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for a solution of
f(y,y', y",x) =o, (A3)

then for this solution we have

y(—x) = y(x) (A4)

The proof consists in the remark that x —+ y(—x) also

satisfies (A3) and has vanishing derivative at x=0,
hence y( —x) =y(x) because of uniqueness.

From this theorem we deduce the truth of result II.
A look at Eq. (12) supplemented by p= f(p) shows that
the left side of the Eq. satisfies (A1); now, result I
states that p'(0) =0 and therefore the solution p(r) of
(12) is an even function of r.
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Classical Relativistic Rotator as a Basis for the Elementary Particles*
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A classical Lorentz-covariant generalization of the nonrelativistic theory of a free, stationary, symmetric
top is developed. The resulting relativistic theory predicts a physical mass which is a monotonically in-
creasing function of spin asymptotically approaching a linear relation in the limit of large spin. The theory
is free of spacelike solutions.

I. INTRODUCTION

HE notion that the elementary-particle resonances
may be excited rotational states is not new. It has

led to the investigation of the rotational levels of com-
posite systems and to the study of relativistic wave
equations based on various rotator models. ' Perhaps the
most detailed study of the applicability of rotational
states to the elementary particles is due to Corben. ' His
analysis is based on the model of a symmetric top. It is
in the spirit of Corben's approach, that a properly
formulated quantum theory of a relativistic rotator is
founded on a properly formulated classical theory of
that same rotator, that we undertake the present
analysis. Some of the introductory material has ap-
peared in the literature; it is reiterated, in Secs. I and
II, for the sake of coherence. The rest of the analysis and
the emerging rotator theory differ in content from
previous formulations.

We develop a classical Lorentz covariant generaliza-
tion of the free, nonrelativistic, symmetric top and
discuss those features of the relativistic theory which
indicate its relevance to the elementary particles. We
focus especially on the two important features: (a) the
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predicted relation between the physical mass and spin
of the rotator, and (b) the question of spacelike solu-
tions. ' These two crucial aspects prove to be directly
related in our formulation, for the condition which
ensures that the physical mass increase monotonically
with spin also rules out the possibility of spacelike
four-momenta.

Our present purpose is only to indicate the relevance
of the model of the symmetric top to a discussion of the
elementary particles. Therefore, in the nonrelativistic
theory, we make the relatively simple choice of collinear
spin angular momentum S and angular velocity to. Thus
the rotational kinetic energy in the nonrelativistic

2'= -'S oI = S'/2I, (1)

where I is the moment of inertia about the axis of
rotation. ' The energy-spin relation (1) forms the basis
for a highly successful quantum theory of the rotational
levels of symmetric molecules and heavy symmetric
nuclei. ' This quantum theory follows almost trivially
by merely replacing the classical spin variable S by hJ,
where J is the spin operator in units of h. Equation (1)
then gives the energy eigenvalues for states of well-
defined angular momentum with the continuous classi-
cal variable 5' replaced by the discrete values h' j(j+1).
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It has been pointed out that the nonrelativistic
theory of a symmetric top cannot apply to the elemen-
tary particles because (a) the energy (1) rises too
rapidly with spin to describe the Regge recurrences,
and (b) nonrelativistic theory simply does not apply to
a rotator whose spin is 6nite but whose dimensions are
on the order of its Compton wave length. ' Hence, if we
want to consider the applicability of the model of a
symmetric top to the elementary particles, we must
discuss the model within the framework of a relativistic
theory. Fortunately, however, the above condition (b)
also rules out questions of rigidity in the relativistic
theory. ' The relativistic generalization of (1) that we
consider here emerges from an extension of Frenkel's
theory of a spinning point particle. ' Therefore, we

briefly review the salient features of the Frenkel formu-
lation and indicate its inherent limitations. We then
develop an extension of Frenkel's theory which has (1)
as the nonrelativistic limit.

Before we begin a detailed discussion, it is well to
state the degree to which any classical theory of spinning
particles can be expected to reQect properties of the
elementary particles. Clearly, precise quantitative
predictions are not going to bear fruit. For example, if
we consider the energy levels of the nonrelativistic
symmetric top, the difference between S' and S(S+1)
vanishes in the limit of large spin, but cannot be ignored
for spin values in the range of well established experi-
mental findings. Hence one should expect no more of the
classical theory than a semiquantitative reRection of
quantal behavior, with asymptotic coincidence.

