
and mass mJ. After this preparation we write'

(zpx; xp'x'I q„™(0) I 0)
= (y,*Xy.*),(1/2~. ) y„,...„,'*(y) ~„,...„,'*(p')

'4se'(p p) f& (s)( 1)
+ 7. (2.21)

The dots stand for other omitted form factors. Now let
us specialize in the c.m. system (i.e. p'= —p). Observe
that in this frame

e„"(p)e„'(y')= —
Sing. L1+2(1—X') (I y I'/burrs')7. (2.22)

Combining (2.20)—(2.22), we obtain

2s(X+X)!(J—X)!

(2J) '

e, "(p) '.,"'(p)
x

&J
I (1+Xr)!(1—Xr)!. (1+As) ~(1—Xg) t7"'

(2.20a)
where

PP~; ZP l l~„™lo) =(y,*Xy,').L2'(J+&) (J—&) /(») 7&»

L1+2(1 x&') (I p I
'/~ass)7" .L1+2(1—~s') (I pl'/~s')7

(p p).f"()+-, (223)
(1+Xr)!(1—Xr)! (1+As)!(1—Xs)!

where
Xj+/L2+ ' '+XJ'= 1= /L (2.24)

Several things should be observed in (2.23):

(1) Notice the factor (p' —p), which, as it has been
explained previously, comes from the p-wave threshold
behavior.

(2) Notice the expression in angular brackets in

Eq. (2.23). For high energies (or high momentum
transfer) this expression behaves as

(2.25)

YVe can conclude, therefore, that such behavior should
be expected for a spin J pointlike particle which has
only charge, but no higher multipole moments. (This
does not seem very reasonable and is perhaps an indica-

tion that pointlike massive charged particles of spin
higher than or equal to 1 do not exist. )

(3) Let us now specialize to the case that the
particle of spin J, whose electromagnetic interactions
we are studying, is described by only one form factor,
namely, fr(s). We see immediately from (2.23) that
VMD for this form factor at in6nity violates condition
(2.12) and consequently violates the assumption that
the electromagnetic current behaves like a free field
at infinity. Actually, we should have s's+'I fry(s) I' —& 0
as s ~ ~, in order that condition (2.12) be satisfied.
We see, therefore, that the larger the spin of the
particle, the stronger the violation of VMD for its
form factor at infinite energies. (The form factors must

"D.M. Hrndnoy, Phys. Rev. 145, 1229 (1966), and references
therein.
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vanish faster and faster at s —+ ~ as the spin of the
particle increases. ) We remark that these conclusions
are independent of our assumption that the electro-
magnetic interactions of the particle of spin J we are
studying are described by only one form factor, namely,

r~(S).
(4) It is evident from our treatment and Brudnoy's"

formalism that expressions having similar dependence
on s, as in Eq. (2.23), will appear in the transition
amplitudes of a photon (off its mass shell) to any
boson-antiboson or fermion-antifermion system. There-
fore, if we assume that these amplitudes are dominated,
for every J and high s by a f'iriite number of more or less
the same vector mesons, then for large s, we will have

Pg (s) s'~X (s,J),
where X(s,J) does not have terms of the form

Therefore, as J increases, '~ we shall eventually violate
condition (2.12) unless the number of vector mesons
used to describe the form factor at infinity also increase.
In connection with this it may be reasonable to conclude
that for high s we will need an irrfiriite number of vector
mesons in order to describe Fq(s).

Thus the assumption that the electromagnetic current
behaves like a free field at infinity implies that the
electromagnetic form factors of any particle should
vanish at infinity faster than would have been expected
from VMD. Actually, the violation of VMD at infinity
(for the form factors) becomes stronger as the spin of
the particle increases. It is important to realize that our
arguments are entirely in the framework of VMD
for the two-point and three-point functions at infinity,
and that they have nothing to do with the usual
plausibility arguments that VMD is a low-momentum-
transfer theory and should not be expected to be valid
for high momentum transfer. Actually, one purpose of
the present work is to investigate how far (with respect
to the energy) we can in principle hope that VMD may
be a good approximation simultaneously for the two-
point and three-point functions.

Another interesting point is that our conclusions are
not going to be upset greatly even if the integral

stronger as the spin increases. Consequently, if particles
of spin up to infinity exist, we still need an in6nite
number of vector mesons to describe their form factors.

III. AN ASSUMPTION ON Fq(s) FOR PARTICLES
OF VERY HIGH MASS AND ITS

CONSEQUENCES

We make the assumption' that for particles Of very

high mass s&4mJ', and of spin J, we have

Sg,„(s)=(2J+1)~s/4m, „'—1~

&& Pp'( J,N)/sg" & "1 (3.1a)
for J=O 1 ~ ~ ~ and

~J, (s)= (2J+1)I~'(J I)/s]"" "' (3 1b)

for 1=-=1 3
2) 2)

I et us explain these expressions. The index m serves
to distinguish among diGerent particles with the same

spin; it can be thought of as distinguishing among
various Regge trajectories. The factor 2J'+1 can be
justified from the definition of P~ „(s)given in Eq.
(2.11). The difference between the expressions (3.1a)
and (3.1b) comes from the fact that for bosons at
threshold we have p waves, while for fermions we have
s waves. To justify somewhat the last factor in (3.1a)
and (3.1b), we invoke the Sugawara-Kanazawais
theorem which says that Fz,„(s)should have the same
limit when

