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Construction of the 8 Matrix from Its Left-Hand-Cut Discontinuity,
When the Latter is Asymptotically Unbounded*
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A new procedure is proposed for constructing the partial-wave 5 matrix, given its left-hand-cut dis-
continuity X(m) (m= 2i—h, where h is the c.m. momentum). The advantage over the 1V/D method is that
this procedure works even when X(m) is unbounded as m —& ~ (provided that it oscillates in a suitable way);
in fact, the new technique works even when X(m) is not bounded by any finite power of m, so that not only
does the usual X/D decomposition break down, but there exists no partial-wave dispersion relation with a
finite number of subtractions. An equivalent potential is introduced that provides considerable insight into
the nature of elementary-particle, bound-state, ghost, and Castillejo-Dalitz-Dyson poles. The method is
generalized to include inelastic sects.

1. INTRODUCTION

'HE reconstruction of the partial-wave scattering
amplitude from its discontinuity across the left-

hand cut plays a central role in strong-interaction
physics. Using the E/D method to perform this opera-
tion, first introduced by Chew and Mandelstam, ' and
subsequently discussed by many authors, ' reduces the
problem to the solution of an integral equation. An
important drawback of the method is its inability to
cope satisfactorily with a discontinuity function (the
input of the calculation) that, is asymptotically un-
bounded. In such a case the integral equation is not of
Fredholm type, and may not have a solution. Even if
it has a solution, in many cases this is not unique, and
in almost all cases the solutions contain ghosts, i.e.,
disallowed poles of the 5 matrix, so that one has not
really found a solution of the problem: To construct a
function with specified analyticity properties that is
unitary on the right-hand cut and that has the given
left-hand-cut discontinuity.

However, there are arguments to suggest that left-
hand-cut discontinuities are indeed asymptotically
unbounded. In relativistic S-matrix theory, the possibil-
ity of exchanging particles of spin greater than or equal
to one leads, in Born approximation, to left-hand-cut
discontinuities that do not vanish asymptotically, and
this is reflected in the uv divergences of perturbative
held theory. In nonrelativistic scattering, unbounded
left-hand-cut discontinuities are associated with singular
potentials; again, as is well known, ' such potentials
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constitute a more appropriate model for field theories
with uv divergences (be they unrenormalizable or
renormalizable) than do regular potentials.

In S-matrix calculations, an asymptotically non-
vanishing left-hand-cut discontinuity is usually cut off.
It is sometimes stated that this is justified by the fact
that the exchanged particle does not have a fixed spin,
but should be treated as a Regge pole. However this
justification does not seem to stand on very firm
ground. s In fact. , it is quite possible (depending on
just what happens when s and t both become large,
in the interior of the double spectral-function region)
that the left-hand-cut discontinuity in a Regge theory
should be an increasing, oscillating function, perhaps
of the type discussed in this paper. This idea is even
more likelv to be relevant if Regge trajectories rise
indefinitely, ' since then presumably the partial-wave
amplitudes would not be polynomial-bounded in the
energy plane, and in particular along the left-hand
cut. ~

These considerations motivate the search for a
method of constructing a partial-wave scattering
amplitude from its left-hand-cut discontinuity, which
works in cases where the latter is asymptotically
unbounded, and even when it is not bounded by any
polynomial of the energy. It is the purpose of this paper
to provide such a method.

Cassandro, Nuovo Cimento 34, 1712 (1964). Several other
references may be found in F. Calogero, Phys. Rev. 139, B602
(1965).' E. J. Squires, Nuovo Cimento 34, 1277 (1964). This reference
points out that the conclusion oi R. Omnes /Phys. Rev. 133,
81543 (1964)g, namely, that Reggeization eliminates all diver-
gences (and indeed all subtractions), is not generally justified.' S. Mandelstam, Phys. Rev. 166, 1539 (1968).

7 Indeed, it appears that the left-hand-cut discontinuity of the
partial-wave projection of the Veneziano ansatz t G. Veneziano,
Nuovo Cirnento 57A, 190 (1968)) does oscillate asymptotically;
and it blows up, surprising as it may appear, if the parent trajec-
tory is loze enough. In this case the oscillations are so strong that,
even if the parent trajectory is low, the dispersion integral of the
left-hand-cut discontinuity can be defined (by analytic continua-
tion) and vanishes asymptotically, so that the usual integral
equation for the E function is of the Fredholm type. For a more
detailed discussion of this point, see a forthcoming paper by
D. Atkinson, L. A. P. Balazs, F. Calogero, P. Di Vecchia, A.
Grillo, and M. Lusignoli (to be published).
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is singular and repulsive at the origin, there is no
catastrophe (as there is in the singularly attractive case,
due to a collapse into the origin), because the particle
is simply constrained not to approach the origin too
closely. However, more than this can be said, for since
the probability of finding the particle very close to
r =0 is small, one should expect that the S matrix does
not depend very strongly on the precise form of the
potential as r —+ 0, so long as it is highly singular and
repulsive. This is indeed the case; and, although the
usual procedure for obtaining the Jost function from
the Schrodinger equation, and from this the S matrix,
breaks down for highly singular potentials, it is quite
feasible to compute the phase-shift itself by solving
numerically the radial Schrodinger equation. An
alternative procedure, which is based on a convenient
expression for the 5 matrix, has been introduced by one
of us."This method automatically minimizes the effect
of the region near r =0, when the potential has a strongly
repulsive singularity for r ~ 0, in concordance with the
physical picture given above.

Therefore, one should expect that, at least for a
class of unbounded left-hand-cut discontinuities, namely
those which correspond to equivalent potentials that
are repulsively singular for r —+ 0, there exists a ghost-
free S matrix that is phd sically entirely acceptable. At
the same time, one can understand why the X/D
method should not be expected to give this acceptable
solution, by analogy with the potential problem. For
here, as has been mentioned already, the usual Jost func-
tion decomposition of the 5 matrix does not exist, even
though the 5 matrix itself is preeminently well behaved.
The diKculties of the E/D method are associated, not
with any misbehavior of the scattering amplitude, but
with the simple fact that the usual E and D functions
do not exist.

Thus, the purpose of this paper is to show how to
construct the 5 matrix, without having recourse to the
1V/D representation. This is done by constructing a
"radial Schrodinger equation" from the left-hand-cut
discontinuity and the requirements of unitarity and
analyticity. An equivalent potential will appear in this
equation with the property that, if used in this non-
relativistic context, it reproduces the exact 5 matrix
S(k). This task corresponds to solving the so-called
inverse scattering problem; a powerful technique for
doing this has been provided by Marchenko. " An
adaptation of this method to the problem at hand has
been given in a paper by Cox and one of us,"and this
provided the first suggestion for the technique developed
here. A much simplified derivation is given below, in
which the powerful Fredholm theory is used, and in

If the left-hand-cut discontinuity is asymptotically
unbounded, then one would expect that it oscillates
indefinitely, since otherwise either unitarity or analytic-
ity would break down. (The usual way this happens is
by the occurrence of poles in unacceptable positions or
with residues of the wrong sign, the so-called ghosts. )
In fact, Kinoshita's results' imply that a left-hand-cut
discontinuity which is not bounded by a polynomial
must have an infinite number of zeros if the partial-wave
scattering amplitude At(s) is bounded by exp(C~s~' '),
for some ~&0. On the other hand, one can certainly
construct ghost-free unitary amplitudes with un-
bounded, and even polynomially unbounded, but
infinitely oscillating left-hand-cut discontinuities (see
below). Arguments will be given later which point to
these polynomially unbounded discontinuities as likely
candidates for physical relevance (especially in connec-
tion with interactions that give rise to singularities in
field-theoretic perturbation expansions).

The new method was suggested by analogy with
singular potential theory, and it proceeds through the
solution of an equivalent potential scattering problem.
It is, however, worth emphasizing that this technique
is in no sense tied to a nonrelativistic potential model,
but that it may be viewed as a general mathematical
procedure for constructing a function S(k), "the
S matrix, "of the complex variable k, which is holomor-
phic' in the upper half-plane, cut from -', its to i ~ ("the
left-hand cut"), is unitary for real k LS(k)St(k) =1j,
and has an assigned discontinuity across the above-
mentioned cut. (In potential scattering, k is propor-
tional to the momentum of the scattered particle, and
S(k) is the partial-wave scattering matrix. In the
relativistic case, k is the momentum in the c.m. frame;
its relation to the square of the c.m. energy s, as well as
the connection between S(k) and the physical scattering
amplitude, will be discussed in Sec. 4.) An additional
requirement for the applicability of the procedure is
that the discontinuity should not increase faster than
exponentially in ~k~. The question of the asymptotic
behavior, both of the discontinuity and of the function
S(k) itself, in all directions in the upper half-plane, and
the related problem of uniqueness, will be discussed in
detail below.