II. FRENKEL THEORY

In 1926 Frenkel proposed a Lorentz-covariant de-
scription of a charged point particle whose magnetic
properties are described by the antisymmetric spin
tensor, S„,= —5„„.The magnetic and electric dipole
moments are proportional to the space, and mixed
space-time components of S„„,respectively:

S= (Sss,Ssr,Sts),

~ =z(54t, 54s,54s) .

There is a constraint in Frenkel's theory,

S„„e„=O,

(2b)

(3)

v R. Hart, Am. J. Phys. M, 1006 (1965).
J. Frenkel, Z. Physik 37, 243 (1926}.
In our notation, g„= (x,ict); s is the proper time of the particle;

hence d/ds= (y/c)d/dt gives v„v„=—1, where i„=dg„/ds=v„
= (y/c) (V,zc), V=dx/dt, and y=(1—(V/c)s) r's; Greek indices
run from 1 to 4, and Latin indices run from 1 to 3.

which asserts that the electric dipole moment arises
only from the motion of the particle, ' vanishing with
the instantaneous particle velocity V, i.e.,

=(1/)(VXS).
Henceforth we shall refer to the frame in which the

particle is instantaneously at rest as the intrinsic rest
frame (IRF). In mathematical language, the constraint
(3) states the condition that the internal homogeneous
Lorentz group of the relativistic motion maps into the
homogeneous rotation group of three dimensions in the
limit of small velocities. '

Frenkel's classical equations of motion follow from a
variational principle and include the sects of external
electrorn. agnetic fields which may vary spatially and
temporally. In the absence of external Qelds, these
equations are a statement of the homogeneity and
isotropy of space-time:

I'„=0,
stating the conservation of the momentum-energy four-
vector P„=(P,iE/c), and

8vy Pvvy Pg Dv I (6)

stating the conservation of the total angular momentum

cV„„=x„P„sc„P„+5„„,— (7)

without demanding the separate conservation of both
orbital and spin contributions. The intrinsic rest mass,
i.e., the mass in the IRF, is a parameter m which is
covariantly defined by the scalar relation

v„P„+zrzc =0

and is a constant of the motion in virtue of the con-
straint (3).

Let us now examine the relation between the physical
mass and spin predicted by the Frenkel theory. By
physical mass and physical spin we mean the quantities
E/c'= (—z%)P4 and 5, respectively, evaluated in the
I.orentz frame P„=(O,iE/c). This frame is hereafter
referred to as the momentum rest frame (MRF). In the
MRF the Frenkel equations become

dS/dt=o,

dV/dt = —(SXV)E/S',

V dV/dt=V S=S dV/dt=0,

(9a)

(9b)

(9c)

which show that the instantaneous particle position
executes uniform circular motion of radius

(r( =
(
—(VXS)/E[ = VS/E=cr/E (10)

in the plane orthogonal to S. This oscillatory motion js
the classical analog of Zitterbewegung The defnlng
relation (8) then becomes

E=sic'/y =zrzc'Ss/S,

where So is the intrinsic rest spin i e the spin jn the
IRF, and is related to the physical spin S, since

(5 )'=5 g„./2 =5'—'=5'/y'

as a consequence of the equations of motion (9).s
(12)

~ K. Rafanelli, Phys. Rev. 175, 1761 (1968);E.Abers, R. White,
and R. Norton, TRW Report, 1968 (unpublished).
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If Se is a fixed parameter, (11) predicts that the
physical mass of the Frenkel point particle decreases
with increasing spin, a behavior not indicative of the
observed elementary particles. '"

III. INERTIAL FRAMES OF REFERENCE

It is essential that we understand the nature of the
relativistic generalization upon which the Frenkel
theory is founded in order that it may be extended and
Eq. (11) replaced by a relation more indicative of the
elementary particles. The point particle in one whose
energy is

(13)

as viewed by an observer at rest with respect to the
particle, i.e., an observer in the IRF. Invariance of the
classical theory of the point particle with respect to the
inhomogeneous Lorentz transformations generated by
P„and M„„gives rise to the equations of motion, (5) and

(6), if the point particle has an intrinsic spin. Hence the
translationally equivalent inertial frames of special
relativity may be labelled by the continuum of different
values for the three-momentum P. Therefore, the MRF
is inertial. Equations (9) indicate that in this inertial
frame the instantaneous particle motion is uniform
circular, which is accelerated Inotion. Therefore, the
IRF is not inertial, except for the special degenerate
case of separately conserved spin and orbital angular
momenta.

