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Gauge Invariance and Regge-Pole Theory in Compton Scattering*
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The kinematics of Compton scattering by a boson target are studied. It is shown that a special inter-
pretation of gauge invariance follows as a requirement of Lorentz invariance of S-matrix elements in the limit
of zero photon mass. As a consequence, it is demonstrated that the Pomeranchuk trajectory can contribute
to the forward-Compton-scattering amplitude without introducing a singular Regge residue function, in
contrast with results obtained via the conventional formulation. The close correspondence with perturba-
tion theory (not required a priori) is also discussed. It is found, however, that a similar treatment of gauge
invariance for the Yang-Mills field cannot be given consistently.

I. INTRODUCTION

HK formulation and enforcement of gauge-
invariance requirements are interesting problems

in the use of helicity amplitudes (HA's). Invariance of
S-matrix elements under I.orentz transformations
restricts the massless photon to two transverse polariza-
tion states and introduces trouble in interpretation and
understanding even for perturbation-theory results in
terms of the HA formalism. For example, in one of the
simpler cases, Compton scattering by the X meson, '
which is discussed in detail in this paper, the s-channel
(dynamical) E-meson pole in perturbation theory must
be considered as a kinematical reflection of the I-channel
dyeamica/ pole in the HA formalism, because s.-channel
transversely polarized photons cannot couple to the
E pole in the s channel. Furthermore, as is well known, '
gauge invariance (if not handled properly) forces poles
in Regge amplitudes involving photons to be kine-
matically interpreted.

In perturbation theory, gauge invariance is satis6ed
through certain combinations of (dynamical) poles in
diferent channels. It is essential that each of these
poles represent a state of de6nite spin and that these
states have a universal charge. Such a "dynamical"
fu1611ment of the gauge-invariance requirement is rather
difficult to imagine for the case of Regge theory, since
the Regge poles in crossed channels are assumed to
determine the asymptotic behavior.

Another more or less practical question is to what
extent the widely accepted "phenomenological" Lagran-
gian p„'A„, where p' and A represent a neutral vector
meson and a photon, respectively, is consistent with

Regge theory.

*Work performed in part in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 2537.' The intent in taking the X meson as an example is merely to
preserve some of the features of the nucleon. The content of this
paper can be generalized to the case of nucleon Compton scatter-
ing without difhculty.

'For example, S. Frautschi and L. Jones, Phys. Rev. 163,
1820 (1967).

These three mutually related questions were studied
previously by the present authors' in the case of photo-
pion production. In this paper we study whether the
formalism used earlier' can be applied to cases where two
photons are involved.

As is well known, there exists a problem in Compton
scattering4 if the "classical" Pomeranchuk trajectory is
invoked to explain constant asymptotic cross sections
in hadron-hadron scattering. Speci6cally, it has been
argued that the Pomeranchuk trajectory with tr(0) = 1
cannot contribute to Compton scattering at t=0. This
leads to the paradoxical relation 0-'"")0' )a ' where
0.' "is the inelastic cross section, etc. Furthermore, this
result seriously contradicts experimentally supported
notions concerning the Lagrangian p„'A„, since the
asymptotic total p-hadron scattering cross section is
expected to be constant due to Pomeranchuk trajectory
exchange.

We can state our view of gauge invariance briefly
as follows: Suppose there exists an amplitude for pro-
ducing or absorbing a J=1 state V (C= —1) with mass
m; then the requirement that this amplitude be con-
tinuable to the point m= 0 for the state with fixed J= 1
is equivalent to gauge invariance. ' This requires that
the HA's involving the longitudinally polarized V's
must vanish smoothly as m~ 0, so that relations exist
among certain of the kinematically independent in-
variant amplitudes as well as among those HA's con-
tained in these relations after the mass factors are con-
sidered appropriately. Boson Compton scattering in the
I channel is treated with this approach in Sec. II, and

s T. Ebata and K. E. Lassila, Phys. Rev. Letters 21, 230 (1968).
Phys. Rev. 183, 1425 (1969).