The introduction of an equivalent potential problem
does add considerable physical insight, which remains
relevant when the method is employed within the
framework of relativistic S-matrix theory. It is known

that, in potential theory, one can find a perfectly
reasonable (and, in particular, ghost-free) S matrix,
starting from a potential that is highly singular as
r —+ 0, so long as this singularity is repulsive. ' This
rejects the obvious physical fact that if an interaction

8 T. Kinoshita, Phys. Rev. Letters 16, 869 (1966).
9 Except possibly for elementary or bound-state

below).
'0 L. D. Landau and E. M. Lifshitz, QNantuwz

(Pergamon Press, London, 1958), paragraph 35.

"F. Calogero and M. B. de .Stefano, Phys. Rev. 146, 1195
(1966); R. G. Newton, Scatterirtg Theory of Particles artd Waves
(McGraw-Hill Book Co. , New York, 1966), Sec. 12.4.

poles (see "Z.S.Agranovich and V. A. Marchenko, The Iloerse Problem of
ScuNering Theory (Gordon and Breach, Science Publishers, Inc. ,

Mechanics New York, 1963)."F.Calogero and J. R. Cox, Nnovo Cimento 5SA, /86 (1968).
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which no prior assumption is made about the existence
of a Schrodinger equation. In fact, this equation is
derived, and an integral representation of the equivalent
potential is written down. The class of acceptable
unbounded left-hand-cut discontinuities' is then the
class for which this potential is an acceptable scattering
potential (and, in particular, if it is singular at the
origin, as is generally the case for unbounded left-hand
cuts, it is repulsive there). For this class, the S matrix
may be constructed either by integrating numerically
the Schrodinger equation, or by employing the tech-
nique mentioned above" (which is outlined in the
present paper, for completeness); the S matrix is then
guaranteed to be ghost-free. The method is so powerful
that it even works for the class of left-hand-cut dis-
continuities mentioned above, namely, those not
bounded by any power of —s, so that, in these cases,
not only does the usual X/D decomposition break down,
but there is in fact no dispersion relation for the partial-
wave amplitude, with a finite number of subtractions.

Finally, it should be remarked that, while this paper
focuses attention upon the integral equation for the
D function, and its necessary generalization to the case
of unbounded left-hand-cut discontinuities, there does
exist an alternative formulation of the 1V/D equations,
in which an integral equation is written for X, and in
which the input is the dispersion integral over the
lef t-hand-cut discontinuity. If an unbounded, but
oscillating, left-hand-cut discontinuity is such that this
dispersion integral can be defined, and vanishes
asymptotically, so that the integral equation for E is of
Fredholm type, then this may provide an alternative
route to the 5 matrix. However, the standard definition
of an infinite integral,

In Sec. 2, the mathematical method is described. In
Sec. 3, the domain of validity of the procedure is
examined; and a number of related topics are discussed
in Sec. 4

I
the relation between the mathematical

technique and the various kinematics of relativistic
scattering; elementary particles, bound states, and
ghosts; the Castillejo-Dalitz-Dyson (CDD) ambiguity;
inelasticity; higher partial waves). In Appendix A,
certain aspects of singular potential scattering are
discussed and, in Appendix 8, a mathematical analysis
of the basic integral equation is given, including a
demonstration of the correspondence between double
poles of the equivalent potential V(r) for positive r
and disallowed poles of the corresponding 5 matrix
(ghosts).

S*(k)S(k)= 1, (2 1)

for real k, which has the given left-hand-cut discon-
tinuity"

P (m) =
I S(~im —c) S(,'i—m+—«)]/(2i). (2.2)

In this section, it is assumed that the S matrix has
neither bound-state nor CDD poles.

In ordinary potential theory, there is a Jost solution
f(k&r) of the Schrodinger equation"

I:(~/~r)'+k'jf(k, r) = ~(r)f(k,r),

f(k &)
. e 'kt—(2.3)

(2.4)

2. RECONSTRUCTION OF S MATRIX

It is required to find a function S(k) which is holo-
morphic in the upper half k plane, cut from k= —', ip to
i ~, which satisfies the unita, rity condition

dm f(m)= lim—dm f(m),
which can be shown"" to be determined also by the
following integral equation:

can be easily shown not to work for many cases in which
the procedure given in this paper docs work. A regular-
ized definition, that is suggested by the treatment of
this paper, namely,

dm f(m) —= lini
r—4+

dm f(m) e ", (1.2)

might be adequate to guarantee the existence of the
input to the E equation. The problem would still
remain of showing that this equation is of Fredholm
type, or at least that it has a solution, and moreover
one that is ghost-free. It should be emphasized that all
such difhculties are overcome in the treatment to be
found in this paper. The two questions raised above
remain, however, quite interesting.

'4 For convenience, throughout this paper, the term "unbounded
left-hand-cut discontinuity" means that X (nz) lognz is not bounded
by any constant asymptotically. For this class, the usual E/D
method leads to non-Fredholm equations.

dte'
f( ,'im, r) =e——"—"~'+ ---lI.(m')

m „m'+m

dm'
f(k,r)=e "" 1+— A(m')

„m'+2ik
Xe "'""f(—-', im', r) . (2.6)

The 8 matrix is then given by

S(k) =limf(k, r)/f( —k, r), (2.7)

so that, if f(k,O) exists, as it does for a bounded P, (m),

'~ Note that there is a difference of a factor of m. between this
definition of A. (m) and that of Ref. 13.

1' Throughout this paper, —+ means limiting equality, while ~
means limiting proportionality.

Xe &~'+ "&"~'f( ', im', r), —(-2.5)

and by the analytic continuation of its solution
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one may set r =0 in Eqs. (2.5)—(2.7):

1 diaz

f(—-', im, 0) =1+-
+

) (m') f(--;im', 0), (2.8)
m'+m

1 " dm'

f(k,0) =1+— ) (m') f(—-', im', 0), (2.9)
m'+2ik

(2.10)

This is the so-called f/f formulation'r of the X/D
method. However, if X(m)logm is asymptotically
unbounded, Eq. (2.8) is not of the Fredholm type, and it
might not have solutions. If it does have a solution,
this will usually not be unique and, what is worse, it
will almost always give an S(k) with ghosts. '

When X(m) is unbounded as m —+ ~, but diverges
less quickly than exponentially in m, then Eq. (2.5)
is Fredholm for r) 0, although it is not Fredholm when
r=O. This is true even if X(m) increases more quickly
than any power of m, e.g. ,

"
X(m) ~ exp(Bm' '), e)0, 8)0 (2.11)

This gives the clue to the new method. Starting with
Eq. (2.5), one can solve for f(-', im, r), r) 0, by standard
techniques and thus obtain f(k,r), r)0. In principle,
this is enough to determine S(k), from Eq. (2.7), but
it would not be a very accurate procedure to evaluate

f(k,r)/f( —k, r) for small values of r, and then to
extrapolate to r=0, since numerator and denominator
do not exist separately in the limit r —+ 0.

Fortunately, there is another way to compute S(k),
a procedure, moreover, that minimizes the importance
of small values of r. To exploit this method, it is
necessary first to have a Schrodinger equation like Eq.
(2.3). However, it is not necessary to assume that
f(k,r) satisfies such an equation, for this fact will now

be proved. Given ) (m), de/me the function f(——',im, r)
by means of the integral equation (2.5), which is, by
assumption, Fredholm for Rer& 0. After a little algebra,
one finds, from Eq. (2.5),

8 2

——;m' f( ', im, r)—-
Br

dtÃ
e—mr/2 V (r)+

7l p,

e
—(m'+m) r/2)i(mr)

m'+m

8 2

&&
——~m" f(—tsim', r), (2.13)
8r

'r A. Martin, Nnovo Cimento 19, 1257 (1961);V. de Alfaro and
T. Regge, jbid. 20, 956 (1961); Potential Scatterin (North-
Holland Publishing Co., Amsterdam, 1965); H. Cornille, J. Math.
Phys. 8, 2268 (1967).

or even

X(m) exp(Cm log 'm), e)0, C)0. (2.12)

8 2

+k' —V(r) f(k,r) =0,
Br

(2.16)

which is the Schrodinger equation. Moreover, it can be
seen, from Eq. (2.6), that"

f (k,r) (2.17)

so that f(k,r) is identified as the Jost solution of the
Schrodinger equation.