The following argument, based on the Thomas pre-
cession, " shows that the factor y in the relation (11),
between the physical mass and the intrinsic rest mass,
is the observable kinematic effect of the noninertial,
rotating IRF. The general expression for the rate with
which axes fixed in an accelerated particle precess with
respect to an inertial set of axes is"

physical spin and energy, while their intrinsic counter-
parts appear on the right-hand side.

On the basis of the circular Inotion admitted by Eqs.
(9) we conclude that the MRF and IRF are inertially
inequivalent frames of reference, the latter being
accelerated with respect to the former. It is always
possible to satisfy Eqs. (9) by setting V identically equal
to zero. Then the IRF is at rest with respect to inertial
space and coincides with the MRF. Only then is the
IRF one of the inertial frames of special relativity. As
long as VQO with respect to inertial space, the Zitter-
bewegung accompanying the relativistic motion of the
Frenkel particle causes the IRF to be accelerated, hence
noninertial. This poses a very important, but generally
overlooked, interpretational difhculty. Namely, if the
particle considered is a point, then indeed (13) is the
intrinsic rest energy. In particular, it is the rest energy
as viewed by an observer in the inertial IRF. Since all
the inertial frames of special relativity are reached via
Lorentz transformations, one should expect to general-
ize (13) by transforming to another, arbitrary, inertial
frame, i.e., PWO. However, if the particle has intrinsic
spin, then coordinate axes fixed in the particle form an
inertial coordinate system only in the inertial IRF, in
any other inertial frame axes fixed in the particle
undergo a Thomas precession. How then do we specify
the continuum of coordinate axes, connected by
Lorentz transformations to the inertial IRF, for surely
these axes are not fixed in the particle.

Specification of such coordinate axes requires the
notion of the c.m. of a spinning particle, a nontrivial
notion, as attested to by the quantity of literature on
the subject. '3 Let us just mention its significance in the
Frenkel theory. The center of the circular motion
admitted by Eqs. (9) is given by

X=x—r,
(~-1)

ter =— (VXdV/dt) .
'V2

where
r = —(V&&S)/Z = —c~/Z (19)

Thus for the spinning point particle, Eqs. (9) indicate a
Thomas precessional frequency, as viewed from the

ter ——(1—y)ES/S' (15)

The kinematic effect of this precession on the energy is
then given by

Zp=E —S ~z =yE=mc', (16)

in agreement with (13). Therefore, for the Frenkel
point particle, the observable eGect of the classical
Zitterbewegung is expressed in the relation

~&=~p~p,

where the quantities on the left-hand side are the

"K.Rafanelli, J. Math. Phys. 8, 1440 (1967)."L.H. Thomas, Phil. Mag. 3, 1 (1927);Nature 117,514 (1926)."J.D. Jackson, Classscat Electrodytcarrtscs Uohn Wiley ttr Sons,
Inc., New York, 1962), Sec. 11.5.

from which it follows that

dX/dt =0. (2o)

In the MRF, then, the position X is the time-averaged
position of the particle, and is the c.m. of the Frenkel
particle. ' This notion of the mass center is Lorentz-
covariant, for we note that the four-vector

X„=x„+S„„P„/P,P, (21)

reduces to (18) if P=0. It also follows from (5) and (6)
that

(22)

with ic = (n„P„)/(P,P,), so that the velocity of the mass
center is constant and collinear with the momentum.
Hence a nonrotating coordinate system, fixed to the

"M. H. L. Pryce, Proc. Roy. Soc. (London) A195, 62 11948);
K. Rafanelli, Phys. Rev. 155, 1420 (1967). See also the reference
list of Ref. 2, Chap. 2.
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X„P„+me=0, (23)

c.m. , is inertial, and in fact furnishes a coordinate
system for the MRF; i.e., the Lorentz frame in which
the center of mass is at rest is the MRF. Therefore, we
may refer, without ambiguity, to either the MRF or the
c.m. frame. Thus the continuum of co-moving c.m.
coordinate systems provide the needed speci6cation of
inertial coordinate axes. Clearly, the distinction be-
tween the mass center and the instantaneous position
of a spinning particle is a relativistic phenomenon, for
the two coincide in the inertial IRF.