4 See, e.g. , V. D. Murr, Zh. Eksperim. i Teor. Fiz. 44, 2173
(1963) [English transl. : Soviet Phys. —JETP 1?, 1458 (1963)];
H. D. I. Abarbanel and S. Xussinov, Phys. Rev. 158, 1462
(1967); H. K. Shepard, ibid. 159, 1331 (1967).' This interpretation of gauge invariance allows us to understand
the coupling p„'A„ in the framework of Regge theory even if the
photon A„ is not a Regge particle. The p' appearing in the Lagran-
gian should be regarded as a state with J= 1, not necessarily the
p pole on a Chew-Frautschi plot, but one of the vector mesons.
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the resulting gauge-invariance relation for helicity
amplitudes is specifically applied, in Sec. III, to the
problem of Reggeization of the E meson. Here, difFi-

culties similar to those in Reggeization of the pion in
photoproduction amplitudes are found when one com-
pares with perturbation-theory expressions.

In Sec. IV it is shown that the generalized gauge
principles formulated in Sec. II can be applied to the
t-channel HA's. The result is a conspiracy condition
not expected in the usual formalism, where only trans-
verse HA's are considered. This conspiracy condition
implies that the Pomeranchuk trajectory can con-
tribute at t= 0 just as in, e.g. , p-E scattering. The para-
dox mentioned above can thus be resolved without
introducing singular Regge residue functions, as seems
necessary in the conventional approach. Further elab-
oration of this point is reserved for Sec. V.

From the work discussed in Secs. II—V, it appears that
the photon can and should be regarded as the zero-mass
limit of a pure J= 1 state to understand the similarity
between a photon and the vector mesons (po, &p, and q).
In Sec. VI, however, we see that a similar situation is
not expected for the Yang-Mills field. It is shown that
the massless charged Yang-Mills fields A„+ cannot
couple to p„~ by p„~A„+, as contrasted with the neutral
case, with p„A„coupling.

The last section contains some closing remarks.

k„V„(k)=0. (2)

The amplitude for process (1) can be written as a sum

of kinematical-singularity-free invariant amplitudes
A, (s,t,g; m'):

«„T„~«p= (« ' «)A i+ (P «) (P ' «)A s+ [(P «) (k ' «)

+(P «)(k «')]As+(k' «)(k «')A4, (3)

where e and e' represent the polarization vector of the
initial and final vector particle, respectively, and
P= p&+ps. It is clear that the information of Eq. (2)
should be contained in the four independent HA's.
We choose these four to be f++, foi., f +, and fpp. The
explicit relations between the f's and A s are given in

IL COMPTON SCATTERING (u CHANNEL)

In this section we consider the kinematics of Compton
scattering,

V.(k)+&(p ) V.(k')+&(p ),
where V„(k) is the neutral vector meson with mass m

and E is the isodoublet E meson with mass 3f. The
momentum of each particle is written in parentheses.
We define reaction (1) as occurring in the I channel

and study the asymptotic behavior in the s channel.
We assume V„represents a field of pure spin 1; i.e.,
it satisfies the condition

TABLE I. s-channel HA's expressed in terms
of invariant amplitudes.

f+~ ——s (1+cos8)L
—A &

—k'(1 —cos8) (A p
—2A 4+A 4) 7

f += —2(1—cos8)LAi+k'(1+cos8)( —As+2A& —A4))

f4+ ———(1/%2)m ' sin8gcuA &
—k'(28+co+&a cos8) (A 2

—A 4)
—k'cu (1—cos8) (A 4

—A 4))
foo=m p(k —uP cos8)Ai+kp(2L&'+~+co cos8) Ap

+2k'a&(1 —cos8) (2E+&o+&u cos8)A4+k'&u'(1 —cos8)'A4)

Table I. To get the results of Table I, we have chosen
the following coordinate system:

k = (4p, 0,0,k), k'= (&p,k sin8, 0,k cos8),

Pi ——(E, 0, 0, —k), Ps
——(E, —k sin8, 0, —k cos8),

where 4ps=m'+k' and E'=M +sk .sThe polarization
vector for a longitudinally polarized vector particle
with momentum k is given by

«p
——(k/ m0, 0, /4pm).