Next, define

S(k,r) = f(k,r)/f( k, r). (—2.18)

From Eq. (2.6), it may be seen that f(k,r) is analytic
ink, exceptfor a cut fromk=-', ip tok=i~, across which
its discontinuity is given by

$f(-', im —e, r) f(-,im+ e, r—)j/(2i)
=X(m)f(—srim, r). (2.19)

Thus the discontinuity of S(k,r) across this cut is

LS(rsim —e, r) —S(-',im+e, r) j/(2i) =X(m). (2.20)

Moreover, again from Eq. (2.6), it can be seen that, for
real k and real r,

(2.21)

where
1 8

V(r) =—— dm e "/'X(m) f(——,'im, r). (2.14)
7j Bt' p,

The quantity V(r), which will be identified as the
equivalent potential, is not known in advance, since it
is defined in terms of the solution of (2.5). However,
the important point is that it depends only on r, and
not on m. On comparing Eqs. (2.13) with (2.5), one
sees that

(r) 2

+SZ g Zfg)
her

satisfies exactly the same I'redholm integral equation as
does V(r)f( ', im, —r)-, and hence must be exactly the
same function. That is,

8 2
~ ~

~ ~
—sms f( sim, r—) = V(r)f(—srim, r). (2.15)

Bf

This is implied by the uniqueness of the solution of an
inhomogeneous Fredholm equation, which follows
whenever the homogeneous equation has no nontrivial
solution. Hence the validity of Eq. (2.15) is established
for all but a discrete set of values of r, at which points
f( ', im, r—) —develops poles in the complex r plane. The
possible occurrence and location of these poles is
connected with the question of ghosts, as will be
discussed in detail in Sec. 3.

The differential equation (2.15) can be continued
from real m to m =2ik, giving
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and therefore
5*(k,r)5(k, r) = 1, (2.22)

for r&0. Therefore, for all positive nonzero values of r,
the functions 5(k,r) would not be acceptable if one
requires that the 5 matrix grow less than exponentially
in all directions in the complex k plane. Hence, the
unique function

S(k)—= limS(k, r)~0 (2.24)

remains as a possible candidate to represent the 5
matrix, provided, of course, that this limit exists
(see below).

The interpretation of these results in terms of the
equivalent potential model is illuminating. In fact it
follows from the Schrodinger equation (2.16), and the
definition (2.18), that 5(k,R) is just the 5-wave scatter-
ing matrix corresponding to a potential that coincides
with U(r), Eq. (2.14), for r)R, and which is infinitely
repulsive for 0~&r~&R. This may be considered to
provide a justification for the exclusion of 5(k,r), r) 0,
as an acceptable 5 matrix, . inasmuch as "infinitely
hard" cores are not believed to exist in nature.

The equivalent potential approach is also useful for
an understanding of the limit r —+0 [Eq. (2.24)j.
Clearly the limit 5(k), if it exists, is just the nonrelativ-
istic 5-wave scattering matrix produced by the equiva-
lent potential V(r), which is obtained from the left-
hand-cut discontinuity X(m) through Eqs. (2.5) and
(2.14). Thus S(k) will be satisfactory if this equivalent
potential is itself acceptable. What is meant here by an
"acceptable potential" is, fortunately, easily defined,
thanks to the insight afforded by the detailed under-
standing of potential scattering theory that is currently
available. In particular, the limit r —& 0 in Eq. (2.24)
should be discussed in the framework of singular poten-
tial scattering theory. The fact that U(r) will be singular
as r ~ 0, in the case that X (res) is unbounded'4 as m —+ ~,
can be seen from Eqs. (2.5) and (2.14). In fact, when
r=0, Eq. (2.5) is no longer Fredholm and, as a conse-
quence, f( ',im, r) will in g—en—eral become unbounded
as r —+ 0. This implies, through Eq. (2.14), that U(r) is
a singular potential. On the other hand, if X(m)log'+'~
is bounded as m ~~, Eq. (2.5) remains Fredholm and
V(r) is regular. In this case the reconstruction of 5(k)
can be achieved by the usual procedure, as has already
been noted, but it could also be accomplished by the new

for all real k and real r Cl.early, Eqs. (2.20) and (2.22)
show that S(k,r) is a unitary function that has the given
"left-hand-cut" discontinuity X(te).

Thus a whole class of unitary functions 5(k,r), which
have the given left-hand-cut discontinuity, have been
constructed, depending on the continuum non-negative
variable r. On the other hand, it follows from Eq. (2.6),
and the definition (2.18), that"

(2.23)

method. However, for definiteness the discussion will
now focus upon tile slllgulal case, colresponding to an.
unbounded X(m)loge'.

An acceptable singular equivalent potential U(r) is
defined to be one that is repulsive as r —& 0 and that is
bounded for all real r)0.'8 For such potentials, the
limit in Eq. (2.24) certainly exists" '; moreover, the
5 matrix that is constructed from such a potential has
no ghosts (this can be proved in the standard way;
see Appendix A). Inasmuch as U(r) is defined in terms
of X(m), one has given a condition (albeit an implicit
one) on the left-hand-cut discontinuity, sufFicient to
ensure that the corresponding S matrix (uniquely
defined by the procedure given above) is acceptable.
This class of good left-hand-cut discontinuities will be
characterized in greater detail in the following section.
Here it will sufFice to point out that, if X(m)logm is
unbounded as ns —+ ~, it must oscillate infinitely.

The new procedure can be conveniently sumniarized
at this point, if one assumes that a good but unbounded
X(m) is given: The first step is to solve the Fredholm
equation (2.5) for r) 0. This gives f(——',im, r), and so
V(r), from Eq. (2.14), for r) 0. One can then integrate
the Schrodinger equation, for the regular solution,
from' r=0 to the asymptotic region, thus obtaining
the phase shift 8(k) and hence the S matrix S(k) = e"'&~'.

Alternatively, one can use a procedure" which requires
neither the explicit computation of V (r), nor the
integration of a diff erential equation, and which,
moreover, automatically minimizes the contribution
from small values of r. This consists in using the
integral expression"

5(k) =1+2&k dr{elf( —k r)] ' —e "~") (2.25)

where f(k,r) is defined by Eq. (2.6). For a repulsively
singular potential, f( k, r) div—erges strongly and
monotonically as r~ 0, and so the contribution of
Pf( k, r)] ' to the—integral (2.25) is very small for
small r.

3. PERMISSIBLE LEFT-HAND CUTS

In this section, the class of permissible left-hand-cut
discontinuities will be discussed in greater detail, and
the mechanism by which a "bad" left-hand cut produces
pathologies will be elucidated. Throughout this section,
only left-hand-cut discontinuities that are asymp-
totically unbounded, but less than exponentially so

V(r) must vanish asymptotically for large r, but this is
automatic if, as is assumed throughout, the "left-hand cut"
does not reach the real axis (p)0). In fact, generally V(r)

exp( —pr) for r —& ~.
"A. Pais and T. T. Wu, Phys. Rev. 134, B1303 (1964).
'0 In practice, the integration would start at a very small

positive value of r (since the equation is meaningless at r=0).
This method of computing the scattering phase shift is, in fact,
quite convenient for potentials that are singularly repulsive at the
origin (Ref. 21).



CONSTRUCTION OF THE S MATRIX

Vi(r): gir 2~1ogr~ "y N)0, gi)0
r~p

V2(r) g2r "~ logr~ ", p&2 g2&0
r~p

(3.1a)

(3.1b)

V3(r): ga exp(Cr &), C)0, g&0, g3&0 ~ (3.lc)
p-+P

The asymptotic behaviors of the corresponding scatter-

ing phase shifts are as follows":

Si(k) - —A i(logk) ""

h,(k):—A2k' "i'(logk) "~',

83(k) - —Agk(logk) ',

(3.28)

(3.2b)

(3.2c)

2' I. Calogero, Variable Phase Approach to Potential 5cattering
(Academic Press Inc. , New York, 1967), p. 112."See Ref. 21, p. 220.

P(m)e "~0 as m —+ ~, for all r)0j, will be con-
sidered. There are two distinct problems: first, that
of. ensuring that the limit of Eq. (2.24) exists, so that
an S matrix S(k) can be defined, with an admissible

asymptotic behavior (less than exponent. ial behavior in

the complex k plane); second, that of making sure that
S(k) has the correct analytic properties, in particular,
that it has no ghosts (unwanted poles for Imk)0).
As will be shown, the first point is connected with the
asymptotic behavior of the left-hand-cut discontinuity

X(m) as m~ ~ and the associated behavior of the
equivalent potential V(r) as r —& 0 (attractive or
repulsive singularity). The second point, which of
course is only relevant if X(m) has an acceptable
asymptotic behavior, is connected with the detailed

dynamics, and therefore cannot lead to simple condi-

tions on X(m); however, it turns out to be quite il-

luminating to discuss also this question through the
equivalent potential. As will be shown, each ghost of

S(k) would correspond to a double pole of V(r) on the
positive real axis in the complex r plane.