In light of the above analysis we see that if (13)
defines the energy of a particle at rest with respect to
inertial space, then its Lorentz scalar generalization is

(c) has (1) as its nonrelativistic limit. The last require-
ment Tneans that we should consider

Ep ——(5p)'/2I p+nic'-' (26)

to be the total energy of the rotator in the inertial IRF.
The parameter m now denotes the nonrotational part
of the rest energy. As before, the subscript zero refers to
intrinsic quantities.

We now know that the inertial frames of reference
associated with the relativistic motions of a spinning
particle are speci6ed by the coordinates of the c.m.
(21). Therefore, in order to ascertain the effect of rota-
tion about the c.m. , we decompose the total angular
momentum into what are now separately conserved
orbital and spin contributions:

achieved via a boost to moving axes which stay 6xed to
the c.m. However, we see from (22) that

(24)

M„„=X„P„X„P„+—Z„„.

Using (21), comparison with (7) gives

(27)

stating that since the component of the instantaneous
velocity in the direction of the momentum is un-
accelerated, no distinction need be made between (8)
and (23).

IV. RELATIVISTIC SYMMETRIC TOP

It is evident from the analysis of Secs. II and III that
the Frenkel theory is a relativistic generalization
appropriate to a point particle, possessing an intrinsic
spin, whose intrinsic rest mass is a parameter whose
value is the same to all the inertial observers of special
relativity. The Zitterbewegung accompanying the
relativistic motions of such a particle gives rise to the
relation (17), which predicts a behavior not observed in
the elementary particles. The nature of the relativistic
generalization on which the Frenkel theory is founded
leads us to assert that if the particle considered is not a
point, so that the energy in the inertial IRF can be in
part rotational, i.e., due to some rotation about an axis
through the c.m. , then all inertial observers must agree
that the energy they observe is in part due to rotation
of the body about the c.m. they observe. As long as the
Frenkel equations of motion, (5) and (6), remain valid,
along with the constraint (3), then the Zitterbewegung
accompanying the relativistic motion of the body will
decrease the dependence of the physical mass on spin by
the multiplicative factor Sp/S.

Ke are therefore encouraged to seek a Frenkel type of
relativistic generalization for the stationary symmetric
top whose nonrelativistic kinetic energy is given by (1).
In other words, we would like to construct a classical
Lorentz-covariant theory consistent with Eqs. (3), (5),
and (6), but with (8) replaced by

S„PP„S„PP„

(P,P,) (P,P,)
(2g)

We call Z„„ the spin tensor with respect to the c.m.
coordinates since it is the contribution to the total
angular momentum over and above the orbital motion
of the mass center. We may directly verify that Z„„=O,
Z„„P,=O, and hence Z;, =5;, in the MRF. The Lorentz
scalar

Z„,Z„.=5„,5„[8„, 2P„P,/(PpP—,)]
has the invariant value

(29)

SE/S p S'/2I+mc'—— (32)

which clearly shows that if S=S, we recover (26) with
I=ID. It is essential that we understand the moment-
of-inertia parameter I, appearing in (32). Because the
particle motion in the MRF is uniform circular in the
plane orthogonal to the fixed orientation of S, the
parameters I and Jo are related via the parallel-axis
theorem, i.e.,

z„„z„„=252,

where S is the physical spin. In the inertial IRF, of
course, 5=50.

Since the kinetic-energy term in (26) is due to rota-
tion about an axis through the c.m. of the stationary
rotator, and since Z„„is the net rotation about the c.m.
of the moving rotator, we are led to the mass term

Mc = (1/4Ic)Z„„Z„„+rwc, (31)

where I is the moment of inertia about the c.m. of the
moving rotator. In the MRF, then, (25) becomes

w„P„+Me=0, I=Ip+mr'. (33)

where the new mass term, M, (a) is a Lorentz scalar,
i.e., has the same value in all the inertial frames of
special relativity, (b) is a constant of the motion, and

With r given by (10), and V'/c'= 1—1/y' = 1—(Sp/5)',
then

I=Ip+ (mc'5'/E') $1—(Sp/5)'j
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The functional dependence of the physical mass on spin
is then given by the roots of the cubic equation

