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A formal general solution of Einstein’s equations’in the static case containing an arbitrary function of 7
is obtained. A necessary and sufficient condition that the arbitrary function must satisfy in order that the
solution be physically meaningful in the neighborhood of the center is established. A mapping from New-
tonian solutions is indicated. The case of infinite pressure at the center is considered. New solutions are

given as examples.

INTRODUCTION

OST of the known exact solutions of Einstein’s
equations in the spherically symmetric static
case have been found with ad %oc methods which may
be described as follows: By manipulating Einstein’s
equations, a complicated differential equation is ob-
tained connecting two unknown functions; the differ-
ential equation becomes simple, however, for particular
forms of one of the functions.!—3

Although this method has no physical basis and may
give unphysical results, it remains a valuable one in
view of the scarcity of known exact solutions. It is felt,
however, that there is a need for a more physical
approach.

The present work is concerned with (a) properties
of Einstein’s equations and their solutions in the case of
perfect fluids with spherical symmetry and (b) new
exact solutions and their physical properties.

FORMAL GENERAL SOLUTION

We will use freedom in the choice of coordinates to
take the following line element:

ds*=— A (r)dr*—r*dQ+C (r)di? €))

or
ds*= —e“dr?— 2 dQ*+-e7di?, 2)

with
A= d6*+sin%df .

The field equations for the symmetric energy-
momentum tensor are in this case®

8rp=—8rTo=e(1/r4o' /r)—1/72, 3)
8rp=—8rTt=e*[10""+1c"

+ (' —o")/2r—1'w"], (&)
8mp=8nTi=e*('/r—1/r%)+1/72. 5)
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From T%:=0 we obtain

—30’'=7"/(p+p). (6)

We have to solve the equation 7'1'=T%? which is a
differential equation relating w to ¢. From the mathe-
matical point of view as well as from the physical point
of view, it is more convenient to consider o as an
arbitrary function of 7 and express w in terms of o;
reverting to 4 and C, the equation 7'y'=T? reads

a7c 1y 1/ CoCt o1y 1
DS Dt
42\ac 2 P

@)
"a\2c wC 4C P

which is a linear differential equation in 47, the solu-
tion of which is

y (2t o) L a'dr
— oo 20 (2t o'y exp( /z+m'>/

a'dr
—4 / l:,,—se«(2+,,a/) exp<—4 / ):]dr—{—const.
241’ ®

By giving to ¢ arbitrary expressions in function
of 7, we obtain different solutions. We may then look
at the properties of the solutions and see if they have
any physical meaning. This is an ad soc method similar
to that used by Tolman.! From a practical point of
view, we should choose ¢ so that the indicated inte-
grations may be performed. A simple way is to take for
o a rational function of » with arbitrary coefficients:

aytartas?t-- -
o=
bo+bur+ba 4o

then ¢’/ (2+47r¢’) will also be a rational fraction; if the
coefficients are so chosen that there are no double roots
in the denominator of (9), we shall have

9)

o'/ Q2+re")=% [ci/ (r—di) ], (10)
so that exp{—4./ [¢'dr/ (2+rs")]} will give
i
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If we choose the a’s and the &’s so that every 4c; is a
whole number, all the integrations can be performed,
and we obtain solutions expressed in terms of known
functions.

However, we are interested in finding conditions for
the choice of ¢ so that the resulting solutions will be
physically meaningful. We shall do this in three differ-
ent ways and shall establish conditions on o so as to
obtain (a) physically meaningful solutions with finite
pressure at the center, (b) a mapping of Newtonian
solutions, and (c) solutions with infinite pressure at the
center that may be used in the problem of collapse.

Conditions for Physical Solutions with
Finite Pressure at Center

From the three equations (3), (5), and (6) we can
eliminate 4 and C to obtain

87 (—2p"p+4pp"+2pp"0" — 2pop" — 2p*p"")
+3(8m)r2p (ot p)*+1[6p"—2p" (o+p)+ 240
—8n(o+)*(p+3p) 1—4p"(p+p)=0. (12)

It is known” that in the static case and for the metric
(1) the pressure is a decreasing function of 7; therefore,
the maximum of the pressure is at the origin; if an
infinity of the pressure is to be avoided it therefore is
enough to have finite pressure at the origin. We shall
now prove the following results:

Result 1. If the origin is a regular point for p and p,
then at the origin we must have po'=0.