Also, I= (k+Pi)', s= (k —Ps)s, and t= (k —k')'.
We define the parity-conserving HA's (PCHA's)

X~, X2, I', and Z as

X,.=—[f.,/(1+- 8)j~[f-./(1 —- 8)3,
F—= (K2/sin8) f+p,

foo. —

It is easy to see that the E*(1 ) and ICy(2+) Regge
poles contribute only to Xs, whereas the E(0 ) and
E~(1+) Regge poles can contribute to Xi, Y, and Z.

As one may see from Table I, the amplitudes I and
Z will go to infinity as te ' and m ', respectively, as m
goes to zero, if the A s are mutually dynamically
independent. As shown by various authors, '' gauge
invariance, which correlates those kAzematicully inde-
pendent A s, is a requirement that F and Z vanish as
ns —+ 0 despite the aforementioned mass "singularity. "
In the following, it will be shown implicitly that such
a gauge-invariance requirement means, for m/0,
that the helicity amplitudes X~, I, and Z are not
entirely independent of each other and that F and Z
are explicitly proportional to m and m', respectively.

In order to obtain a generalized gauge-invariance
relation, we notice that X2 cannot be correlated with
X&, I", and Z, in general. From a study of the relations
among X~, F, and Z, we obtain a general relation for
m=0 (interpretable as "continued" from the m&0
gauge condition):

A i—(2E&o+pP+k' cos8) (A s—A s)
—(ops —k' COS8) (As —A4) =mori,

(2Eoi+cps+ks cos8)A s+ («ps —ks cos8)A s
(7)

= ms{—[«p(1—cos8)/(2E+24p) jpi+mspps}.

' S. Weinberg, Phys. Rev. 134, 3882 (1964).
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TAaI,E II. Invariant amplitudes expressed in
terms of I-channel KSI' HA's.

3,=-- —u 'ppX, + p'+2ut)X, j
A 2 ——(jR' ', t)—tt-' (X/+XI) +-'m p(@+X~)t 2'—RE~jp g+M4+2

g 4
—(Q ~2+ 2t) Q 1(X—j +X2)

+-', m~L2 (tt —M2))2y (P+ y~) tjq„+)N4~t,

A 4 = (2f—m'+-,'t)Xgtt '—{2)tt+(M' —nz') 1+m' —-', t)X2tt '
+m'L2g, '+X'(t —m')+2m'tttjPg+m4@2

In terms of the invariants, Eqs. (7) can be rewritten as

A r—(u—M'+ st) (A2—A 4)+ (gt —m') (A3—A 4) =m'(pt

(u —M'+-'t)A 2
—P, t—m')A 4

(g)=m'P($t/2) ') q i+m' p2)
where

u —(M—'—m') V= Pn (M+m)')—Lu —(M—m)')

and where the p; are defined in terms of analytic
functions p; free of kinematic singularities as
pi= pi] 9, ' and p2 —=p2/P. Equations (7) and (8) re-
duce to the usual gauge condition at m=O. Equations
(7) imply the following relations among HA's X&,
V'=—I'/m, and Z'—=Z/m' '

where e is the VEE coupling constant.
We assume Z has a dynamical Regge E pole of the

form
1ye twas—(u)

Z =Pir P ~(s),
sin~nir (u)

(14)

nag(M') =0,
with s=cos8. Then we obtain the following form for
the E Regge-pole contribution to X», Y, g», and q 2'.

p j 1+e—4waK

+ Ij".