Et+pE'+qE+b=0,

where the coefficients are"

(35)

p = —(SS,/2Ip) (1+2mc'Ip/S'), (36a)

q = (mc'5'/Ip) L1—(Sp/S)'j, (36b)

b = —(m'c'SSo/Io) L1—(So/5)'j. (36c)

As a check, we note that if S=So the three roots of the
cubic equation are real, and given by

Et =Soo/2Ip+mc', Ep ——Es ——0. (37)

Thus, as we must, we recover the stationary top as one
of the roots. The other two roots are trivial for the case
S=SO,. however, their behavior for relativistic motions
is important.

In accord with what we can expect to learn from a
classical theory, let us examine the asymptotic behavior,
i.e., 5/Sp —+ pp. In this limit, all three roots are real

only if
(38)Spa/2Ip& 8mc'.

If the equality holds, the roots are

Et Es ——4mc——'(S/Sp), Ep
——0. (39)

If the inequality holds, then the roots are distinct. For
example, if

(40)Spa/2Ip 9mc', ——
we have

Et——6mc'5/Sp, Ep =0, Es 3mc'5/5 p. (41——)
More generally, if

So'/2Io =gmc', (42)

then for any g) 8 the roots of (35) are real, and are

given by

Ep = (m"5/35p) f g+2LC(g —6)I'"
&&cost-', po+(It —1)(120')7}, (43)

where k=1, 2, 3, and

«s~= ~Lg(g —9)'/(g —6)'l'", (44)

where the plus sign is for g) 9, and the minus sign is for
g- 9. As g —+ ~ we have

Et gmc'S/S p, Ep ——Es ——0——. (45)

The root E~ characterizes the behavior of the sym-
metric top. For the range of the parameter, g&8, the

energy of the top starts at (g+1)mc' in the inertial
IRF. Then, as viewed from axes which stay fixed to the
c.m. , i.e., the MRF, the energy increases monotonically
with increasing spin, eventually becoming a linear
function of the spin in the limit of large spin. It is

interesting to note that for all g& 8, extrapolation of the

'4 R. S. Burington, Handbook of Matbenzatioal Tables and
Formulas (Handbook Publishers, Sandusky, Ohio, 1956), p. 7.

constant slope of Et versus 5/Sp, at large spin, back to
5/Sp ——1, gives an intercept less than (g+1)mc'. Hence,
semiquantitatively at least, the trajectory of the root
J&.'&, on an energy-spin plot, lies on a curve whose func-
tional dependence is like (5/Sp)", where 0(tt(1 for
finite spin with e approaching 1 in the limit of large
spin. There is no reason for preferring any value for g
as long as we realize that it is not meaningful to try to
fit the elementary-particle data with a classical theory.
Such a determination must await the quantal treatment
of this top.

There is probably no profound significance to the
roots E'2 and E3. Their reality, for g&8, however, is
quite signihcant. For a particle which obeys the
Frenkel equations of motion, it follows that

P„P„=—E'/c' = —(Mc'/y)'/c' (46)

regardless of the structure of 3f. However, if and only
if the possibility of imaginary values for E are excluded,
are we assured of having only timelike four-momenta.
Such is the case for the model of a symmetric top,
provided the condition (38) is satisfied.

The implications of the foregoing analysis shed some
light on the problems plaguing present theories based on
Poincare invariance. There is one condition which
ensures both a relation between physical mass and spin
in semiquantitative agreement with the trajectories of
observed elementary-particle states, and the existence
of single-particle states which are timelike only. The
condition is that the relativistic rotator considered have
as its nonrelativistic limit the model of a particle whose
spatial extent is not zero, i.e., not a point, so that a
minimum contribution to the intrinsic rest energy may
be Inade by rotation about an axis fixed in the body,
enough to counterbalance the relativistic effect of the
Zitterbewegung, which is to drag down the physical
energy with increasing spin. We see then the short-
coming of Frenkel's original formulation, for the point
particle emerges as the limiting case of the top, where
Sop/2Ip«mc'. Our results, however, show that this is not
a limit realized in nature, since it is beset with the
coupled difhculties of a descending mass spectrum and
single-particle spacelike states.