~

s
~

~ ~ along any direction in the complex
s plane provided that 5:z „(s)is polynomially bounded,
and finite as s —+ co along the positive real axis."
These provisions of the theorem are seen from (2.12)
to be true. We can therefore perhaps argue that, for
s&4mJ ' and mJ „very large, we are already in the
asymptotic region of the form factor, and that the form
factor in this region is simply described by (3.1a) and

(3.1b). From (2.12) we have, for bosons,

l(J,~)&1,
and, for fermions,

E(J,u) &-,'.
But from assumptions (3.1a) and (3.1b) we can actually
derive stronger conditions. %e demand, as stated in
the Introduction, that the total particle-antiparticle
contribution to the integral

p(m)sd s

diverges, provided that it does not diverge like an
exponential. For example, if this integral diverges
lirieurly, we can conclude (in exactly the same way as
above), that VMD for the electromagnetic form
factors of the pion and the proton may be valid at
inanity, but that it has to fail for higher-spin particles.
In exactly the same way we can also see that the
violation of VMD for particles of high spin becomes

"We assume that resonances exist with masses going up to
infinity. This is a fashionable assumption nowadays.

pSdS

should be finite both for bosons and for fermions. Let
us do it 6rst for bosons. The following series should
converge Lsee Eq. (2.10)j:

4m'
PJ ($)mg s~ 1—

~
ds . (3.2)JtL4 I (s

This assumption is very similar to the one made by Terazawa
(Ref. 5).

'4 M. Sugawara and A. Kanazawa, Phys. Rev. 123, 1895 (1961).
'0 Notice that we can always arrange for all the dynamical and

kinematical singularities of Fg.„(s)to lie along the positive real
axis.
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(3.9)lg2
in (3.1a).

For the fermions the corresponding series to that in
expression (3.5) is

4nlg
5'z (s}nz '(1—

~

ds
S

(3.3)
Jn; m Jn)m mJ

2

(~2(jn)) 2l (J,n}

(2J+1)(4nzg ')'i
i 4m', „2)

where m may be chosen as large as we please. '2 Now, we
can use (3.1a) in (3.3). We calculate first the expression J, n; mg, )m
in the square brackets. We have

All the terms in this series are positive. For this series If asymptotically the spectrum looks like a single Regge
to converge, it is sufhcient and necessary that the trajectory, then
following series converge:

4mJ n

4nlg „''l2
Pg, (s)n2J, „2i1 — ds

=-',- (2J+1)(4nlg „')'fp2 (J,n)/4nlJ ]2((~ "}

XB(21(J,n) —2, 2) . (3.4)

To derive this result we used the fact that l(j,n)&1
for bosons. Thus we now have to require that the
following series converge:

XB(22, 2t(J,n) —1) . (3.10)

Under the same assumptions as before concerning the
expressions l(j,n) and p(j,n) (i.e., l and @=const),
we derive identical results with the boson case for the
connection between the spectrum of very-high-mass
particles and their asymptotic form factors.

IV. SUMMARY AND CONCULSIONS

J,n; mJ, n)m

~2(j n) 2l(J, n)

(2j+1)(4n2~ 2)2

4m', n'

X&(2i(j,n) —2, -') . (3.5)
sag(s) —& 0 (2.12)

We have found that the assumption that the electro-
magnetic current behaves like a free field at infinity
implies that the expression Pq(s) defined in (2.11)
should satisfy the condition

J', n; m J,n) m

(2J+1)
(4nlg ')" ' (3 &)

Evidently the convergence of this series will depend on
the mass spectrum of very-heavy-mass bosons. For
example, a Veneziano-type mass spectrum for very
high masses will demand that

(3.8)

This result is too general to be useful. Therefore, let us
further assume that

l(J,n) = i= const independent of J and n, (3.6a)

p(j,n) =p= const independent of J and n. (3.6b)

The only justification we can give for this additional
assumption is the analogy between the three-point and
the four-point function case, As is well known, Regge
theory tells us that the asymptotic behavior of a
four-point function from which no kinematic singular-
ities have been extracted is given by the leading Regge
singularity and does not depend on the external spins
and helicities. Assumptions (3.6a) and (3.6b) are analo-
gous for the three-point function case. Making these
assumptions, we are led to the convergence of the
following series:

as s —& ~. We have studied in detail the consequences
of this condition for the pion, proton, and p-meson form
factor, and, rather briefiy, for the general spin case.
We have found the following:

(i) Condition (2.12) requires that form factors
should vanish as s~ ~ faster than would have been
expected from VMD.

(ii) As the spin of the particle increases, a stronger
violation of VMD for the form factors at infinity is
required in order to satisfy (2.12). For example, for
the p-meson form factors we found that even a "dipole
fit" of the type suggested by the experiment for the
proton will violate (2.12).

In Sec. III we have made some additional, largely
speculative, assumptions about Fq(s) for particles of
very high mass and spin, '7 and consequently we have
found some correlations between the spectrum of very-
high-mass particles and the asymptotic behavior of
their form factor.
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