The most convenient procedure for ascertaining the
allowed asymptotic behaviors of the left-hand-cut
discontinuity is as follows: First, it is required that the
equivalent potential be repulsively singular at the

origin, i.e., V(r))0 for all 0(r&ro, for some ro)0;
and a definite ansatz for this behavior is assumed.

Second, the asymptotic behavior of the phase shift 8(k)
as k~ ~ is deduced from the behavior of V(r) as

r —+ 0. Finally, by analytically continuing the asymp-
totic expression for the S matrix, S(k) =e"'&"&, the

corresponding expression for the asymptotic behavior

of the left-hand-cut discontinuity is obtained. This

program is explicitly carried out for three classes of

singular potentials, thus yielding three classes of

admissible asymptotic behaviors of the left-hand-cut
discontinuities, which should cover all cases of interest.
Of course, once the method is understood, there is no

difficulty in extending it to other categories.
The three classes o$ potential are as follows"".

where A i, A u, and A q are positive constants (they
could be explicitly computed using, for example, the
techniques of Ref. 21). To compute the asymptotic
behavior of the left-hand-cut discontinuity, one must
analytically continue S(k) = e"'&"& from real k to
k= —2', m&0, and then take the imaginary part. This
presents no difhculty, and one obtains

Xi(m): expLfi(m) (me/4 lnm))sint fi(m) j, (3.3a)

X2(m): expPf, (m)cos(a/p) j
XsinL f2(m)sin (w/p) g, (3.3b)

Xi(m): expt fa(m))sin/f3(m) (yr/21nm)g, (3.3c)

where

fi(m) = 2A i(logm)"", I)0, A i)0 (3.4a)

fu(m) = 2A2(-,'m)' "'(logm)"'", p) 2 Aq) 0 (3.4b)

f, (m)=Asm(logm) ', q)0, A~)0. (3.4c)

Equations (3.3) and (3.4) can be regarded as a
survey of the permissible left-hand-cut discontinuities
)intermediate possibilities, involving extra factors
(log logm) ', etc., can easily be supplied by the interested
reader). It should be emphasized that in the above
equations only the leading behavior has been kept.
The limitations on the various parameters in Eqs. (3.4)
ensure that the equivalent potentials of Eqs. (3.1) are
strictly singular and repulsive $i.e., r'V(r) -+„o+~ j.
Note, however, that the envelope of the left-hand-cut
discontinuity of Eq. (3.3a) tends to unity for ri(2, to
some general constant larger than one for n=2; for
e) 2 in Eq. (3.3a), and for all cases in Eqs. (3.3b) and
(3.3c), the function X(m) is unbounded. In all cases,
the asymptotic behavior is oscillatory: The three cases
are distinguished by the relative rate of oscillation and
growth (in addition to the different rate of growth).

Thus, it is quite simple to find general classes of
acceptable left-hand-cut discontinuities by starting
from good potentials, as above. It should also be
possible to reverse the procedure by showing that
appropriate 5 matrices can be constructed from these
left-hand-cut discontinuities by the technique of Sec. 2
Pin particular, the limit (2.24) should exist/. This
program is quite dificult, in spite of the fact that,
leaning on the results of potential theory, one only has
to show that V(r) is positive definite as r ~ 0+, since
clearly the equivalent potential will be singular in this
lirn. it. The exact nature of the singularity at r=0 is
not known in general, since Eq. (2.5) is not Fredholm
at this point.

Much more can be said about the singularities of
f(—i~im, r) and V(r) in the right-hand half of the
complex plane, Rer&0, since Eq. (2.5) is Fredholm
there. In fact, since both the kernel and the inhomo-
geneous terms are holomorphic functions of r, it follows
that, in the right-hand half of the r plane (Rer)0),
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f( s—im, r), the solution of Eq. (2.5), can only have
poles (of course at 2/2-independent positions). It is
shown in Appendix B that V(r) ca,n only have double
poles in the right-hand half of the complex r plane
(Rer)0), and that, at such a double pole, say r=r, ,
the I.aurent expansion of V(r) has the form

V (r) = [8 2/ (r r//)' j—+8p+8 i (r rs)+—
Rers) 0 (3.5)

so tha, t the single-pole component is missing. Moreover,

8 2——l(l+1), (3.6)

23The possibility of bound-state or elementary-particle poles
will be considered in Sec. 4.

where l, an integer, is the order of the corresponding
pole of f(—si222, r) at r=rs. Thus, except for a, dynam-
ical accident, 8 ~= 2.

The fact that V(r) is analytic for Rer) 0, except for
the double-pole singularities of the forms (3.5) and
(3.6), looks very special from the point of view of
potential scattering theory. This is, of course, a con-
sequence of the fact that the analysis is restricted to
those potentials that produce an 5 matrix with the
required analyticity in the k plane, and a less than
exponential behavior in k, as k~ ~.

These considerations of the analyticity properties for
Rer&0 allow an immediate discussion of the second
point mentioned at the beginning of this section,
namely, the condition for the absence of ghosts, i.e.,
poles of S(k) for Imk&~ 0."Clearly, no such ghosts can
occur if V(r) is nonsingular for real r) 0 Lthe question
of the necessary positive-definiteness of a singular V(r),
as r ~ 0+, has already been discussedj. In other words,
if none of the double poles of V(r) lies on the positive
real r axis, then there can be no ghosts. This is, of course,
a consequence of the nonexistence of ghosts in a scatter-
ing theory with a potential bounded for r)0 (see
Appendix A). On t.he other hand, it will be shown in
Appendix B that when a double pole of V(r) appears
on the positive real axis, a ghost materializes.

If ) (m) were to increase without oscillating, as
m —& ~, then an infinite number of double poles of
V(r) would indeed occur on the positive real axis,
accumulating at r = 0 (see Appendix B).Such a behavior
is, of course, unacceptable, as has already been empha-
sized; the present discussion illustrates the mechanism
of the pathology. One sees therefore that the two
pathological mechanisms discussed in this section are
not really completely separable. However, as empha-
sized above, once the asymptotic behavior of ) (n2),
m —+ ~, is acceptable, the discussion of ghosts becomes
relevant. The criterion of acceptability then reduces to
the problem of excluding these ghosts; and this implies
a nontrivial limitation on the strength of the left-hand-
cut discontinuity. In terms of a "coupling constant"
g multiplying the left-hand-cut discontinuity, the

limitation would in general be on the admissible size of

g, consistent with the absence of ghosts. '4

Ls —(Mt+Ms) 2)fs —(Mi —M2) 2)
(4.1a)

s —
L (k2+M 2) 1/2+ (k2+M 2) 1/2j2 (4.1b)

where M~ and M2 are the masses of the initial particles.
The elastic unitarity condition for the partial-wave

scattering amplitude A (s) may be written in general as

ImA (s) =p (k) I A (s)
~

2 (4.2)

where p(k) is the phase-space factor. In the case that
the masses involved in the initial and anal states are
the same ("elastic" scattering), the phase-space factor is

p(k) =2k/s"' (4 3)

for boson-boson or fermion-fermion scattering, whereas
for boson-fermion scattering, one simply has'~

p(k) =2k/(Mi+M, ). (4 4)

In all cases, the amplitude A (s) in Eq. (4.2) is assumed
to be the partial-wave projection of a helicity ampli-
tude. "The analytic structure of A (s) is supposed to be
rather simple in the k variable. There is a cut on the
positive imaginary axis from k = ~ip to i ~, where p is
the minimum mass that can be exchanged in the
crossed t channel. ' In addition, there will be a cut on

"Considerations of this type have been used to obtain approx-
imate bounds on the pion-nucleon coupling constant. In this case
one is dealing with a nonsingular situation. D. Atkinson and
F. Calogero, Phys. Rev. 171, 1767 (1968).

"The factor 2j(MI+3II2) has been introduced for dimensional
reasons, and so that the nonrelativistic limits of Eqs. (4.3) and (4.4)
are the same. Actually, the conventional choice of the constant
(and even its dimension) depends on the way that the helicity
amplitudes are defined.

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (19/9).
"This is true, provided that the u-channel contribution to the

left hand cut ("exchange force") does not extend below the
t-channel contribution ("direct force"). The condition for this is

ps2 2 ()li 1 /)II2)2$((/)Ill+~2)2 /I 2j
2(u,2+m, 2) —m.2

where ~n„and m& are the smallest masses that can be exchanged
in the e and t channels. In any case, it is assumed throughout that
p„'&0,so that p=min(p„,p&) is real (and positive).