4g nrj.„Sing nij„

calculation this n pole along with an s-channel pole
hand a contact interaction ternl form a set of graphs
which satisfy gauge invariance. Explicitly, the results
for the perturbation graphs are (for m=O)

A»= —2e'

A =A = '$(u —M') '+( —M') ')
e't/—(s M')—(u—M'), (13)

Z, = e2$(u M—2) i -(s—M—')-')
=P (s—u)/ (s—M') (u—M'),

Xt= t!)I +~ Pl
coZ'= —cost) P'+2k'(E+o)) yg.

(9) &&LP.„'(s)+sP.„"(s)+«P."(s)),

p 11+e'
fx P I(s)

2X nIj„" slnxnIj-„

Xr——(P/u)Xi, X2——() '/u)X, ,
I"= ($/Qu) f', Z'=) —'Z

p 1 1+e ixa~—
(1()) PP=

n~ sin7rn~
«P-~" (s),

With the help of Eqs. (9), we can construct kinematical-
singularity-free PCHA's (KSFPC HA's) X&, X2, Y,
and Z as (16)

and we must have a conspiracy relation at m=0:

Xt(u=O) = -X2(u=O) .
p j 1+e—tea+

!!t'2 = Pa~—t (s) ~

(11) X4
nrem sins. nir

This conspiracy relation must hold independent of
Regge theory, since it is merely an identity in terms of
the invariant amplitudes. With Eqs. (10), we can
rewrite Eqs. (9) as

Y= —(2Xr—s)),4gt), Z= —
C
2()i'+2ut) Y—)4@2). (12)

The invariant amplitudes A; can be expressed by the
KSFPC HA's X» and X2 as given in Table II. The
kinematical factors for Xt and X2 given in Eqs. (10)
coincide, in the limit m —+0, with those one would
obtain if one had started with no=0. 7 It can also be
shown easily that expressions given in Table EI are
consistent with the generalized gauge conditions (8)
at the special points n=3f' —~t and t=2m'.

IIL REGGEIZATION (u CHANNEL)

In order that g» be KSF, we must demand a~~X'
for )).' 0. With Eqs. (16) we can satisfy the relations
(12) by using the identities

sP '(s) —P i'(s) =nP. (s),
P.'(s)+sP "(s)=nP. '(s)+P. i"(s).

(17)

then at u=M' (with m=O), we obtain from Table II
the following expressions for the A s:

A»~ =0,

If we abbreviate the expression for X»~ given by Eq.
(16) as

j +e 4'rl!!)r g 0!+—i

Xi Pir —
&

s~
SlI17l nij„so

We are particularly interested in Reggeizing the M' —s 2 t'sq ' 1
u-channel E-meson pole, since in the perturbation AP = Pz

2M' 7rna'(M') k so] u —M'
7 D. Horn, California Institute of Technology Report/CTSL

Internal Report No. 34, 1967 (unpublished). j=2, 3, 4. (19)
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TABLE III. t-channel HA's expressed in terms
of invariant amplitudes.

TABLE IV. Invariant amplitudes expressed in
terms of the t-channel I4 SF HA's.

f++—= f++ ——A1 —2P' sin'8 A 2

f+ —=sin'8 f+ 2P——'sin'8A2

f+2=2v2» ' sin8(p'~ cos8 A2 —2pt2pA2)

fop =» 'p(t22+~') A 2 4p2—~' cos'8 A 2+8pco')2 cos8 A2 —4uPk'A &]

Therefore, with the choice of the parameter

A 2 = f+++C'f+
A2=2(t —4m') f+
A2= (t 42N—2) (f+2+2f+ ) 2tp—lpi »2—)lp2

A4= L(t —4n2')—/tjfpp+2(t 4&n')—f+p
+L2 (t 4»—')+44'2/t jf+ +(-4/t) f+

+p(—X2 —t$+-'C') 222
—g($ +2 »)2@2

Ms 2m'(Ms)
= —e2 (20)

we recover the perturbation results of Eqs. (13), with
A& as the only exception. In perturbation theory, the
contact interaction term associated with the kaon
poles through gauge invariance remains independent of
the energy, in contrast with our Reggeized result
showing