If the origin is a regular point for p and p, they can
be expanded in a Taylor series. Introducing these
series into Eq. (12) and setting =0, we obtain

—4py' (pot+p0)=0,

so that we must have p¢'=0.

Result I1. If the origin is a regular point for p and p
as functions of 7, then p and p must be even func-
tions of 7.

The proof of this result is given in the Appendix.

Result ITI. If the origin is a regular point for p(7)
and if A~ behaves there as ar™ with n7%—1, then we
must have at the origin 4 =ev=1.

From (5) we may write

8mr2p+ (41— 1)— A'r/42=0.

Assuming that A~ behaves like ar” for small 7, we have
at the origin for finite p

(n+1)ar—1=0,

so that #=0 and a¢=1, that is to say, 4 (0)=1.
Result IV. If the origin is a regular point for p, then
A4 is an even function of 7.

(13)

19
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The result is evident upon inspecting Eq. (5) and
taking result IT into account.

Result V. If the origin is a regular point for p and p,
we must have

b= — (&) (oot p0) (0-30) . (15)

Let us introduce in (12) the Taylor expansion of ¢
and p in terms of even powers of 7 (result II), and let
us set equal to zero the coefficient of 7 in the resulting
equation; we obtain

—2p¢""— (po+p0)8m (pot+3po) —4pd” =0,

which leads to the result.

What is remarkable about this result is that it is
independent of the equation of state.

Result VI.1f p and p are regular at the origin and if
A~ does not behave there as 71, then o and therefore
C=¢° admit a Taylor expansion around the origin in
even powers of 7.

We have from (3)

o'=A8npr+1/r)—1/r.

Introducing the Taylor expansion of p and 4 in even
powers of 7 (results IT and V) and taking IIT into
account, we obtain for ¢’ a Taylor expansion in odd
powers of 7, the integral of which is a Taylor series in
even powers of 7.

Now, let us write the equation of state in the form

(16)

p=pota(p—po)+b(p—po)*+---, 17)

and expand p, p, 4, and ¢ around the origin:
p="po—72 (oot p0)87 (po+3po)*+dr*+---, (18)
A=14ur+or*twr - - - (19)
p=pot fr4-gr*d-hrS4- - -, (20)
B Lo of 7o SN (21)

Introducing these expressions into (6), (3), and (5),
we obtain

F=%m(po+3p0), (22)

sw=8rpo/3," (23)
S po—3 240k

> po—3po (24)

R e DIAE=TO N
We may therefore write for ¢
o =0oF4§m(pot3po)r*+ (8r)*
% (pot10) (P03 p0) (5 po—3po
240 \3 potpo

—a>r4—|-0 %). (25)

We therefore have the following indications on o:

(1) ¢ is an even function of 7.
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(2) The constant ¢o is of course arbitrary and is
changed by a rescaling of time.

(3) The coefficient of 72 in (21) must be positive
(7>0).

(4) The choice of the coefficient j of 72 determines
the value of po+3pe. The knowledge of o cannot
determine po and po independently. Concerning this
last point, we have from (8) [and taking (19) and (23)
into consideration] that

72X (r) 1+81I"p0 oy
= ——r .o e N

_— (26)
72Y (r)+const X7? 3

where 72X (r) and 72¥ (r) tend to a constant different
from O for »=0. The constant in 4 is therefore given by

— (8mpo/3)[*X (7) Jr=o. @7

It is therefore clear that the value of the constant in 4
affects the value of po. In short, the knowledge of o
determines the solution up to an arbitrary constant in
A; this allows for an arbitrary determination of po;
the solution is therefore completely determined by
giving o and p,.