4. GENERALIZATIONS

In this section, the following subjects are discussed:
the connection between the mathematical formalism
and the actual physical partial-wave scattering ampli-
tudes for various (two-body) scattering processes;
bound-state and elementary-particle poles, and ghosts;
the CDD ambiguity; inelasticity; higher partial waves.

The problem to be discussed first is the relation
between the square of the total energy in the c.m.
system s and the variable k of Secs, 2 and 3, which is in
fact the c.m. momentum of either of the scattered
particles (for definiteness, in the intial state). This is
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the real k axis, starting from the inelastic threshold and
extending to infinity. Any bound-state poles must lie
on the positive imaginary axis, as usual. There are no
other singularities in the upper half k plane. " The
elastic unitarity equation (4.2) holds for real k from
k =0 to the first inelastic threshold.

If the masses of the final particles are different from
those of the initial particles, then the relevant phase
space is Lpr(k)p~(k) i", where I and F refer to initial
and final states, where pr p(k) is again given by Eqs.
(4.3) or (4.4), whichever applies, and the relation
between s and k is given by Eq. (4.2) with the appro-
priate initial and final masses. The analytic structure in
the k plane is then somewhat more complicated, "
because there is a finite excursion of the "left-hand
cut" away from the positive imaginary axis, which,
however, is irrelevant to any asymptotic consideration.
For simplicity, the discussion will be limited to "elastic"
scattering (possibly of particles with different masses).
In any case, since the main emphasis of this paper is
concerned with the asymptotic behavior of left-hand-cut
discontinuities the basic approach and conclusions will

apply in the general case.
It should be recalled that the problem which has been

solved is to construct a function S(k) which is unitary
for real k [S(k)s*(k)=1j, and which has a given
discontinuity across a cut that lies along the positive
imaginary axis from 2' to i ~, p) 0. The function S(k)
is by assumption analytic in the upper half-plane,
except for this cut (and except possibly for bound-state
poles on the positive imaginary axis; see below). If
one now sets

S(k) =1+2zp(k)A (s), (4.5)

(4.6)Z(m) =ReL2&(-,"m)A (.)j,
where now

L(~ 2 Lm&)U2+ (~22—~qm )ii212

m) p. For large positive m, Eq. (4.6) becomes'

(4 7)

g(m): 2 ReA (—m'), (4.g)

'8 J. Hamilton, in Strong Interactions and High energy Physics,
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964),
Sec. 3."J.Kennedy and T. D. Spearman, Phys. Rev. 126, 1596 (1961);
J. L. Petersen, Nordita Report, 1968 (unpublished).' In a situation involving spin, S(k) should be regarded simply
as a mathematical construction. It need not be the conventional
projection of the scattering matrix on a particular helicity state.

then the unitarity condit, ion (4.2) is automatically
satisfied for all real values of k.30 This is correct in the
elastic region. The modifications introduced by inelastic
processes will be considered below.

The input information required for the construction
of S(k) was its~left-hand-cut discontinuity X(m). In
terms of the scattering amplitude A(s), this input has
the form

for boson-boson or fermion-fermion scattering, "while
for boson-fermion scattering, one has

l~(m) =li'(m)9(m —p) —2m P E,b(m —m, ), (4.10)
j=1

where, by assumption, X'(m) is free of 8-function
singularities (and has an acceptable asymptotic
behavior; see Sec. 3). N is finite and the m, are real and
positive (but they may be larger or smaller than p).
The output of the calculation is a unitary S matrix
S(k) which is meromorphic in the upper half k plane,
cut from k= 2' to i~. The discontinuity of S(k) across
the cut is to be X'(m) (where the b functions have been
removed). The function S(k) must also have poles at
k= ,'im, , j-=1, 2, . . . , X, with residues

»m L(k —-', im;)S(k) j=is, ,k-+-,'i mg
(4.11)

for consistency with Eq. (4.10). In addition, S(k) mav
have other poles on the upper imaginary axis in the
k plane with residues of the form iP;, j= 1, 2, . . ., M. In
other words, the 5 matrix must have the form

S(k) =S'(k)+i P — +iP, (4.12)
WS 2 I \/ Zll2 j 2

where S'(k) has no poles in the upper half-plane and
has the left-hand-cut discontinuity X'(m), where m, ,
R; are the positions and residues of the input poles, and
6;, P; those of the additional poles that result from the
calculation.

In a calculation performed within the framework of
5-matrix theory, the input poles play the role of

"It is usually beheved that a better guess can be made for the
imaginary than for the real part (mainly because the absorptive
part is simpler than the full amplitude in a Geld-theoretic context).
An extension of the method to bypass this diAiculty is nontrivial.
It appears that, in such an extension, the role of k is taken by s,
so that the limiting admissible behavior is exponential in m',
rather than in m.

X(m) = —
t 2m/(Mi+3E2) jlmA ( —m'+M), e&0. (4.9)

The next problem to be discussed is the possible
presence of bound states, and of CDD poles. It is of
utmost importance in this connection to define precisely
the nature of the problem that is to be solved. Specif-
ically, a possible element of confusion is the fact that a
8-function contribution to the left-hand-cut discon-
tinuity (the input of the calculation) corresponds to
a pole of the 5 matrix on the positive imaginary axis
in the k plane, and that the S matrix resulting from a
given left-hand cut is allowed to have, on the positive
imaginary axis in the k plane, poles other than those
arising from the 8 functions in the input. The physical
interpretation of these poles (elementary particles,
bound states, ghosts) will be discussed below.

It is therefore convenient to display separately the
input poles (if any) and the continuum left-hand-cut
contribution, and to write
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(4.13)f(k) = f(k,0);

but when the equivalent potential is singular (and
repulsive) at the origin, the following definition replaces
Eq. (4.13):

where r is a constant such that V(r)) 0 for 0(r ~&r.
In the inverse potential scattering problem, it is well

known that, "" to a given partial-wave amplitude,
there corresponds an n-parameter family of potentials,
all of which reproduce it, e being the number of poles
of S(k) on the positive imaginary axis. Suppose, for
simplicity, that S(k) has just one pole at k=-', im with
a residue Q, so that"

S(k)
k —-'im

2

(4.15)

One possibility is that the Jost function f(k) has a
pole at k=-,'&n. In this case, there is no bound state.
Another possibility is that a bound state exists at
k=-'im, and that the corresponding bound-state wave
function satisfies the normalization equation

elementary particles, the position of the pole giving
the mass, and the residue the coupling of the particle
in question. In fact, the residue of the pole in the k'

plane, namely, —m,.E;, is the square of the coupling
constant (it measures the strength of the interaction
in the crossed channel, due to the exchange of the
elementary particle). It is therefore constrained to be
positive. The positions and residues of the additional
poles of S(k) give the masses and coupling constants of
the bound states that result from the calculation. The
corresponding residues —b,I'; must also be positive.
If any one should turn out to be negative, this "state"
would not be a bound state, but a ghost. Its appearance
must be interpreted as an indication that the input
lef t-hand-cut discontinuity is inconsistent with the
analyticity and unitary properties that the 5 matrix
must have. It should be reemphasized that the above
discussion of elementary-particle and bound-state poles
refers only to the upper half of the complex k plane,
which corresponds to the physical sheet of the s plane.
Poles in the lower half k plane will be discussed below,
in connection with the CDD phenomenon.

From the point of view of the equivalent potential
approach, a pole introduced as input appears as a
pole of f(k), whereas a bound state is a zero of f( k). —
Here f(k) is by definition the Jost function. In the
regular case

In this case, the spectral function (inverse Laplace
transform) of the potential, does not contain a l)

function at m=m. The Jost function f(k) does not have
a pole at k =-'2im, but it does have a zero at k= ——2'im.
There is, moreover, a whole class of cases which share
this last, property Pi.e., the pole of S(k) comes from a
zero of f( k), —and not a pole of f(k), at k=i~im].
In all these cases, there does exist a bound state at
k =—2'im, but now the bound-state normalization
constant

(Er[f( 2i—m, r)]' (4.17)

g(m )e-(oa'+m)r(2f( &mt &) (4 18)
'IS +tB

no longer coincides with —
Q, where Q is the residue of

the S matrix, Eq. (4.16). Moreover, in these cases, the
spectral function of the potential contains a 8 function
contribution at nz=m. All these potentials would be
obtained by inserting, in the formalism of Sec. 2,
discontinuity functions which differ only in the coeK-
cient. of the 5-function contribution at m=m, and this
turns out to be just —2(B+Q).(3 The two special cases
mentioned above correspond to 8=0 (no bound state)
and 8= —

Q (pure bound state), respectively.
The cases of interest in S-matrix theory are these two

extreme ones: Either one has a pure bound state that
does not correspond to a i) function in the input (the
left-hand-cut discontinuity function or, for that matter,
the spectral function of the potential) or an elementary
particle. In the latter case, one requires that the pole
come from a pole of f(k), rather than a zero of f(—k);
then the codFicient of the input 8 function in the
discontinuity is reproduced unmodiled as the residue
of the S-matrix pole. This justifies the earlier separation
between the (input) elementary-pa, rticle 8-function
contributions to the discontiniuity functions and the
(output) bound-state poles, and the requirement that
the poles of the S matrix occurring at the input 8-
function positions have unaltered coefficients Lsee Eqs.
(4.10)—(4.12)j.This explains why even when poles are
present the equivalent potential that was defined above
is unique.