A~ =s ~ ' for larges. (21)

IV. COMPTON SCATTERING (t CHANNEL)

Tn this section, we discuss the Reggeization of the
t-channel amplitudes. The t-channel amplitude de-
scribing the process

V„(k)+V„(k') ~ E(p&)+E(ps) (22)

can be written as

Thus, from our present point of view, the existence of
the contact interaction in perturbation theory does not
restrict the high-energy behavior of Ai at all (see,
however, Sec. VII).

Equations (25), together with the expression for f++
and f~ in Table III, can be used to express the A s
in terms oi f++, f+, fop, fpp, pi, and o22, where

f++ f++——and f+ f~ ——/sin'8. These relations can be
used to construct the KSFPC HA's. After straight-
forward calculation, we 6nd the KSF HA's can be
de6ned as

f++= f++

f+ = f+ L(t—4m')(t —4M2)$ ',
f+o= f+o/(t 4m')—

00 00 ~

(26)

sin'8= L(t—4m2) (t—4M') j '$(t—4m')

X (t—4M') —(tt—s)2j
—= L(t—4m, ') (t—4M') j—'C' (27)

The generalized gauge conditions of Eq. (8) can be
written in terms of these t-channel KSF HA's as

The invariant amplitudes A; can be written in terms of
KSFPC HA's and are given in Table IV, and the
KSF HA's can be reexpressed in terms of the 3 s
as listed in Table V. In these tables 42 is defined by

(28)

with P=Pi —Ps. Using the coordinate system defined
by the four-vectors The expression for A4 in Table IV deserves further

comment; it appears that 2 4 might have a kinematical
pole at t=0. However, more than one KSF HA is
involved and a conspiracy relation exists at t =0:

f~++m'fop+4'f+ =0, (29)

k = (pp, 0,0,k), k'= (cp, 0, 0, —k),
Pi= (E,P sin8, 0,P cos8),

Ps= (E, —P sin8, 0, —P cos8),

(24)

oPT2l&o& (4 o )A i+ ( o) (P s )As+((P o ) (k 4) 4$f+ (t 2m2)f = $( t)sp m2op j—(P «)(k o')]As —(k' o)(k s')A4, (23) t ip f @sf +gf +2(t 2ms) f
=4&"o 2

—2882 ~

we find the t-channel HA's as listed in Table III. With
the generalized gauge-invariance conditions in Eq. (8),
the HA's containing the longitudinal, polarized vector
mesons can be rewritten as

f~o—=242m sin8 f+o
=2&2m sin8 {—As+As —cp'k(k —p cos8)

XP(o2' —kP COS8)' Msm'j '—Opi+msys),

fop= m'foo— (2~)
=m'{k—sfAi —cps(A2 —2As+A4) j

+ ipio22$ —k +2P2 sin'8/((tos —kP cos8)' M'm') j-
+82224psk-s(ks —kp COS8) }.

which, as one can check using the amplitudes of
Table V, is essentially such as to guarantee the identity
A4 ——A4. Equation (29) is derived for mQO. If we put

TABLE V. t-channel KSF HA's in terms of
the invariant amplitudes.

f4.+=A2 —-', F2/(t —4m') gA2

f+ —',(t—4m') 'A2-—
fyp= (t 4» ) ( A2+A2+2tplpl+m /lp2)

happ

——(t 4m') '$4A2 t (A2 2A2—+A4)— —
+ (—pg2+-2)+2) t 22, —pt 222$
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m=0 in Tables IV and V, the conspiracy relation is
slightly modified to the form