However, once o (and therefore 7) is given, po must
be restricted in its values for physical reasons; we have
from (22)

po=(3;/4m)—3po. (28)
We will therefore impose on po the inequalities
37/16m< po< 37 /4, (29)
which correspond to the physical inequalities
po2 $020. (30)

We shall impose also the condition (dp/dp)e> 1, i.e.
[from (17) and (24)],
240k

5<Po—3Po> o1
3\ potpo/ (87 (ootp0) (pot3p0)

Using (22), this may be expressed in terms of j and 2
so that we have

Sk/ (7)< (8/3)po— (37/2m).

For a given 7 this inequality is the easier to satisfy
when po takes its greatest value, which according to
(29) is 37/4x. In this case we still have to satisfy

k< 72/10.

1)

(32)

(33)

Conversely, it is easy to show that if j and % are
given so that (33) is satisfied, it is possible to find a
value of po satisfying (29) and such that (31) also is
satisfied. We therefore reach the following result:

Result VII. The necessary and sufficient condition
for a function ¢ to correspond to a solution such that
the pressure is finite at the center, and such that
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around the origin we have dpo/dp>1 and po2> po20, is
that o admit a Taylor expansion

o=aot jrthrit -

in even powers of 7, and that 7 and % satisfy the
inequalities

7>0 and k<2 (34)

—or equivalently, that C admit a Taylor expansion

C=m(+nr+gr*+---) (35)
in even powers of » with
n>0 and ¢<En2. (36)

Let us apply result VII on the different exact solu-
tions mentioned in Tolman’s article.!

Solution I is that of Einstein’s universe. We have
in this case e?=const, so that n=¢=0 [Eq. (35)].
This solution does not, therefore, comply with the condi-
tions (34) or (36) of result VII (hereafter referred to
simply as “our conditions”). It is known that for this
solution p+3p=0, unless we use the cosmological
constant.

Solution II is that of Schwarzschild and de Sitter;
we have in this case

e"=const(1—2M /r—r*/R?). 37

If M50, the solution does not respect our conditions
which state that e® is to have a Taylor expansion
around the origin. In fact, in such a case A—! behaves
like 7~ at the origin. We have excluded this case in
establishing result III. (We have therefore excluded the
case of a point mass at the origin.)

The case M =0 gives n=—1/R? and ¢=0, which
again contradict our conditions. In fact, we have in
this case de Sitter’s universe, for which p+4p=0.

Solution IIT is the Schwarzschild interior solution.
We have in this case

e’=[A—B(1—7r*/R)V2, (38)
from which we write
Br? AB—2B2 y*
o=21n(4—-B)+ } —+0(). (39)

R(A—B) 4(4—B)* R*

The condition >0 here reads 4/B>1, and the
condition £< 52/10 here reads A/B<12/5.

The two conditions are compatible, and therefore it
should be possible to find a solution satisfying our
criteria of physicality. The Schwarzschild solution does
not satisfy our criteria since it has dp/dp=0 everywhere.

However, the expression for ¢ in this solution is not
the most general one corresponding to the given e,
since it does not contain an arbitrary constant in addi-
tion to those that occur in e°.
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The most general expression for ¢* may be calculated from (8), and is found to be
[#(4 — Ba) 4 B(1 =) FL (=2 "/ (5 =/ o “©

@

in which

72 1/2 A_(A2+8B2)ll2
e

R2 4B

(41)

A+(A2+SB2)1/2
Xo=—"—" ",

4B

while ¢ is the additional arbitrary constant. The
Schwarzschild interior solution corresponds to the
particular value a=0.

If we give to A/B the value 2, for instance, we shall
have satisfied the imposed inequalities. We can then
choose the arbitrary constant a so as to have po> po>0.

Solution IV is the most interesting of Tolman’s solu-
tions. We have in this case

14+ (22/42)

0 = , (42)
(1—7%/R%)(1+r2/4?)
e"=B2(1+412/ A7), (43)
1+ (342/R®)+3r2/R? 2 1—(*/R*
N +(34%/R?)+-3r%/ 4 (»*/R?) @)
1+ (212/4?) A? (14-22/A%)?
1—(A2/R?) —3°/R?
8rp=A4"2 UyR) 3 (45)
1+4(22/4%)
The equation of state is
p=pot+5(p—po)+8(p—p0)*/(postpo),  (46)
with
8mpo=3/A2+3/R?
and

8rpo=1/42—1/R2.