The expert reader will doubtless have wondered what
has become of the CDD ambiguity, since the @bove
procedure gives a unique answer. In fact, it is possible
to generalize the procedure as follows (for simplicity
only one CDD pole will be considered, but there is no
difBculty in treating several). The integral equation
(2.5) has to be generalized to

draff( ,'im, r)j'—-(4.16) with

(4.19)
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8
V(r) =2C tte—"~2f-( ',im„—r-)j

Br

dm e '~9 (m) f( 22im—, r). (4.20)

The asymptotic behavior of f(k,r) as r —+ ~ is now
changed. From Eq. (4.18) one finds

%gal

f( ',im—„-r) —em'"12,
g-woo

(4.21)

and, in general, for k~ ——,'im„

2' —m,
f(k y) ~ e itr—

~"2ik+m,
(4.22)

It is therefore convenient to define a new Jost

so that in addition to the cut on the positive imaginary
axis, f(k,r) has a pole at k=-, im, (which is in the lower
half of the k plane). It can then be seen, following the
technique of Sec. 2, that f(k,r) still satisfies the radial
Schrodinger equation (2.16), with the following
(modified) expression for the equivalent potential:

solution
2ik+m.

f(k, r) = f(k,r),
21k ssg

(4.23)

S(k,r) =f(k,r)/f( —k, r) (4.24)

is unitary for real k, and that it has the left-hand-cut
discontinuity X(m) for all values of r (as in Sec. 2).
The asymptotic behaviors of f(k,r) and S(k,r) as
k —+ ~ are just as in Sec. 2, so that, for the same reasons,
one believes that lim, 0S(k,r)=S(k) is the unique
candidate for an acceptable 8 matrix. Also the discus-
sion of the existence of the limit r ~ 0, and its connec-
tion with the asymptotic behavior of li(m) as m-+ oo,
would be identical to that given in Secs. 2 and 3.

In conclusion, an 5 matrix containing one CDD pole
at k=-', im„m,&0, can be constructed from a given
lef t-hand-cut discontinuity X (m) according to the
following procedure. First, one must solve the integral
equation (4.18), which can be written

which has the usual asymptotic behavior (except
at k= —

—2,im, ), and which is free from the CDD pole
(but it has mstead a zero in the upper half-plane at
k= ——',im, ).

It is now seen that the function

1+(C/m, )(m —m,/m+m, )e "" 1
f( ', im,—r)-=e m"~2— +—

1+(C/m. )e—"" e im'+m& "—i9, (m') f( 2im', r—)
m'+m

1+(C/m, )f(m —m, ) (m' —m, )/(m+m, ) (m'+m, )je ""
X— (4.25)

1+(C/m, )e-" "

=1+2ik dy{Pf( k y))
—2 e

—2ikr} (4 26)

with f(k,r) given in terms of f(k,r) by Eq. (4.23).
Incidentally, it is easily seen that the first term on the
right-hand side of Eq. (4.20) vanishes as exp( ——,', ii'y)

as r~ ~, where p'=minLp, [m, J].
Once 8(k) is obtained, the final S matrix is

S(k)=P(2ik —m, )(2ik+m, )j'8(k), (4.27)

This equation is Fredholm for all Rer&0, and for
C(0 or C) —m, (remember that m, (0). Having
solved Eq. (4.25), one could obtain the S matrix from
Eq. (4.24), in the limit r —& 0. As discussed in Sees. 2

and 3, a morc convenient procedure when the equivalent
potential (4.20) is repulsively singular, would be to
compute the phase shift 8(k) from the Schrodinger
equation with this potential, or to use the integral
representation

f(k,r)
8(k) =expg2ib(k) $ =lim"~ f( k, r)—

as implied by Eq. (4.23). It is easily seen that 8(k)
has a zero at k= —,'im, and a pole at k= —~in„sothat
S(k) has indeed a simple pole at k= 2im, and a simple
zero at k= —~im, .

As implied by the above discussion, there are restric-
tions on the CDB constant C. Should C lie in the forbid-
den range 0(C(—m. , then f(k,r) would have an
accumulation of an in6nite number of poles ai the point
r =ro= —(1/m, )ln

~
m, /C ~

—. This can be seen from
Eq. (4.25), since the factor L1+(C/m, )e "~"1—' that
multiplies the kernel can be made arbitrarily large by
choosing r sufficiently close to ro."

It may be remarked that the introduction of a CDD
pole is formally identical to the addition of a 8-function
contribution, —22rCb(m m,), m, (—0, to X(m), the left-
hand-cut discontinuity )with, of course, a formal
extension of the range of the left-hand-cut integration;
see Eq. (4.18)j. Thus a CDD pole is very like an
elementary-particle pole Lcf. Eq. (4.10)), but in the
lower half of the k plane.

"Equation {4.26) has the remarkable property that, at the
point r=~p, the kernel becomes not only singular, but separable
as well. As a consequence, f{—&i1R ~ p} Is 6nite, even though rp
is an accumulation point of poles.
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Next, the important matter of inelasticity will be
discussed. It turns out that by far the most appropriate
approach is that proposed by Froissart. " The in-
elasticity ri(k), which is assumed to be given, is intro-
duced through the equation

whereas if

then

r) (k) exp (—k"),

P (-,'im) —exp) —(-,'m) "/cos-,'rrA ),
(4.36)

rt (k)expL2i8 (k))—1
A (s) =

2ip(k)
(4.28)

so that ri(k) = 1 in the elastic region, and 0~& ri(k) ~&1 in
the inelastic region. This may be written, following
Froissart, as

where

A (s) =
P (k)expg2in (k))—1

2ip(k)
(4.29)

and

P(k) =exp
2sk "dk' 1nri(k')

(4.30)

2k "dk' lnrt (k')
n(k) =8(k)+ P—

k'2 —k2
(4.31)

It is then easily seen that the amplitude

A (s) 1—P (k)
A'(s) =— +

P (k) 2ip (k)P (k)

can also be written

(4.32)

A'(s) =expL2in(k)) —1

2sp(k)
(4.33)

so that it satisfies the elastic unitary condition (4.1) for
all real values of k. Thus the approach described in this
paper can be used to compute A'(s), the only difference
being the fact that the input left-hand-cut discontinuity
lS n0%'

X'(m) =) (m)/P (-,'im), (4.34)

as implied by Eqs. (4.32) and (4.6). Of course, once
A'(s) has been computed, A(s) can be recovered from
Eq. (4.32).

So long as ri(k) does not tend to zero at any real
point k=ki faster than expL —(k—ki) '+'), e)0, and
does not tend to zero faster than exp( —k' ') as k -+ oo,
then P(k) is well defined by Eq. (4.30) and, in partic-
ular, P(-,sm) is real and positive (it cannot vanish for
a finite m).

If ri (k) does not vanish asymptotically (k —+ ~), then
P(stim) tends to a constant as m —+ eo. On the other
hand, if ri(k) vanishes asymptotically, then so does
P(sim) as m~+~. For instance, if

rt (k) k—",

where one must restrict 0&A(1 in Eq. (4.36). Thus,
it can be seen, from Eq. (4.34), that if ti(k) vanishes
asymptotically (i.e., if at asymptotic energies the
scattering becomes purely absorptive), then the effective
left-hand-cut discontinuity X'(in) is more singular
than X(m).