4f++ tf—pp+44' f+ 0—— (3o)

at t=0. Note that Tables IV and V are consistent
when m is zero; A 2 has a kinematical zero at /= 0 and
tfpp is KSF. The first equation is Eq. (28) may appear
too stringent, since it requires that f+p vanish at /=0
This is, however, a very desirable situation, as seen
from the earlier analysis of u-channel HA's. From
Table V we see that this requirement on f+ p at /=0 is

equivalent to a requirement on A2 —A3, which, from
Table II, is

Ap —Ap= PL
—u '(Xi+Xp) —m9.'pij. (31)

2A i+ (u —s)A p
—tA4 ——0,

(u —s)Ap —tA4=0.
(32)

These A, 's are all expressed by two HA's, f++ and

f+, defined in Table III:

A, =f+++ P(t 4M')g 'Pt(t 4—M') (u
— s)'j—f+, ——

Ap ——2(t—4M') 'f~

A, =2(u —s)(t(t—4M') j—'f„
A 4= 2Ef+++f+ 7lt-

(33)

The only possible way to avoid kinematical singularities
in the A s is to define KSF HA's f+~ and f+ as

f++=f++lt

f+ =f+ Lt(t 4M'-) j '. -—
Then the invariant amplitudes A;, Eq. (33), can be
readily written in terms of the KSF HA's of Eq. (34),
so that, for example, A~ is

V. ASYMPTOTIC CROSS SECTION

One of the unsatisfactory results of the conventional
treatment of Compton scattering in Regge theory4 is
that the asymptotic total cross section cannot remain
finite if the Pomeranchuk trajectory (n„=1 at t=O) is
assumed. On the other hand, we know that the vector-
meson —E-meson scattering total cross section can
remain finite even with the assumption of the Pomer-
anchuk trajectory exchange. Thus, it would appear that
the well-accepted (phenomenological) Lagrangian p„pA„,
where p„ is any one of the neutral vector mesons, is
incompatible with a moving Pomeranchuk trajectory.

The reason why such a conclusion is derived is easily
seen. If one starts, as comeetioeully, with m=0, there
exist only t7oo HA's namely, f~+ and f+, and gauge
invariance is introduced u priori, with

For a Regge-pole contribution of the usual form,

1+&—iaagt & q
ap .

f++'=t3++
sin~n~ kspi

(36)

f+ =P-+
1+o—iaap f S )ap-p

n~(n~ —1)I —
~

sine-n~ ESp)

one sees from Eq. (35) that the Pomeranchuk trajec-
tory cannot contribute to Ai (or, e.g., Ap) at t=0, and
consequently cannot contribute to the total cross
section. On the other hand, 4 it is known that the
Pomeranchuk trajectory can contribute to photo —p'-
meson production, as well as p-E scattering, at 1=0.
These results lead one, in the conventional approach,
to conjecture that the (possibly) constant asymptotic
total cross section in Compton scattering is obtained
by means of a different mechanism than in usual hadron-
hadron scattering, 8 e.g., singular residue functions must
be introduced.

In the present work, however, we have no such
difficulties. The expression for A ~ in Table IV shows that
f++ can contribute to A i at t= 0. Thus, in our approach
asymptotic cross sections for Compton scattering cue
be obtained by the same mechanism as in hadron-
hadron scattering, and the (phenomenological) Lagran-
gian p„A„ is compatible with Regge theory.

VI. YANG-MILLS FIELDS

where n and P are the isospin indices, and the mass
associated with the Yang-Mills field V is m.

To see whether there exists a physical limiting pro-
cedure m~O for reaction (37), as was the case for
reaction (1), we study the u-channel HA's. The con-
tents of Table I are independent of crossing relations,
and straightforward inversion leads to

Ap —y—'L(—m'+i2tPy —')g i—ip (2m' —t)~p
+ 2m'(& )tPuI"+m4Z'j (38).