The condition 7>0 here gives 4%>0; the second
condition is identically satisfied here. Granted the
positiveness of A% we find, in agreement with our
results, that it is always possible to determine a con-
venient value for po such that we have at the origin

p0>p0>0 and (dp/dp)o>1.
In our case (dp/dp)e=35, and we should require
3 3 1 1

—+—>———>0
A* R A R

-1 1 1

—_—<< R

e @

This can be satisfied either with R*>A42>0 or with
—R2>242>0. This last case was not considered by

" [o(A — B)+-B(1— ) P (r—i1)/ (r—aea) 2 P! ere0g 4y

Tolman, who imposed the inequality po/p02 3 for which
we must have R?>0.

Solution V: We have here ¢?=72"; ¢ cannot be ex-
panded into a Taylor series around the origin so that
it does not respect our conditions. In fact, the solution
has infinite pressure and density at the origin.

Solution VI:

e’= (Ar'—"—Br'tn)? ev=2—n?, (48)
8mp=(1—n?)/r*(2—n), (49)
8rp=[(1—n)2A— (1-+n)2B2]/

72(2—n2)(A—Br*). (50)

As given by Tolman, this solution is singular except for
n?=1, for which we have p=0 and >0, an unaccepta-
ble situation.

However, from our point of view Tolman’s solution
is not general enough, since the expression for e does
not contain an arbitrary constant in addition to those
occurring in e°. Now it is possible with the help of
Eq. (8) to find a more general expression. The calcula-
tions for the case n=1 give

o= (A —Br2)=A[1— (2B/A)r+(B*/A*)r'], (51)
(A —3Bp)2i

o =m (d=arbitrary const), (52)
4
8rp =B (3)
—3dA+5dBr*  2dAp>3+20dBpl3
8rp= - (54)

T (A—3Br)sl (—12B—24p)B

Tolman’s solution corresponds to the particular value
d=0 of the arbitrary constant.

Our conditions here read B/4 <0 and B?/A42<12B?/
542; the second condition is identically satisfied. The
solution should therefore be physical around the origin.
In fact, there we have

dp/dp=>5dA'3/2B. (55)

It is clear that for A >0, B<0, and <0, po and p, are
both positive; it is also clear that po/po and (dp/dp)e
can be as great as desired.

Solution VII has such a complicated expression that
Tolman has not given any of its properties.

Solution VIII is given by an expression for o that
cannot be expanded in a Taylor series around the
origin, so that this solution is unphysical according to
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our criterion. In fact, the expression for p4p as given
by Tolman tends to infinity at the center.

Of course, we are not restricted to the known solu-
tions; taking for instance

1+ar?
14072

C:e”:

=14 (a—b)rP+ B —abyrt+- -, (56)

we may calculate from (8) the corresponding expression
for A=e“, which is given by

4(abr' 27+ 1)2 7brt (1 —/a)1in\=0=bio
72(1+b72)3(1+ar2)\br2+(1+b/a)1/2> /
4/ abr4+2(172+1/br2+ @ —b/tz)”z)““l’/")”2

P52 \br+ (14-b/a)l2
Xdr—+const.
Our conditions are in this case a—b>0, b®—ab
< 2(a—1b)2. The two conditions lead to @ being greater
than the positive one of the two quantities & or —3b.
Let us take for instance b=2%a>0 and »2=3z; we obtain
for the integral occurring in the denominator

/ abz2+2az+1/262+1>*1’2d
Z)

2(14b2)? \2b54+3
which can be expressed in terms of known functions.
We need not calculate the complicated expression for
A=e® in order to assert that the solution behaves
physically around the origin.