The previous analysis of the connection between the
asymptotic behavior of the left-hand-cut discontinuity
and the existence of a ghost-free scattering amplitude,
as given in Sec. 3, remains valid in the inelastic case,
with X'(m) used instead of X(m), since a necessary and
sufficient condition for A(s) to be ghost-free is that
A (s) be similarly ghost-free Lthis is implied by Eq.
(4.32), the fact that P(k) has no zeros for Imk)0,
and that it is positive definite on the positive imaginary
k axis). It should be noted in passing that the analysis
of this paper would be required even for a bounded
X(m), if P(-', sm) —+0 as m~ ~ in such a way that
X'(m) is unbounded. Incidentally, in such cases X(m)
is required to oscillate, even though it is bounded, in
order to avoid the appearance of "inelastic ghosts. "

It is remarkable that, even in the inelastic case, the
procedure for the construction of the scattering matrix
from its left-hand-cut discontinuity involves a real
(rather than a complex) equivalent potential.

Throughout this paper, it has been tacitly assumed
that the partial-wave amplitude under consideration was
an S wave. However, it is known that the N/D equa-
tions have the same form for all partial waves, the only
difference being that certain moment conditions on the
left-hand-cut discontinuity are implied by the threshold
zeros of the amplitudes. Normally this problem is
by-passed by the introduction of subtractions (which
are completely equivalent to CDD poles in unsubtracted
equations). ss It is also clear that the generalized equa-
tions of this paper apply unmodified to any partial
wave (with appropriate left-hand-cut discontinuities, of
course). If the input left-hand-cut discontinuity satisfies
the moment conditions appropriate to the partial wave
in question, then the partial-wave amplitude con-
structed by the method of this paper will indeed have
the correct threshold zero, even though it appears as the
5-wave amplitude associated with the equivalent
potential. This zero will appear as an apparent dynam-
ical accident in the equivalent potential problem.
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dr'LV(r')$"', (A7)
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It will be shown in this appendix that if V(r), the
effective potential, is bounded for all real r)0, and
r'V(r) diverges monotonically to +~ as r +0+, —
then S(k) has no ghosts [in the absence of bound-state
poles, this means that S(k) has no poles for Imk) 0j.
In the regular case, this is a well-known result; the
proof for acceptable singular potentials of the above
type is straightforward, but does not seem to have been
given elsewhere.

Let k=k be the position of a pole of S(k). Then

8
lim f( k, r—)—f(—k, r)

Br

8
= —lim f(—k, r)—f(—k, r) . (AS)

Br

Equation (A7) comes from the fact that, as soon as
one moves away from k = —k, f(k,r) develops the diver-
gent behavior as r ~ 0+, which is consequently present
also in f(—k, r).

On combining Eqs. (A4) and (A6), one finds

f(—k, r) PV(r)$ 'I exp

—+0

dr'L V(r')1'~'

(A1)

iR= —k draff( k, r)]'—

Thus the Wronskian theorem for the functions f(—k, r)
and f*( Ic, r), ta—ken between 0 and r, is

t9 8
f*(—» r)—f(—» r) —f(—k, «)—f*(—k, r)

Br Br

8
Xlim f(k,r)—f(—k, r) . (A9)

Br

The Wronskian of f(k,r) and f(—k, r) is

8 8
f(k,r)—f(—k, r) —f(—k, r)—f(k,r) =2ik. (A10)

Br Br
r

4'Rek 'ik dr'If( k r) i' (A ) This equation, together with

8
= —lim f(—k, r)—f(k,r), (A11)

Br(A3)Rek= 0.

8
For Imk)0, f( 3c, r) ~ exp(—skr) vanishes asymptot- »m f(k,r) f( k, r)— —
ically, as r —+ ~, and so Eq. (A2) becomes

Thus the poles of S(k) in the upper half k plane may
occur only on the imaginary axis.

Now it will be shown that if there is a pole on the
positive imaginary axis, its residue R is negative (so
that the pole corresponds to a bound state, and not to
a ghost). The residue of the pole of S(k) is given by

drLf( —k,r)y (0. (A12)

which is derived bv an argument similar to that used
to obtain Eq. (AS), yields's

— f(k r)—
iR=lim limL(k —k)S(k,r)j=—lim

k~T r~o ' '-f(» r)-

where

(A4)

Equation (A12) is the standard result, but now proved
for repulsively singular potentials; f(—k, r) is real for
k=i~k

~
and is, in fact, the bound-state wave function,

normalized so that" f( k, r) —+ e—xp( —~k~r) asr ~ oo.

Moreover, since R(k) is necessarily finite )from Eq.
(AS)

t9

lim f( k, r)—f(—k,—r) =k
Br

draff( —k, r))'. (A6)

The Wronsltian theorem for f(—k, r) and f( k,r)—
yields

3' The same result obtains for a regular potential, although in
that case a factor of 2 would multiply the right-hand side of
Eq. (A6}. This factor of 2 is removed in the 6nal result by the
fact that, for a regular potential, the second term on the left-hand
side of Eq. (A10) would vanish in the limit r —& 0, so that also

lim f(k,r) f( k, r) =2sk- —a.-e ' ar

would be twice the corresponding result for the singular case.
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(A12)), and since f( k—, r) does not vanish everywhere,
it follows that the pole of f(—k, r) at k =1c is simple.

X(m) e—"" :0 (81)

if Rer) 0, it follows that the integral equation (2.5) is
Fredholm in the half-plane Rer&0. Moreover, the
kernel and the inhomogeneous term are analytic
functions of r, so that the solution f( 2im,—r) is
meromorphic in this half-plane. Normally the poles of

f( , im, r—) —in the r plane, the positions of which are in-
dependent of m, will be simple, but in principle multiple
poles may be possible corresponding to coincident zeros
of the Fredholm determinant.

It then follows from the definition, Eq. (2.14), that
V(r) can only have double poles for Rer) 0, and that
the Laurent expansion about such a pole contains no
simple-pole contribution. These conclusions hold in-
dependently of the order of the pole of f(——,'im, r), as
is easily seen from the Schrodinger equation (2.15).
Moreover, this equation implies that the coefficient of
the double pole of V(r) is just L(l+1), where l is the
order of the corresponding pole of f(——',im, r)

Incidentally, although the possibility of multiple
poles of f( ~~im, r) —has not been ruled out, their
occurrence would appear to constitute a dynamical
accident. For example, suppose that f(——',im, r) has
a double pole at r= ro,

(82)

then A (m) must satisfy the following two homogeneous
Fredholm equations:

dm'
A(m) =— e-'"'+""9.(m')A (m')

m'+m
(83)

dm'
mA(m)= —— e ' '+ &""X(m') Am( ).m(84)

m'+m

Equation (83) follows from Eqs. (2.5) and (82),
whereas (84) follows from (83) and from the integral
condition

dm e ""«9.(m)A (m) =0,

which in turn follows from the fact that V(r), Eq.
(2.14), cannot have a triple pole. Equations (83) and

APPENDIX 3
In this appendix, certain properties of f(k,r) and

V(r) are deduced from the defining Eqs. (2.5), (2.6),
and (2.14). Since it is always assumed that

(84) show that the Fredholm kernel

1 == e-- ( m. '-t- m ) rot 2y (m1 )
tl' m +m

has both eigenvalue +1 and —1. This presumably is
very exceptional.

It is convenient now to discuss the positions of the
poles of V(r) in the right-hand half of the r plane.
Consider first the (unacceptable) case of an asymp-
totically unbounded but nonoscillating X(m) Land for
simplicity assume that X(m) is positive definite j.Then,
by introducing the quantity X"'(m)f(——2t',m, r), the
kernel can be cast into a real symmetric form. Hence
all its eigenvalues are real, and they accumulate at
+~.This implies that the poles of f( ', im,—r)—areon
the real r axis (r) 0) accumulating at r =0. This follows
because the norm of the kernel diverges monotonically
as rt 0+. It is easily seen that this accumulation
occurs for any asymptotically unbounded and non-
oscillating X (m).

Consider now the more interesting case of an un-
bounded oscillating X(m). If the nature of the oscilla-
tions is acceptable, the poles of V(r) will be moved
away from the positive axis in the r plane, for in this
case it is not possible to produce a real symmetric
kernel for real r values. Examples of left-hand-cut
discontinuities of this kind, associated with acceptable
potentials, have been given in Sec. 3.