V. SIMPLE TWO-PARTICLE ANALOG

The point of view we have adopted here is relevent to
the argument presented by Chang and O'Raifeartaigh'
on the spacelike states of a two-particle system, as
shown by the following argument. In an arbitrary
I.orentz frame the motion of particle, obeying Frenkel's
equations of motion, is helical. If the superimposed
oscillations are rapid, '5 the space-time picture of the
motion is that of a particle which exists somewhere on
the surface of a world tube, concentric with the straight
world line of the mass center, and whose spatial extent
is determined by the ratio 5/Sp. After a moment's

~ K. Rafanelli, Xuovo Cimento 52, 342 (1967).
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thought we see that the relatively simple system of two
spinless particles which, to an observer 6xed to the
c.m. , remain a fixed distance apart, presents the same
space-time picture as that of the single spinning particle.
It is not surprising then that conclusions akin to those
reached for the single spinnirig particle apply to this
simple composite system.

Consider the two particles, each of rest mass m,
located at the space-time points x„&') and x„(2). The
total four-momentum of the system is

P —
p o)+p (2)

and the relative four-momentum is

p
—

p 0) p(&) ~p
where

p„=x„('&—x„&2).

Kith c=1, we have

P„P„=—4m' —p„p„,
and with p„given by

P =(1) i&)

where p=p(') —p&') and e =E&'&—E(2& we have

P„P„=—4' —p'+ e'.

(4&)

(48)

(49)

(50)

(51)

(52)

If the two particles do not interact, then p=0. Such a
system is timelike for E&"=E('&, since then ~ =0.On the
other hand, if E(')= —Z(') then e'=4(E(")', and if
each of the constituent particles has only timelike four-
momenta, then (52) becomes

P.P.=4(1)"))'&o, (53)

and the system is spacelike.
If the system of two particles, on the other hand, is

to possess "elementary" characteristics, then some
interaction must bind the constituents. Then, regardless
of the details of the interaction, p is not required to be
zero. If the particles are separated by a fixed distance,
as viewed in the c.m. frame, or equivalently the MRF,

KE...=y'/4nz (54)

as the rotational kinetic energy of the relative motion.
Therefore, even the composite particle-antiparticle
system considered above is prevented from being space-
like as long as the rotational kinetic energy of the rela-
tive motion is greater than some minimum portion of the
total kinetic energy of the system; the condition here is

VI. CONCLUSION

Ke have developed a classical relativistic theory of
the symmetric top, and derived the criteria under which
(a) the physical mass increases with spin, and (b) there
are no spacelike solutions.

The analysis presented was strictly classical. How-
ever, it has been argued that the quantum counterpart
of the Frenkel point-particle theory is the Majorana
wave equation (iF„P„+(()/=0.""Such a wave equa-
tion obtains directly from (8) if iF„ is the velocity
operator and the parameter mc is replaced by the param-
eter a. It is not surprising, then, that the difficulties
inherent in the classical Frenkel formulation are re-
jected in the Majorana equation, ' for they are both
descriptions of a point particle with intrinsic spin. If we
adopt the attitude that within the classical theory lie
the guidelines for construction of the corresponding
quantum theory, then the semiquantitative features of
the classical theory of the relativistic symmetric top
should encourage us to study the quantum theory
appropriate to this model. In particular if we want to
study linear relativistic wave equations of the Majorana
type, i.e., which contain all spin states, which display
the same kind of relevance to the elementary particles
contained in this classical theory, we should consider
wave equations of the form (iF„P„+BID)/=0, where
Mc is an operator. The form of the mass operator, in
order to properly account for the details of the Zitter-
bewegung, is dictated by its classical counterpart (31).
It is reasonable to assert, in fact, that we need only
replace the classical variables in (31) by their operator
counterparts, i.e., P —& —iAB„, and S„„—+—iAF„„,where
—iF„„is the spin operator in units of A. The validity of
this assertion is currently being tested.

The operator counterpart of the c.m. coordinate (21)
has been mentioned in the literature. '3 It is a nonlocal
position operator. Thus it would seem that the price of
properly accounting for the Zitterbewegung of a spin-
ning particle, in a manifestly Lorentz covariant way, is
nonlocal field theory. The dynamical origin of the
nonlocality is the Zitterbewegung, whose spatial extent
is on the order of the Compton wavelength.
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