In comparing the relations of Tables II, IV, and V
with the perturbation-theory results of Eq. (13), we
note that, remarkably, the crossing relations between
N and s are very important in establishing the KSF HA's.
For example, from Tables II and IV, A2 must have a
kinematical zero at t=0 when m=0, and we see that
the Born terms in Eq. (13) are consistent with this
statement because of the crossing relation.

It is interesting, therefore, to study a similar case
with a different type of crossing relation, namely, the
I=1 exchange part of the "Compton scattering" for
Yang-Mills 6elds. The process we consider is, in the
u channel,

~. (&)+&(p ) I'.'(&')+&(p ) ( &&) (37)

A i tf~++ft (t 4M') ——(u —s)'j f+. — —(35)
H. D. I. Abarbanel, F. K. Low, I. J. Muzinich, S. Nussinov,

and J. H. Schwarz, Phys. Rev. 160, 1329 (1967).
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Ag=
(s—M') (u —M')

—(t—2m')

(s—M') (u —M') 1—m'

(39)

A4 ——

(s—M') (u —M')

where the coupling constant as well as the isospin
matrices are suppressed. The contribution of the Born
diagram to 2 2 is clearly incompatible with the existence
of a kinematical zero at t= 0 when m —+ 0.

This shows that if the existence of the smooth limit
m~ 0 is assumed, we cannot construct the u-channel
KSFPC HA's by factoring out a kinematical function
of u only. We believe that this is (kinematical) evidence
against the existence of a massless charged "photon"
3„*(Yang-Mills field) coupled to the p„+meson through
p„+3„+in analogy with the corresponding neutral case

Actually, the perturbation-theory result (39) is not
compatible with our generalized gauge condition (g)
in the sense that the function y~, defined by the two
equations in (8), cannot be the same' in both. Stated
otherwise, the Born terms (39) do not allow the exist-
ence of the smooth limit for Z' as m ~ 0.

Therefore, we conclude that, for the case of the
Yang-Mills field, m= 0 is an isolated physically allowed
situation.

~ This is in contrast with the case of usual Compton scattering.

This equation shows that if I" and Z' are finite (i.e.,
F and Z vanish) in the limit m —+ 0, then the only way
to avoid the appearance of a t=O kinematical zero in
A2 is to assume one of the X s has a kinematical pole
at k=0 when m —+0.

On the other hand, the Horn terms in this case take
the form

2 (s —u)

t —m'

VII. REMARKS

In Secs. IV and V, it is shown that even the "classical"
Pomeranchuk trajectory can be incorporated into the
Regge theory for Compton scattering, and from the
t-channel Reggeization we obtain, for example,
A~~s ""& Qn the other hand, the same amplitudes A;
can be represented by the sum of I-channel Regge poles
(which carries hypercharge in the example of E-meson
Compton scattering). Consistency of the t and-

I-channel Reggeization can be achieved, however, by
assuming appropriate subtractions in writing the dis-
persion relations for HA's. ' The consistency of /-

and I-channel analyticity, however, gives rather
stringent kinematical restrictions at some specific
points. For example, from Table IV we have
22(/=4m') =0, which means, from Table II,

nP{u '(~Yi+X2)+m'P(2/+X') pi+ p2j}, 4„a=0. (40)

The generalized gauge conditions of Eq. (8) are not
crossing-symmetric. The odd parts, however, are
always of the order of m'. Therefore, reformulation of
Eq. (8) in a crossing-symmetric way is merely a
'redefinition of q~ and y2.

From the study of Compton and Yang-Mills field
scattering, we find that the photon and the Yang-Mills
field behave differently when they are in virtual states.
For a Yang-Mills field, the virtual state cannot be
realized as a pure spin-1 state, in contrast with the
photon case. For such a field (Yang-Mills), we believe
that the approach taken by Ball and Jacob" is more
appropriate; the virtual Yang-Mills field could be
regarded as a mixture of spin-1 and spin-0 states.
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' This situation is not peculiar to Compton scattering."J.S. Ball and M. Jacob, Nuovo Ciinento 54, 620 (1968).