(57)

(58)

MAPPING OF NEWTONIAN SOLUTIONS

It is clear from (6) that for p<<p, —%¢’ corresponds
to the Newtonian field intensity; therefore, if in o=2V
we introduce for V the solution of a Newtonian problem,
we shall have a corresponding general relativistic exact
solution. For all the values of the parameters corre-
sponding to weak fields, the solution will be similar to
that of Einstein’s linear approximation. However, the
range of the parameters is not to be fixed by the strength
of the field but by requiring the solution to behave
physically. We will see that exact solutions so obtained
may describe indeed strong gravitational fields.

Let us consider, for instance, a Newtonian incom-
pressible fluid; the Newtonian potential for a sphere of
finite radius is

V=ur>+v (u and v are constants). (59)
We may therefore take for our mapping
o=ar>+b (a and b are constants). (60)

We thus rediscover Tolman’s solution IV.! It may be
checked readily that the solution has physical meaning
even in the case of strong fields.
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We could have taken for o the expression
o=In[1+4 (ar?+5)].

In the case of weak fields (ar*+8<1), this last ex-
pression is, up to terms of smaller order, equivalent to
the preceding one. However, we obtain in this case a
new solution the line element of which is

(61)

ar?
ds?=
1—arte7 = Ei(14ar*)+const
—r2dR2+evr™odr (62)
in which Ei is defined by
© etdt
Ei(x)= —_ (63)
—w &

SOLUTIONS WITH INFINITE PRESSURE
AT CENTER

These solutions have a physical meaning if they can
be considered as limiting cases for very high pressures
at the center.

Let us suppose that p=%kp (k is a constant); inte-
grating (6) we find

e”= gqy= const X p—2/ I+

it is therefore seen that as p tends to infinity gs tends
to zero, and reciprocally.

Let us now inquire about the behavior of p and p
near the origin for infinite values of po; we shall suppose
that » may be expanded in a Laurent series around the
origin and that it has a dominant term p=ar™ for small
r (with #<0); we shall then have p=kar®, so that
Eq. (12) becomes -

a2 (2— 28)+n (382 8k +-5) — B3 — Sk2— Th—3]
a2 (A2 — 2n—2km) ~0.  (64)

It can be readily checked that the only possibility
compatible with £>1 and #<0 is to take n=—2. We
have in this case

a= (20+4-4k)/ (k3411k*+31%+5). (65)

We may therefore state that when p and p are infinite
at the center while their ratio p/p tends to a constant
greater than 1, and if the Laurent series for p has a
limited number of terms in negative powers of 7, then
the pressure and the density behave near the center
as 72

Introducing p=~ar2, p~kar—* into (6), we find

o=4InV/ B 4const, or C=e"=constX7* +5 = (606)

giving thus the dominant term of C near the origin.
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Taking C=74 " we find from (8)
4 (R*4-6k+1)/ (k1)

1 — oy CREHIZE2) | (R2H4R43)

(67)

S+k (k41)u
Srp=— y@h—0) | (W2H4k43) | r2,
1+k k*+-6k+1 k2+6k+1 63)
3k24-16k+5 (k-+1)
8mp= p @h—4) [ (k2H4R+3)
k*4-4k+3 k*4-6k+1
—2. (69)

ey
F2+-6k+1

We therefore rediscover Tolman’s solution V in a
different notation.

It is to be remarked that for =1 we obtain the
particularly simple solution

ds?=— dr*—r2(d6®+sin?0d ?) +br2d2,  (70)
1—ur?
8rp=—Ju-+ir, (71)
$rp=+dutbrt, (72)
p=p+3u/8r. (73)

Taking b=, the line element can be smoothly joined
to Schwarzschild’s exterior solution

ds*= — (1—2m/r)"'dr+1*(d6+sin’d ¢*)

+(1=2m/r)d. (74)

It can be checked easily that we obtain a spherical
body which is surrounded by vacuum and has a coordi-
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while the total mass is given by

m=3%(3u)"12, (76)

It is clear that with # small enough, the total mass
can be as great as desired. (The relevance of this solu-
tion to the problem of gravitational collapse will be the
subject of another paper.)