Finally, it will be shown that a pole of U(r) occurring
on the positive real axis gives rise to a pole of 5(k) on the
positive imaginary axis in the k plane with the wrong
sign of the residue for a bound state, so that it is a
ghost. First, a general argument will be given to
establish this result, and then the mechanism whereby a
ghost appears at A =i~, as a double pole of U(r) passes
from real negative to real positive r, will be displayed.
It may be recalled (from the inverse potential-scattering
problem" ") that, given an a.cceptable 5 matrix with one
pole on the positive imaginary axis, there is a unique
potential that reproduces this 5 matrix via the Schro-
dinger equation for which the residue of the pole coin-
cides with the corresponding bound-state wave-function
normalization (of course, there are other potentials for
which the state would not be a pure bound state; see
Sec. 4). This potential is indeed the potential that is
produced by the method of this paper, if no 5-function
contribution is included in the input left-hand-cut
discontinuity. Therefore, one can conclude quite
generally that if the sign of the residue of the pole is the
correct one for a bound state, then the potential must
be free of double poles on the positive real r axis (since
such singularity-free potentials are necessarily produced
by solving the inverse potential-scattering problem).
Therefore, if the potential has instead a double pole on
the positive real r axis, the corresponding 5-matrix pole
must have a residue of the wrong sign.
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V (r) = 2/(r —ro)' (86)

i.e., a double pole and nothing else. It is easy to con-
struct the corresponding Jost solution of the Schrodinger
equation, which is

g(k, r) =e '~" 1—
k (r —rp)

The S matrix is

(87)

S(k) = (kr p+i)/(kro i), — (88)

Admittedly, this argument ignores the fact that the
inverse potential-scattering problem has so far been
fully analyzed only for potentials V(r) that are regular
as r —+ 0. It seems clear, however, that the same results
must hold for the class of acceptable singular potentials
that have been discussed in this paper.

It will now be shown in detail how a ghost appears at
k=i~, as some parameter (e.g., one that multiplies
the left-hand-cut discontinuity function) is varied, so
that a double pole of V(r) just moves from negative to
positive real r. Consider Grst the particular case of a
potential

defined only at these values of k, because in general

f(k ~) ---~ LV(r)] "' Ei(k)exp -+
r- ~0

r

dr'L V(r') j"'

+82(k) exp

r

dr'PV(r')$"" . (812)

i 1 " — 1
0=1 — +— dr' 1— ~sinkr'

kr0 k 0 k'rp {r—ro) )

Thus a pole position k= —k may equivalently be
defined by E2(—k) =0.

It will now be shown that when rp is small and
positive, then there is a k close to ko ——i/ro. Note that
throughout Eqs. (811), (2.18), and (2.24), k=k is by
definition a pole of $(k) and will be a ghost since ro is
positive. This proof will be given explicitly in the
regular case [in which case lim„„of(—k, r) exists for
all values of k].

Consider Eq. (810) written for r=0 and k= —k:

and this has a pole at ko=—i/so. As lorig as ro is negative,
and therefore V(r) is nonsingular, this pole is in the
lower half k plane, but as soon as rp passes through zero
and changes sign, the pole changes from k= —i ~ to
k=i, and then moves down the positive imaginary
axis. It is then, of course, not a bound state, but a ghost
(in fact, the residue of the S matrix in the k' variable
is negative).

The fact that as soon as a double pole of V(r) enters
the real r axis, a ghost appears at A =i~ remains true
for a general potential of the acceptable class. Consider
a potential of the form

+ -coskr' v(r') f(—k, r'). (813)
pro (r' —ro)

It will now be shown that if

then
k=ko(1+e), (814)

In fact, from Eqs. (813) and (814), one has, to first
ordel 111 6)

V(r) = P2/(r —re)'7+ v(r),
QQ

Fp
(89) e=ro dr' i 1+ sinkor'+

p f Fp fp
cosk pt'

where e(r) is bounded for all Rer)0, and is either
regular or is singular and positive, as r +0+. LNote-
that the analyticity of r (r) at r=ro is implied by Eq.
(3.5).j Then the Schrodinger equation can be cast
into the integral form

00

f(k,r) =g(k, r)+ dr'Lg(k, r)g( —k, r')
2'

g(k, r')g( k, —r)$v(r') f(k—,r'), (810)

where g(k, r) was defined in Eq. (87) and is the Jost
solution in the case with v(r) =0.

The position k of any pole of the 5 matrix, and in
particular a ghost, is defined by the equation

Xr (r') f(—kp, r') . (816)

er ———2ron(ro)A (ro)/e. (817)

To demonstrate Eq. (815) one must bound this
integral. This looks divergent because of the double
pole of the integrand at r=ro Lrecall that f(—ko r )
has a simple pole at r'=roj, but it is in fact finite, as
can be shown by deforming the contour of integration
in the r' plane. The line LO&~ r'& ~j will be replaced by
the contour $r'=r0(1+e'e), 7r&~e&~0$, together with the
line L2ro&~r'& ~]. I.et er and e2 be the contributions
from the semicircle and the line, respectively, so that
e= er+e2. To evaluate er, one can substitute in place of

f( ko, r') just the p—ole contribution A (ro)/(r ro). —
One obtains, to the leading order in rp,

limf( —k, r) =0. (811)
It is shown below that for small rp,

Note that, in the singular case, lim, 0 f(—k, r) is well A (ro) =ro/e, (818)
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and this implies .-0,
rp-~p

(819)

rp'v(rp): 0.
r0-+0

(820)

As for pp, the corresponding integrand (316) can
be majorized as follows:

A («)e
I f(—kp, r')

I
& J3 1+ e-"'~"o.

Fp—
(821)

since the assumption that the potential is regular is
tantamount to the requirement

To complete the proof, it is necessary to investigate
the behavior of A (rp) as rp —+ 0, which can be done by
using again the int.egral equation (810), this time at
r=rq, with k= —kp

—— i/—rp..

rp
"

sink p(r' —rp)
A (rp) =——rp' dr'

k p(r' rp)—
—coskp(r' —rp)

Xv(r') f(—kp, r'). (326)

Note that the integrand is nonsingular at r'=rp, since
the term in square brackets has a zero that just cancels
the pole of f( kp, —r') at r'=rp. In fact, the integrand
can be majorized by the following procedure:

fp
i 1 sinkpr'

r' —rp r' —ro
cosk pr' & 3e"'~"' (822)

Iv(r) I
& gr '+&,— (823)

-=0,
rp-+0

(825)

so that Eq. (815) has been established.
One should also check that the sign of the residue of

the S matrix pole is that of a ghost, and not a bound
state. In fact, it can be shown explicitly that the
residue of the pole, for small rp, tends to that of the
case when the potential has the simple form (86).
This argument, which is quite similar to that given
above for the position of the pole, will not be given
here, because in any case one can rely on the general
argument given at the beginning of this discussion.

for a sufficiently small p&0. Here 8 is a numerical
constant, and Eq. (821) follows from the fact that
f( kp, r') h—as the asymptotic behavior e'"p" when
either kp or r' becomes very large, and it has a pole at
r'=rp of residue A (rp). Since the range of the integral
defining ~2 only starts at r'= 2rp, the pole denominator
r' rp can be replaced —by rp. In the derivation of (822),
use was made of the same replacement. Equation (823)
follows from the assumed regularity of V(r) as r~ 0
and the fact that p(r) vanishes asymptotically as—2r ' Lsee Eq. (89)$. I For simplicity marginally
regular cases, e.g. , V(r) „p(r logr) ', are ignored,
although the proof could easily be extended to cover
them. 7 Using these majorizations, one easily obtains

pp&+g8$1+A (rp)%p)L(2rp)&/(1 —e)$. (324)

This equation together with (818) implies that also

&~ CLA (rp)+r' —rpg
r'+rp)

r' exp — —
I

—1, (827)
r, i

sink p (r' —rp)

kp(r' —rp)

—coskp(r' —rp)

fp
~&C' exp —1 . (828)

fp

Here C and C' are absolute constants (independent of
rp). Equation (327) followsfrom thefact that f(—kp, r')
has a pole at r'= rp, with residue A (rp), has the asymp-
totic behavior e "'~"0 as r'~ ~, or as rp —+0, and is
bounded for r' between these two limits. Equation
(828) can be trivially checked.

The majorizations (827) and (328) are used together
with (823) in Eq. (826) to show that

IA(ro) —«/el &CC'gl.A(«)!ro+1/(1 ~)]
&&I: 'rp/+( —2 n)] (829)

and this implies Eq. (818).
It. is rather more dificult to carry out the proof

when V(r) is singular as r —+ 0, even though all the
integrals in the above proof I Eqs. (313), (816), and
(326)j remain well defined Las implied by the remark
after Eq. (811)j. However, it is easy to see that there
is a class of singular potentials, namely, those for which
rp'v(rp)«1, for some small (but not too small) value of
rp, such that the above proof is essentially unchanged.
This indicates that the same association of double
poles of V(r) on the positive real axis with poles of
S(k) having Imk)0, and a negative sign for the
residue if Rek=0 (ghosts), obtains for singular as for
rey.dar potentials.