DISCUSSION

We have adopted as the criterion for physicality the
condition that pressure and density be finite at the
center and that they satisfy the inequalities p> p>0,
dp/dp>1. Although we believe that there is no naturally
occurring infinite pressure, we studied the case of infi-
nite pressure at the center as a limiting case for very
high pressures, thus giving a physical meaning to a
seemingly unphysical solution (according to our cri-
terion). It may therefore be asked if there are no other
cases in which solutions disqualified by our criterion
could be so reinterpreted. Such would be the case, for
instance, with a solution having a finite pressure at the
center with an infinite density; it could be considered
as representing a limiting case for the threshold of
condensation at the center. It could be asked if we have
exhausted the case for which both pressure and density
tend to infinity at the center, while their ratio tends to
a finite number different from zero. In fact, we have
restricted the study to the case in which there is a
dominating term in the expression of p in the function
of . We have therefore excluded, for instance, a
logarithmic divergence of the pressure. Such a log-
arithmic behavior is obtained with the following
solution:

T — —_ —~1
nate radius er=(1—ar), (77)
R= (3u)™1/2, (75)  from which we obtain through (8)
(2—ar)®
y (78)

The metric is regular at the origin. Nevertheless, the
pressure and the density diverge there logarithmically
according to

p=~—a*lnr and p~—a2(1+lnr).

CONCLUSION

The method developed here is useful for finding new
regular solutions either by ad hoc considerations or by
a mapping from Newtonian solutions. It allows us also
to find irregular solutions in which pressure and density
diverge as »—* (the only possible value for # being n=2
if we impose the condition p/p>1) while the limit of

=1'2(1 —ar)}{4a*r+-64/r*+32a* In[ (1 —ar)/r*]—4a?/ (1 —ar)+const } |

their ratio at the center can be chosen at will. It allows
us also to find out if a solution is irregular by a look at
the metric tensor without calculating explicitly the
pressure and the density.

APPENDIX
Theorem: If
/G, =597 =) [ =Gy y" 0] (A1)
identically in (,5',y",x), and if
y'(0)=0 (A2)
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for a solution of

FOy,y" %)=0, (A3)
then for this solution we have
y(—x)=y(). (A4)

The proof consists in the remark that x — y(—x) also
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satisfies (A3) and has vanishing derivative at x=0,
hence y(—x)=y(x) because of uniqueness.

From this theorem we deduce the truth of result II.
A look at Eq. (12) supplemented by p= f(p) shows that
the left side of the Eq. satisfies (Al); now, result I
states that $'(0)=0 and therefore the solution p(r) of
(12) is an even function of 7.

NUMBER 5 25 SEPTEMBER 1969

Classical Relativistic Rotator as a Basis for the Elementary Particles*

KENNETH RAFANELLI
The Cleveland State University, Cleveland, Ohio 44115
(Received 28 March 1969)

A classical Lorentz-covariant generalization of the nonrelativistic theory of a free, stationary, symmetric
top is developed. The resulting relativistic theory predicts a physical mass which is a monotonically in-
creasing function of spin asymptotically approaching a linear relation in the limit of large spin. The theory

is free of spacelike solutions.

I. INTRODUCTION

'HE notion that the elementary-particle resonances
may be excited rotational states is not new. It has
led to the investigation of the rotational levels of com-
posite systems and to the study of relativistic wave
equations based on various rotator models.! Perhaps the
most detailed study of the applicability of rotational
states to the elementary particles is due to Corben.? His
analysis is based on the model of a symmetric top. It is
in the spirit of Corben’s approach, that a properly
formulated quantum theory of a relativistic rotator is
founded on a properly formulated classical theory of
that same rotator, that we undertake the present
analysis. Some of the introductory material has ap-
peared in the literature; it is reiterated, in Secs. I and
II, for the sake of coherence. The rest of the analysis and
the emerging rotator theory differ in content from
previous formulations. ‘

We develop a classical Lorentz covariant generaliza-
tion of the free, nonrelativistic, symmetric top and
discuss those features of the relativistic theory which
indicate its relevance to the elementary particles. We
focus especially on the two important features: (a) the

* Work sponsored in part by the Office of Naval Research.

T Permanent address: Queens College of the City University of
New York, Flushing, New York 11367.
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